
A Spline-Wavelet Image Decomposition for a Di�erenceEngineP. C. Marais1, E. H. BlakeDepartment of Computer Science,University of Cape Town,Rondebosch 7700, RSAA. A. M. KuijkCWI, Department of Interactive Systems,Kruislaan 413, 1098 SJ Amsterdam,The Netherlands.
Using the concept of a Cardinal-Spline Multi-Resolution Analysis, we estab-lish a means of generating a smoothed approximation of an input image.This approximation can be decoded and displayed in real-time at the videoframe rate by the Di�erence Engine: CWI's systolic array display proces-sor. This forward di�erence engine can rapidly compute the value of such acompact image representation across a span in constant time. Some resultsare given which con�rm the suitability of the spline-wavelet transform as ameans of producing a compact image code.1. IntroductionThe rapid growth of multi-media applications and the resultant need to processreal-time video and audio streams have given renewed impetus to the search forhigh compression systems. These systems should (at least) satisfy the followingcriteria:� they should achieve maximal, possibly lossy, compression whilst main-taining as high a degree of apparent �delity as possible for a humanviewer,� both the encoding and decoding process should be su�ciently rapid topermit real-time processing; in particular, decompression should be pos-sible on the y without excessive cost.1Supported by the South African Foundation for Research Development.335



The nature of the speci�c application's requirements determine which of theabove criteria may be weakened so as to achieve a workable solution.For the compression of still images, we may accept a comparatively lengthycompression or decompression delay if the results are of su�ciently high quality.The JPEG still compression standard remains the method of choice for mosthardware implementations. JPEG achieves compression by applying a DiscreteCosine Transform to the image (which is segmented into 8x8 blocks to improveperformance).Fractal based methods, which claim to achieve much higher compressionratios than JPEG, have emerged in commercially available products. Unfor-tunately, the artefacts introduced at high compression ratios cannot be objec-tively quanti�ed: the blocking of JPEG may be considered preferable to theuniform blotches produced by fractal compression at high ratios. The issue ofspeed also intrudes: JPEG compresses signi�cantly faster than fractal methods;however, the converse holds for decompression times. Fractal methods also pos-sess an inherent scale-independence which allows them to re-size images witha minimal amount of computation and no obvious pixelation.Another group of methods that are gaining prominence are those based onthe Wavelet Transform (WT). This transform comes in a variety of avours,each with their associated advantages and problems (See Table 1). However,they all possess the ability to encode texture regions e�ciently | preciselywhat one requires when encoding \natural" scenes [11]. Nacken [12] for agood introduction and some encouraging results. From a computational pointof view, the WT is superior to the DCT [14]. In addition, even when thetransform is blocked, it is able to withstand a much higher level of compressionbefore blocking e�ects become apparent [13].An issue which is seldom addressed, is the level of e�ciency one can achievewhen actually displaying the decompressed image. It is taken for granted thateach pixel value will have to be computed by the controlling program. However,this is not necessarily the case | as illustrated by CWI's Di�erence Engine. Inthis case the display processor itself can set multiple pixels using only a smallset of parameters, provided these pixel values are constrained to lie on the graphof a polynomial of some arbitrary degree. Hence, if we can describe our imageas a set of polynomial primitives, we can display our image e�ciently, withoutthe need to explicitly compute the intensity value of each pixel [1]. This paperinvestigates the feasibility of using such an approach for the reconstruction ofcompressed images.Before we can proceed, however, we must introduce the necessary mathe-matical tools. We have decided to do this in a tutorial fashion, over the nextthree sections, so that readers who are unfamiliar with the subject matter cangain insight into the theory underpinning our approach.The next two sections contain a brief introduction to wavelet theory andmulti-resolution analysis, with an emphasis on 2-D images. Section 4 discussessome of the bene�ts associated with the Wavelet Transform, i.e., ease of com-putation and compression potential. The �nal part of the tutorial, Section 5,336



