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Faster Phong Shading via Angular Interpolation 

A.A.M. Kuijk and E.H. Blake* 

Abstract 

One of the most successful algorithms that brought 
realism to the world of 3D image generation is Phong 
shading. It is an algorithm for smooth shading meshes 
of planar polygons used to represent curved surfaces. 
The level of realism and depth perception that can be 
obtained by Phong shading is attractive for 3D CAD 
applications and related areas. However, per pixel 
computation costs which were too high and/or 
artifacts, introduced by some of the more efficient 
evaluation methods and apparent only when displaying 
moving objects, are major factors that blocked the com- 
mon usage of Phong shading in highly interactive appli- 
cations. 

In this paper we present angular interpolation for 
Phong shading planar polygons. Angular interpolation 
was a method especially designed to meet requirements 
as imposed by special purpose hardware we developed1, 
but turned out to be generally applicable. The angular 
interpolation method appears to be very efficient and 
reduces artifacts when displaying moving objects. 
Ideally a shading algorithm imposes no need for subdi- 
vision of patches as presented by the solid modelling 
system. Shading calculation via angular interpolation 
yields such an ideal algorithm. We will describe two 
alternative evaluation methods that trade off evaluation 
cost against level of accuracy. They both can handle 
light source and view point at arbitrary distances, but 
Mer in level of accuracy. As a consequence these 
alternative evaluation methods do impose restrictions 
on the topology of patches and light sources. However, 
generally, the limitations imposed by these alternative 
shading methods are much more liberal than the limita- 
tions on patch size imposed by the geometry. 

The most economic evaluation method we present 
can incrementally compute the colour intensity along a 
scanline by two additions per pixel. The methods 
presented are generally applicable and can easily be 
implemented in hardware. 
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lar interpolation, spherical geometry, quadratic 
approximation, quaternions. 

Introduction 
Phong shading is one of the most successful algorithms 
for obtaining a high degree of realism in computer gen- 
erated images. This shading model is often used to 
shade planar polygonal approximated surfaces 
smoothly. It not only has ambient and Muse intensity 
components but incorporates a specular reflection com- 
ponent that produces a highlight as caused by reflection 
of shiny surfaces2,3. The surface reflectance dependent 
approximation of this specular component as proposed 
by Phong is based on empirical observation. The 
Phong shading model implies that at every pixel the 
diffuse component cos a and the reflection component 

has to be evaluated. In general both a and    vary 
across the surface to be shaded. 

Figure 1. The Phong shading model comprises a 
diffuse component and a specular component 

is the angle between the surface normal 
and the direction of the light source is the angle 
between the direction of reflection R and the direction 
of the viewpoint and n is a coefficient depending on 
the reflectivity of the surface. 

Phong shading would be very attractive for 
interactive 3D CAD applications. The level of realism 
that can be obtained with it will give a better depth 
perception and may give a better idea of the final result 
of the design during the design process. In spite of this, 
common introduction of Phong shading in highly 
interactive CAD applications for smooth shading of 
planar polygon meshes did not occur, mainly because 
of the computation intensiveness of the method. 
Another deficiency are artifacts, introduced by some of 
the more efficient evaluation methods4. These artifacts 
may be almost invisible for static images, but become 
disturbingly apparent when displaying moving objects. 

http://www.eg.org
http://diglib.eg.org


direction of reflected light is dependent on the posi- 
tion. Since is obtained by interpolation, these vectors 
usually also are found by interpolation from the values 
calculated at each vertex, rather than by exact calcula- 
tion at each pixel. 
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This may be reduced by reducing the polygon size, but 
this strategy would increase the computational demands 
and data transportation. As a result, the Phong shading 
model has so far been a widely accepted shading model 
for post design visualisation; the interactive design ses- 
sion -supported by a less demanding shading model- 
is followed by a request to show “what it really looks 
like”. 

In order to make Phong shading applicable for 
highly interactive applications, the basic problems that 
have to be solved are: “how do the angles and vary 
across the polygon?” and “given this variation how to 
evaluate the intensity components as economically as 
possible?” 