introduces the cardinal spline formalism needed to understand Chui's splinewavelets. These wavelets form an essential part of our analysis.Section 6 discusses the implementation of these ideas on the Di�erence En-gine and the suitability of this device for the display of multi-resolution images.The results of our investigations are presented and discussed in Section 7. Con-cluding remarks and an overview of further work is given in Section 8.1.1. Mathematical notation and preliminariesThe signals we deal with whether 1-D or 2-D are assumed to be well-behaved,that is, they are elements of the space L2(R). This vector space may be de�ned(barring a few technicalities) as the space of all functions which satisfy thecriterionZ jf(x)j2 dx <1with a double integration substituted if our signal is 2-D. Outline charactersare used as follows: C is the set of complex numbers, R the set of reals andZ the set of integers. Continuous functions (over the reals) are denoted aselements of C(R). The notation Cm(R) refers to the space of m-times continu-ously di�erentiable functions. The norm of u is denoted k u k with a subscriptindicating the space w.r.t which the norm is taken. The inner product of u; vis represented as follows: hu; vi.A circumex is used to denote the Fourier Transform of a function f :f̂(x) = Z f(t)e�ixtdt:We use the symbols _+ and � to denote a direct sum. The former is a genericdirect sum, while the latter denotes an orthogonal direct sum.An asterisk, \*", denotes convolution; the nature of the convolution (whetherdiscrete or continuous) will be clari�ed when the operator is used.Sequences are generally indicated as follows: fakgk2Z. The space `2(R)contains all the sequences which satisfy the criterionk fckg k2̀2=Xk jckj2 <1:Of course, our sequence index will usually have a �nite range. To simplifyformulae, we will often ignore the range subscript, it usually being the casethat our index ranges from �1 to +1. Similarly, if there are no range limitson an integral, one may assume it is taken over the entire domain.2. The integral wavelet transform (iwt)The IWT is de�ned in terms of a special kernel function  , known as a wavelet,which is an element of the space L2. Functions, f , in this space must satisfyR jf(x)j2dx <1. The wavelet is subject to the following additional constraints(in 1-D): 337



1. R  (x) dx = 02. both  and  ̂ (its Fourier Transform) must be window functions. Afunction w(x) 2 L2 is called a window function if xw(x) 2 L2. Thiswindow function has a well de�ned centre, t� and radius, �w. Thisimplies that the function w is such that it is localized in both the timeand frequency domains (within the limits imposed by the UncertaintyPrinciple, (see [3, 6]).More intuitively: the wavelet must decay rapidly and also exhibit some degreeof oscillation | hence the name. With our wavelet constrained in this manner,we are able to de�ne the IWT, (W f)(b; a), of an L2 function f :(W f)(b; a) = jaj� 12 Z f(t) � t� ba �dt: (1)where a; b 2 R and f 2 L2 and the overbar denotes complex conjugation.Because  is essentially localisable in both time and frequency (scale), theIWT is also localised and gives us information in both domains, within thebounds of the Uncertainty Principle. If we permit our variables a; b to becontinuous, the inverse transform involves computing a (n + 1) dimensionalintegral (if the function has n variables). To ensure computational e�ciency, wediscretize both the scale, a and the time-localization, b, in the following manner:a = 2�j ; b = k2�j ; k; j 2 Z: If we then de�ne  j;k(x) � 2j=2 (2jx� k); j, k 2Z; we obtain(W f)� k2j ; 12j� = hf;  j;ki = djk; (2)where we have used inner product notation for compactness2. In order thatwe may recover our original function from this sampling, we require thatf j;kgj;k2Z form a Riesz basis [3, 6]. This is a less restrictive requirementthan orthogonality of the  j;k, and permits us to construct wavelets which arenot orthogonal. If  constitutes a Riesz basis, then there is a unique Rieszbasis � j;k	 which is dual to f j;kg i.e.h j;k;  l;pi = �jl � �kp; j; k; l; p 2 Z: (3)Every f 2 L2 then has the unique series expansion:f(x) =Xj;k hf;  j;ki j;k(x): (4)If, in addition, there is a function ~ 2 L2 which generates the dual basis in thesame fashion that  generates the Riesz basis  j;k, then we may also expandf(x) as follows:f(x) =Xj;k hf;  j;ki j;k(x): (5)2The L2 inner product of two functions f; g is given by R f(x)g(x) dx.338



Equations (4) and (5) are inverse transform formulae. These formulae relatethe transform coe�cients to the original function. In what follows, we assumethat such a function does indeed generate the dual basis. Property (3) is calledthe bi-orthogonality property and is satis�ed by all wavelets. If a wavelet isorthogonal it satis�esh j;k;  l;pi = �jl � �kp; j; k; l; p 2 Z: (6)That is, orthogonal wavelets are self-dual, having  = ~ . Thus, when onedeals with orthogonal wavelets, the added complexity of having a dual presentis avoided. A wavelet which is orthogonal only between scales (frequencies) iscalled a semi-orthogonal wavelet | Chui's spline-wavelets are semi-orthogonal(cf. Table 1).3. Multi-resolution analysisThe concept of a Multi-Resolution Analysis (MRA) is already familiar to thosewho have dealt with pyramidal image decompositions; it serves to formalizesuch a decomposition. Firstly, one must de�ne the term \resolution". The in-tuitive interpretation, viz., that it serves to quantify the amount of permissablevariation in a region, is formalized. Hence, a high resolution image has a largeamount of detail in a region, whereas a low resolution image is much smootherover this same region. One may further quantify this concept with a statementsuch as: \a kth resolution image contains k� k samples per unit square". Theidea here is that we can capture more detail if we are able to sample at a higherrate.To develop the theory of such an analysis, we �rst consider the case of onedimensional signals.Our signal, f(x), must be an elements of the space L2(R), that is, it mustcontain �nite energy. We seek a decomposition of this signal which will re-veal its structure on di�erent `resolution' levels. Such an analysis can provideinvaluable information about the relative importance of variations in the signal.Each of these multi-resolution approximations resides in a space which con-tains all possible approximations at that resolution of every L2(R) function.These spaces are denoted Vj ; the parameter j indicates the resolution level:the \resolution" of the jth level is given by r = 2j . Thus, level 0 has r = 1.By convention, this is the input level.Just as the wavelet spaces3 Wj are spanned by the scaled translates of asingle kernel function,  , we seek a single function, �, the so-called scalingfunction, which will span the spaces Vj in the same way. If this is the case,then we may de�ne a Multi-Resolution Analysis of L2(R). Since we desire thatthis analysis be complete, the MRA must encode the detail that is sacri�cedwhen we go from a higher to a lower resolution. This detail is stored in thecomplementary wavelet spaces, Wj . We have the following relationship for anyresolution level j3Wj � closL2spanf jk : k 2 Zg; the operation of CLOSure essentially adds all the limitpoints to a space, thus `closing' it up. 339



Vj+1 = Vj _+Wj (7)This states that the higher resolution approximation may be resynthesized fromthe next lower approximation by adding the detail that we sacri�ced to achievethat lower approximation. One can deduce the following properties:1. � � � � V�1 � V0 � V1 � � � �;2. closL2 �SjVj� = L2(R);3. Tj Vj = f0g;4. Vj+1 = Vj _+Wj ; j 2 Z;5. f(x) 2 Vj () f(2x) 2 Vj+1; j 2 Z:For a more detailed discussion and alternative formulation of these properties,see [8].3.1. The Wavelet Transform and Multi-Resolution Analysis in 2-DSince we wish to apply these techniques to images, we have to extend theprevious results to 2-D. A common method of constructing the 2-D scheme,and simultaneously generating a MRA of L2(R2 ), is to de�ne the space Vj asthe tensor product of the space Vj with itself [6]. Then Vj induces a MRAof L2(R2 ): Vj � Vj+1 with the properties we discussed before and a scalingfunction �j;m;n(x; y) = �(2jx�m)�(2jy � n); m; n 2 Z:De�ning Wj to be the orthogonal4 complement of Vj in Vj+1 then gives us:Vj+1 = Vj+1 
 Vj+1= (Vj �Wj)
 (Vj �Wj)= (Vj 
 Vj)� [(Wj 
 Vj)� (Vj 
Wj)� (Wj 
Wj)]= Vj �Wj : (8)So the complementary subspace Wj consists of three pieces, with Riesz Bases, j;m(x)�j;n(y); for (Wj 
 Vj); (9)�j;m(x) j;n(y); for (Vj 
Wj); (10) j;m(x) j;n(y); for (Wj 
Wj) (11)These three detail spaces contain the detail lost between two consecutive res-olution approximations. In fact, each space contains the sharp variation (highfrequency) information of the previous approximation in a particular directionEquation (9) gives the basis for the detail space which detects (represents)sharp variations in our function which are orientated in the x-direction, i.e.vertical edges. Similarly, the basis given by Equation (10) will represent edges4We use � here since Chui's cardinal spline MRA induces such an orthogonal decompo-sition; one would use _+ for a more general setting.340