In this paper we will show an efficient and high 
quality method for Phong shading planar polygonal 
meshes. In the first section, we will focus on answering 
the question raised above: “how do the angles   and 
vary across the polygon?” We will discuss equi-angular 
interpolation for which no normalisation per pixel is 
needed as opposed to the traditional vector interpola- 
tion. Two alternative interpolation methods will be 
presented, both capable of handling light source and/or 
viewpoint at finite or infinite distance. The result of 
these methods will be an expression relating the cosines 
of the Phong model to one or two (depending on the 
method) angles incremented linearly along a scanline. 

In the second section, the question: “how to 
evaluate the diffuse and specular components as 
economically as possible?” will be answered. 

1. Interpolation Across Polygons 

For curve approximation by planar polygon meshes, 
information of the curvature the planar polygon has to 
a proximate is represented by a surface normal vector 
specified at each vertex of the polygon5, as shown in 
Figure 2. From this, the normal along the edges and at 
each point inside the polygon has to be interpolated. In 
general, not only the normal but also the direction 
of the light source the direction of the eye and the 

Figure 2. Approximation of curved surfaces by planar 
polygon meshes. For the purpose of shading calcula- 
tions, the surface normal is specified at each vertex. 

1.1. Vecctor Interpolation 
The traditional vector interpolation method is based on 
the assumption that along a path from A to B a vector 

at                                  can be calculated by 
with      and   and

being the normals at A and B respectively. This 
interpolation is performed along the edges first. Using 
the thus obtained and the normal along a scan- 
line can be similarly interpolated, as shown in Figure 3. 

Figure 3. Interpolation of a vector across the polygon 
in two steps: first the vector is interpolated along the 
edges AB and AC, next the interpolated vectors and 

thus obtained are used for interpolation along the 
scanline through PQ. 

To have an efficient method, it has to be possible 
to relate the increments directly to the evaluation of the 
intensity components          and           This is why 
vector interpolation became so widespread, the spatial 
increments dx, dy and dz of the vectors along the scan- 
line are closely related to the vector coordinates needed 
for evaluation of the scalar product, which makes it 
possible to incrementally calculate the intensity com- 
ponents. 

Figure4 however, shows that the resulting inter- 
polated vector has a varying length and varying angular 
increment. This is a result of making ual steps along 
a chord joining the two vectors and Due to the 
varying length, renormalisation of the interpolated vec- 
tor has to be done. The varying angular increment 

and            provided 
the vectors are normalised. 



† is the vector in the direction of the highlight, that is 
the vector halfway between and This vector is often 
introduced to replace       by          Note howev- 
er, that the an e between     and    is about half the an- 
gle between     and     a difference discussed in Hall7 that 
can more or less be corrected by adjusting n. 
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introduces an orientation dependency of the highlight. 
This results in a jitter of the highlight when rotating, 
for example, a cylindrical object around its main axes. 
It also causes Mach band effects because the intensity 
variation is not smooth. Generally these deficiencies 
are avoided by putting restrictions on the maximum 
angular variation of the vectors across the polygon; in 
other words by reducing the polygon size. It may be 
clear that this restriction is not without cost. 

Figure 4. As a result of vector interpolation, successive 
vectors vary both in length and in angular increments. 
Renormalisation is needed when the interpolated vector 
is used in a scalar product. 

A common assumption of most of the more 
efficient approaches known so far is that either the light 
source or the viewpoint is taken to be at infinity (some- 
times even both). This means that and/or is taken 
to be a constant. This may simplify the calculations 
involved, but reduces the realism of the picture (e.g. if 
light source and eye are at infinity, planar surfaces are 
shaded with a constant intensity). 

Bishop and Weimar6 published a method for 
Phong shading which requires a quadratic polynomial 
for calculating †, provided the curvature is less 
than 60 degrees. The   is taken to be a constant, but 
is allowed to vary. Exponentiation of is done via 
table lookup. 