in the horizontal direction. Equation (11) is the basis for the detail space whichdetects diagonal edges. We can now de�ne three wavelets,	[1](x; y) = �(x) (y) (12)	[2](x; y) =  (x)�(y) (13)	[3](x; y) =  (x) (y): (14)Then n	[i]j;m;n; i = 1; 2; 3m;n 2 Zo is a Riesz basis for Wj ; when we allowthe scale parameter j to vary over all integers this basis is then a basis forL2(R2 ). As in the 1-D case, we can also �nd a dual, ~	[i]j;m;n which satis�es thebi-orthogonality relationshiph	[m]k;i;p; ~	[n]l;j;qi = �mn�kl�ij�pq : (15)One may decompose any \well-behaved" (L2(R2 )) signal (image) in this man-ner. However, before we can proceed with our decomposition, we must ensurethat we have a \valid" image at our zeroth (the input or highest) resolutionlevel. By valid we mean that the image must be expressible on the basis,�0;lm(x; y), which generates the approximation space of zeroth level functions,that is, V0. For our image to be an element of the zeroth resolution space, itmust satisfy the following requirement (i.e., be expressible on the zeroth levelbasis):I0(x; y) =Xi;j c0ij�0;ij(x; y) =Xi;j c0ij�(x� i; y � j); (16)where the coe�cients fc0ijg are our zeroth level approximation coe�cients. Themeans of generating these initial coe�cients will be dealt with presently (Sec-tion ). Assuming, for the moment, that such a relationship does hold, how dowe generate subsequent lower resolution approximations? These approxima-tions must be expressible on the appropriately scaled bases, where the scalingreects the resolution concerned:Ik(x; y) =Xi;j ckij�k;ij(x; y) =Xi;j ckij�(2kx�i; 2ky�j); k = �1;�2; : : : (17)Thus far, we have ignored the sequence of detail images which makes this rep-resentation complete. Just like the approximation images, these detail imagesare elements of particular spaces and must thus be expressible in terms of aparticular basis:gk(x; y) =Xij 3Xp=1 dpkij	[p](2kx� i; 2ky � j) (18)The coe�cients fdpkijg are called detail coe�cients. The functions 	[p](x; y)are 2-D wavelets. Wavelets are particularly well suited to encoding detail;hence the appearance of the wavelet in the basis of the detail space is notreally surprising. We may formalize the relationship between the detail andapproximation images as follows (recall the corresponding 1-D relationship):341



Figure 1. The �rst four approximation images in our quadratic Multi-Resolution structure. The resolution decreases clockwise from top left.Ik+1(x; y) = Ik(x; y) + gk(x; y): (19)This states that an image at the (k+1)th resolution level is obtained by addingthe lower resolution kth level image to the kth resolution detail image, whichcontains the information lost when we go from level k+1 to level k. Using thisformula, we may express our (valid) input image as follows:I0(x; y) = g�1(x; y) + � � �+ g�M (x; y) + I�M (x; y): (20)That is, we may decompose our image into a sequence of successively lowerresolution images; this decomposition is, in turn, exactly equivalent to a se-quence of detail images plus a low resolution approximation image. To extracta particular approximation image, we merely add back the relevant number ofdetail images to our lowest resolution approximation.Figure 2 shows the third level detail images for our test image. Assumingwe have determined our zeroth level approximation coe�cients from our in-put image, the remaining approximation and detail coe�cients required by our342