An approach which uses bicubic approximations 
for the scalar products was published by Shantz and 
Sheue-Ling Lien8. They assumed L fixed and used 
lookup tables for the exponentiation. 

A method also assuming fixed was published by 
Deering9. A highly pipelined architecture interpolates 
and normalises   and     lookup tables are used for 
square root and exponentiation functions. Of particular 
interest in this publication was that the approach 
Bishop proposed was rejected because the break-even 

point of the method at 10 pixels was considered too 
high! 

1.2. Angular Interpolation 
The basic idea of angular interpolation is that the angu- 
lar rotation of a directional vector is 
linearly related with the position along a straight line 
across the polygon (see Figure 5). Vectors interpolated 
according to this assumption have a constant length 
and are all in one plane; the plane spanned by the start 
and end vector. An elegant way of calculating these 
angularly incremented vectors using quaternions is 
described elsewhere10,11. Analogous to the vector inter- 
polation method, interpolation will be done in the two 
steps shown in Figure 3; first the vector is interpolated 
along the edges of the polygon, next the resulting vec- 
tors are used for interpolation along the scanline. 

Figure 5. Angular interpolation. Successive vectors are 
found by qui-angular rotation using quaternions. As a 
consequence their length remains constant. 

When observing the variation of one of the vector cou- 
ples along a path across a polygon you can imagine a 
“dance” these two vectors perform. Since both vectors 
vary independently, the result is that they may circle 
around each other, get closer or move away. This 
“dance” along a straight path is completely determined 
by two linearly varying angles, one for each vector. 

We have to find a relation between these angles 
incremented along the scanline and the evaluation of 
the intensity component We will show how to 
find this relation based on the following example of 
interpolation across a triangle. 

The normal vector and the direction of the light 
source at the vertices of a triangle are shown in Fig- 
ure 6. For each of the two vectors there is a mapping of 
the polygon on the unisphere indicating the range of 
that vector across the polygon. If for instance the light 
source is at infinity the spherical triangle is 
reduced to a point. 

‡In the following we will discuss the vector couple and 
needed for the diffuse term, only; interpolation of the 

vector couple that produces the specular term, i.e. and 
is identical. 
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Figure 6. The range of the directional vectors and across the triangle A B C is indicated by two spherical trian- 
gles and on the unisphere. 

Figure 7. Interpolating and along a scanline is related to two paths along two great-circles. The intersection 
point S of these great-circles forms one point of a spherical triangle S N L. This triangle relates the two interpolated 
angles and I, with the intensity component cos a along the scanline. 

Figure 8. Decomposition of the rotation of one of the two independent rotating vectors results in two perpendicular 
rotated vectors. 



Let a be the angle between the two great-circles 
through and both perpendicular to the plane in 
which rotates as shown in Figure 8. Rotating as 
well as    with angle a around the axis through 
(the pole of the plane through and will pro- 
duce the two vectors     and     Interpolation of 
can now be done from to and interpolation of 
L from to as indicated in the figure. In doing 
so, we added the rotation component of around the 

axis to the rotation of around that axis. As a 
result, for only a rotation component perpendicular
to the plane through     and         remains; and 
are both on the same great-circle throu       that inter- 
sects the great-circle through and        at S'.

A.A.M. Kuijk et al. / Faster Phong Shading 319 

A scanline across the triangle is mapped on two 
circular paths, indicating the variation of the vectors 
and L along this scanline (see Figure 7). These paths, 

great-circle. These two great-circles intersect at S. Let 
be the angle between the two great-circles, n be the 

angle between S and I be the angle between S and 
Then having t linearly varying along the scanline 

from t = 0 at startpoint 1 and t = 1 at endpoint 2, we 
define    to be t*(the angle between     and      and   
to be t*(the angle between and and are 
the vectors and interpolated along the scanline. 

With this we have a spherical triangle 
dependent on t. For this triangle a standard formula, 
given by spherical trigonometry, leads us to the follow- 
ing relation between a, (i.e. the angle between and 

and the linearly incremented angles      and     :

from to and from to are each part of a 

Note that n, l and are constant along the scanline. 
Here we have an expression that directly produces the 
diffuse intensity component. The specular component 
can be found similarly, but needs raising to the power 
of the specular exponent as well. This expression 
already can be calculated more efficiently than calcula- 
tion of the intensity by vector interpolation, which 
inherently involves renormalisation. However, for our 
particular application it was still too complicated for 
efficient evaluation. We developed two alternative 
approximation methods for this which both result in a 
simpler expression, and produce good results under 
mild restrictions. In one method the rotation of one 
vector is decomposed in two perpendicular com- 
ponents. The other method combines the two varying 
vectors in one. 

Decomposition Method 
Expression (1) will reduce to a product of two cosines, 
when the two great-circles are perpendicular; in that 
case cosy is zero. The idea is to decompose the rota- 
tion of one vector into two rotation components, one 
parallel and one perpendicular to the rotation of the 
other vector. 

Let be the angle between S’ and the 
angle between and and let be the angle 
between and and finally the angle between S’ 
and Then for the right angled spherical triangle 

we can write the following equation: 

The spherical triangle shown in Figure 9 will clarify the 
implicit assumption we made using this method. For 
this spherical triangle the following equations hold: 

Figure 9. From this spherical triangle it can be seen 
that in general, linearly incrementing both a and is 
not equivalent to linearly incrementing It. 

Using (3.a) and (3.b), we can prove that for t = 0 
and t = 1, (2) will produce the same result as (1). Of 
more interest however, are the relations between a and 

and between       and      as given by (3.b) and (3.c). 
These relations show that in general linearly increment- 
ing the angles         (with a hidden in it) and 

is not equivalent with linearly incrementing 
and This however is an acceptable first order 
approximation. Only extreme situations such as an 
extremely nearby light source may affect the result. We 
could not produce a visible difference in a realistic 
situation up to now. 



Figure 10. Interpolation of two independently varying 
vectors and L can be replaced by interpolation of 
one vector For each vertex, can be found by 
applying the same rotation on the vector L as needed 
to align the corresponding with the reference vector 

Using this method, we have specified a vector 
which is the only vector that remains to be interpolated 
across the polygon and the quest for the angle between 

and    can be replaced by the search for the angle 
between   and 

We do this by constructing a right angled spheri- 
cal triangle This spherical triangle (illustrated in 
Figure 11) has one vertex at   and one vertex at 

The third vertex   lies on the great- 
circle through ? and ?, such that is perpendicu- 
lar to SO †. defines two constant angles; s the 
angle between and and v, the angle between and 

Let be the angle between and linearly 
incremented alon the scanline. Then, the angle 

angle v, with the formula: 
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Reducing to One Vector 

Instead of inte lating the two independently varying 
vectors and we would like to interpolate only one 
vector, without loosing. the generality of the method, 
that is, without assuming one of the vectors fixed. 
Realising that only the relative position of both vectors 

and L is of interest, not their absolute position, we 
define a vector at each vertex of the polygon that is 
found by rotating L around the same axis and with the 
same angle as needed to rotate to be aligned with a 

fixed vector (e.g. 
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. 

between and can be expressed in terms of the 

(4) 

† We do not have to worry about the two degenerate si- 
tuations; 1) on the great-circle through ?, and ?, and 
2) perpendicular to the plane through the great-circle 
because these are covered by the resulting expression 
equally well. 

Figure 11. A right angled spherical triangle S O V 
relates the linear1 incremented angle with the angle 
between and       . 

With this expression we succeeded in relating the inten- 
sity component cos to one angle linearly v 
along a scanline. By introducing the vector  we
simplified the interpolation and at the same time elim- 
inated the difference between directional and positional 

How does this method relate to the previous one? 
In the previous method, only the parallel component of 
the rotation of one vector was added to the rotation of 
the other vector, whereas this method adds the full 
rotation of one vector to the rotation of the other. As a 
consequence this methods imposes more restrictions on 
the maximum acceptable variation of the vectors across 
the polygon. In practice however, these limitations are 
easily met, Differences between the methods became 
visible when vector rotations on the polygon were 
about 90°. This is much more than what is to be 
expected with curved surface approximation by planar 
polygon meshes. 