decomposition may be found by costly inner product calculations. However,Mallat [11] derived the following e�cient algorithms for producing these coef-�cients: The decomposition algorithm (which produces the next lower resolutionlevel's coe�cients):cj�1kl =Xm Xn am�2kan�2lcjmn (21)d1j�1kl =Xm Xn am�2kbn�2lcjmnd2j�1kl =Xm Xn bm�2kan�2lcjmnd3j�1kl =Xm Xn bm�2kbn�2lcjmn:The reconstruction algorithm (which provides the next higher resolution level'scoe�cients):cjkm = PlPp pk�2lpm�2pcj�1lp + (22)PlPp pk�2lqm�2pd1j�1lp +PlPp qk�2lpm�2pd2j�1lp +PlPp qk�2lqm�2pd3j�1lp :The fakg; fbkg are called decomposition sequences, while the fpkg; fqkg arecalled reconstruction sequences.These summations can be interpreted as 2-D linear convolutions which aredown-sampled (i.e., we keep only even index output values) in the case of thedecomposition algorithm and up-sampled (i.e., the coe�cient sequences havezeros inserted between their entries) in the case of the reconstruction algorithm.Since these 2-D convolutions are separable (i.e., expressible as the productof two independent 1-D sequences), they can be implemented much more ef-�ciently if one does not employ direct brute-force summation. We see that ifwe are given the input approximation coe�cients, fc0ijg we can decompose andreconstruct as we wish; the only time we must explicitly concern ourselves withthe scaling function, �(x; y), is when we wish to output our pth level approx-imation of the input image. At this point we are forced to compute discretesamples of our pth resolution image, utilising Equation (17). If one desires toaccess the detail images then a similar calculation must be performed using thedetail coe�cients (but this is not necessary if one just wishes to quantize orthreshold the detail coe�cients).4. The Wavelet Transform and CompressibilityThe wavelet transform (cf. Equation (1)), provides a \sparse" mapping fromthe spatial domain to some transform domain. This means that many of thetransform coe�cients are close to zero and can be ignored. One may thusachieve a considerable reduction in data by performing such a mapping and343



Figure 2. Third level detail images. These images illustrate the directionalsensitivity of the Wavelet Transform. It decomposes the detail lost between con-secutive levels into images which contain the detail information in the horizontal(top left), vertical (top right) and diagonal (bottom) directions. The bases un-derlying these images are (respectively) the wavelets 	[1](x; y), 	[2](x; y) and	[3](x; y) | cf. Equations (12, 14).
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Properties Wavelet ClassesOrthonormal Semi-orthog (Chui) Bi-orthogDual? self-dual yes yesCompact support? wavelet only wavelet wavelet and dualSymmetry? no yes yesSequences? �nite truncated �niteTable 1. Some comparisons between the three major classes of wavelet. Onlyorthogonal wavelets do not possess a Dual Wavelet (see Section ). If the waveletor dual has compact support, we can achieve perfect reconstruction; otherwisewe must truncate when we implement. Symmetry is important to reduce dis-tortion when we reconstruct.eliminating these small coe�ceints, although naturally at some cost: it is nolonger possible to achieve perfect reconstruction and there is the added over-head of performing the transform computations.As regards the latter issue: the WT can be recast as a series of convolutions,which in turn can be very rapidly calculated using FFT based hardware. Thedegradation of the image with increased compression is not easily quanti�ed, al-though it is often measured by means of signal-to-noise ratios (SNR). However,the WT is able to retain structure at very high compression ratios [7], unlikemany of its rivals; this ability coupled with the existence of fast algorithms,make the WT an excellent choice for image coding.The wavelet transform of an image yields the set of detail coe�cients overall resolutions, j. However, since we only consider a �nite range of resolutions,the transform must be restricted to reect this. The approximation coe�cientsencode the information contained at the lower resolutions we do not wish toconsider and are thus part of the restricted transform. Also, since we do not dealwith resolutions higher than 1 (level 0), we do not require the detail (wavelet)coe�cients for j � 0. Thus, the WT actually provides the set of coe�cientsffdplijg; fc�Lij g; l = �1;�2; :::� L; p = 1; 2; 3g (23)The transform is given by the decomposition algorithm of the previous section(Equations (21), (22)). The inverse transform (the reconstruction algorithm)then recombines these coe�cients to arrive at the input approximation coe�-cients (which then provide us with the input image).The detail coe�cients provide a very compact encoding of texture in theimage; during quantization, many of these coe�cients will be mapped to zero.The approximation coe�cients will be highly correlated, reecting the smoothnature of the low resolution approximation. Since the dynamic range of thecoe�cient values will be small, we do not need many bits to represent them,that is, they may be quantized fairly coarsely. In addition, the supports5 of5The support of a sequence is the set of indices which have non-zero sequence valuesassociated with them. 345