Since especially for highly reflective surfaces (i.e. a 
high reflectivity exponent for the specular term) the 
specular highlight will have a limited range, checking 
the range of    with respect to    can give at an early 
stage insight whether or not the specular term will con- 
tribute at all. This check can be performed at polygon 
level as well as at scanline level. 

2. Evaluation of the Intensity Components 
In the previous sections we presented angular interpola- 
tion of vector couples which yielded the linear expres- 
sions (1), (2) and (4) for the cosine of the angle between 
them along a scanline. Choosing one of these expres- 
sions, we can evaluate the diffuse component. For the 
specular intensity component it takes raising to the 
power of the specular exponent as well. Evaluation of 
the cosine as well as exponentiation can be done using 
standard function libraries or lookup tables. The latter 
may be the fastest solution for software implemented 
evaluation, but neither of these are attractive for highly 
parallel VLSI implementation. Lookup tables in partic- 
ular would require large on-chip storage (> 8K bytes 
for exponentiation6). 

light sources5. 
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As can be seen in Figure 12, -a and a are the 
points where the quadratic function changes its second 
derivative and -b and b limit the region for which the 
function is nonzero. This latter quantity is very useful; 

By least square fitting, for each n a 
pair (a, b) was found. Because there are only a limited 
number of pairs, these values can easily be put in a 
small lookup table. However, looking at the values of 

We had to find a more acceptable approximation 
to evaluate the general term which is present in 
both (2) and (4). The approximation should meet the 
following criteria: 

differencing 
- high quality that is: no discontinuity in magnitude 

or slope of intensity. 

-     easy to evaluate incrementally by forward                             it is nice to know the range where 

An approximation by means of a second order Taylor 
series would be easy to evaluate. This may produce a 

a and b as a function of n it was clear that their rela- 
tion could be described functionally as well. We found 

quadratic function that correctly describes the the following relations: 
behaviour near the centre, but the grave discontinuity 
in slope of the intensity where the quadratic function 
gets to zero will cause an unacceptable Mach band 
effect. Given this, we tried to find a better evaluation 
method. 

Note that the values a and b are dependent on n only, Evaluation of                    by Quadratic Curve Approximation 
so they can be considered as an attribute of the 

Due to hardware limitations imposed by the technol- polygon, replacing the specular exponent n. 
ogy1, we could not allow for a higher than second order 
polynomial. With this in mind and looking at the shape 
of we found that a combination of three 
successive quadratic curves would closely fit that shape 
(see Figure 12). The condition that no discontinuity in 
magnitude or slope of intensity is allowed is met by the 
following function: 

Results of this evaluation method for several 
values of n can be seen in Figure 13. Given the fact 
that the specular component as proposed by Phong is 
based on empirical observation, it is clear that we can 
be satisfied with the result. Even more so because 
evaluating the diffuse component with this method 
(n = 1) has the pleasant side effect that it removes 
Mach banding. This Mach banding is caused by the 
sharp discontinuity in slope when the cosine reaches 
zero. At that point the slope changes from its max- 
imum to zero7. The method proposed here does not 
have such a discontinuity for n = 1, as can be seen in 
Figure 13. The smooth transition of this evaluation 
method agrees with reality where diffraction and a 
finite sized light source cause a smooth transition as 
well. 

With the two parameters a and b, this function has 
sufficient freedom to produce a best fit for the function 

Figure 13. Results of the quadratic approximation of 
for several values of n. The solid lines represent 
whereas the boxes show the approximated values. 

Figure 12. Three successive quadratic curves fitted on 
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Figure 16. 

On the left a Gouraud shaded and on the right a Phong shaded image of a “sphere” approximated by 32 triangle 
patches. The light source is at a distance of four times the radius of the sphere. This and all following images have a 
parallel projection. 
Obvious differences between these two images is 1) the amount of Mach banding, due to which the triangle patches 
are clearly visible for the Gouraud shaded image. This is not the case in the Phong shaded image. 2) the specular 
highlight is absent in the Gouroud shaded image. 
These differences become less when the patch size is reduced, but at the cost of having more patches. 
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Figure 16. 

Diffuse shaded images of the same teapot lit by two light sources. On top we see the result of calculation of the inten- 
sity by a cosine function. It shows Mach banding due to a sharp discontinuity in slope of intensity where the cosine 
reaches zero. For the bottom image the Muse term is evaluated using the quadratic approximation method presented 
in this paper, resulting in a smooth transition to zero. This agrees with reality where natural effects cause a smooth 
transition as well. 

<Figure 15. 

Four images of the Utah teapot (3136 triangular facets). The top left is a Gouraud shaded image, the top right a 
Phong shaded image generated by the standard vector interpolation method. For each pixel this method involves. 
interpolation and normalisation of four vectors (two for the diffuse and two for the specular contribution) and evalua- 
tion of two scalar products. The diference in quality between these two images is obvious. 
At the bottom, the leftmost image is generated by angular interpolation of the vectors, which involves interpolation of 
four angles (two for the Muse and two for the specular term) and evaluation of a trigonometric function per pixel. 
Finally, the rightmost image is generated using the single vector approximation method as described in this paper. 
This involves interpolation of two angles (one for the Muse and one for the specular term) and evaluation of a very 
simple trigonometric function. Although the computational costs of the latter two methods is less, there is no 
difference in image quality when compared with the image generated by the standard vector interpolation method. 
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Evaluation of (4) can be done directly with this 
method. Per scanline and per light source for the 
diffuse and the specular term the constant angles s and 
v have to be calculated. For each of these, along the 
scanline the quadratic function f can be evaluated 
using forward differencing. This costs two additions per 
pixel. At the points where the transition from one qua- 
dratic section to the next has to be made, the second 
order derivative has to be changed; the function value 
and the first order derivative are both continuous at 

Instead of evaluating the quadratic functions per 
light source and for the diffuse and specular com- 
ponents individually it can be noted that adding these 
quadratic functions before performing the forward 
differencing along the scanline, would still result in a 
quadratic function, although composed of more sec- 
tions. It still holds that the function value and the first 
order derivative are both continuous, so that only the 
second order derivative has to be changed at transition 
from one quadratic section to the next. This can be 
cheaper than evaluation of the diffuse and specular 
terms per light source individually. 

Evaluation of (2) needs evaluation of two indivi- 
dual cosines which have to be multiplied. Dependent 
on the situation, in particular on the hardware avail- 
able, multiplication can be done per pixel or per scan- 
line, the latter resulting in a fourth order polynomial. 

3. Conclusions & Future Work 

The angular interpolation presented has shown to result 
in a very efficient high quality evaluation of the Phong 
shading algorithm. Although the exact method can 
already be considered to be efficient as compared to 
vertex interpolation methods, we presented two even 
more efficient evaluation methods that operate satisfac- 
torily without putting Severe restrictions on viewpoint 
or light source distance. They differ in level of accu- 
racy traded off against corresponding costs. The limita- 
tions on patch size and light source distance imposed 
by the more efficient evaluation methods due to the 
approximations made, generally are much more liberal 
than the limitations imposed by the geometry. 

The quadratic evaluation presented can easily be 
implemented in hardware. Forward differencing would 
reduce the evaluation cost to two additions per pixel. 
Using this method for the diffuse term has the side 
effect of removing the Mach banding on the edge of the 
diffuse area as normally present when using a cosine or 
scalar product. 

On future work: More use can be made of coher- 
ence between scanlines. This would produce a more 
efficient way of evaluating the angles which are con- 
stant along a scanline. 

those points. 

We have a satisfactory method to evaluate a 
cosine raised to a power, but this is a particular case. 
We are currently studying how to extend this to more 
general situations such as the product of a linear func- 
tion and cosn and the product These gen- 
eralisations are needed when implementing spot light 
sources or anti-aliasing. 
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