both these 2-D sequences shrink with lower resolution, and so we require fewercoe�cients to represent lower resolution approximation and detail images.5. The Cardinal Spline formalismWe have chosen to implement our Multi-Resolution (MR) decomposition interms of splines, employing the formalism of Chui [3]. Our reasons for choos-ing this approach over the preferred orthogonal framework, in which one doesnot require a dual wavelet, was partly motivated by the architecture of the sys-tem on which we have implemented this decomposition. However, the splineapproach has several other advantages which compensate for its lack of orthog-onality | indeed, these properties are present precisely because orthogonal-ity of the wavelet bases has been sacri�ced. In particular, since splines areamenable to rapid and e�cient computations, any scheme based upon suchcurves o�ers implementational advantages over the aforementioned orthogonaltransforms. For example, simple closed-form expressions are available for manyof the formulae we utilise; this is not the case with, for example, the compactlysupported orthogonal wavelets of Daubechies [6], where an iterative proce-dure must be used to calculate the scaling function. In addition, it has beenshown [3] that one must inevitably sacri�ce the desirable property of (general-ized) linear phase6 if one desires both compact support and orthogonality. Ifthe wavelet and scaling function have this property then one is assured that thereconstructed signal will be minimally distorted (this is important when oneengages in intensive quantization and thresholding, which introduce distortionsof their own).In the spline formalism both the wavelet and scaling function are expressedin terms of a B-spline series. In fact, the (1-D) scaling function is preciselythe mth order cardinal B-spline, denoted Nm(x). This function is computedrecursively as follows:Nm(x) = (Nm�1 �N1)(x); N1(x) = �[0;1)(x); (24)where �[0;1) is 1 on the interval [0; 1) and zero outside this interval and � is the(continuous) convolution operator. See Figure 3.When m = 3, we have a quadratic cardinal spline with continuous �rst-orderderivatives at the knot-points. A full characterization of the (1-D) approxima-tion spaces Vj is given byVj = ff 2 Cm�2 \ L2(R) : f j( k2j ; k+12j ) 2 �m�1; k 2 Zg: (25)This states that functions which are both well behaved (in L2) and satisfy theindicated continuity condition are elements of the jth resolution approximationspace, provided that their restriction to the indicated interval shows that theyare contained in �m�1 | the space of all polynomials of degree � m� 1.6One can view the wavelet and scaling functions as band-pass and low-pass �lters, respec-tively. If one �lters with a linear phase �lter, distortions in the input signal are not undulymagni�ed. 346



When j is negative the intervals over which the function is required to havea uniform polynomial character become progressively larger. This explains thesmoothed nature of low resolution approximations to the original function.The spline wavelets introduced by Chui,  m(x), have compact support on theinterval [0; 2m� 1]. The support of the cardinal B-spline is [0;m]. In addition,if the wavelet has even order m, it is symmetric; otherwise it is antisymmetric(about 2m�12 ). See Figure 3. The symmetry/antisymmetry of the wavelet isresponsible for its distortion reduction property.The reconstruction sequences fpkg and fqkg (cf. Equation (22)) are veryshort sequences; the former has m + 1 terms and the latter 3m � 1. Thesesequences are given bypmj = 2�m+1� mj � ; j = 0; : : : ;m; (26)qmj = (�1)j2m�1 mXl=0 � ml �N2m(j + 1� l); j = 0; : : : ; 3m� 2: (27)Although these sequences appear complicated, e�cient algorithms are given in[5, 3] for their calculation (see Table 6 in Appendix ). We may use the following\two-scale" equation to compute the values of the wavelet,  m(x): m(x) = 3m�2Xj=0 qmj Nm(2x� j) (28)In [5], details are given concerning the derivation of the sequences fakg and fbkg(Table 7 in Appendix gives the (corrected) sequence values we used). Althoughthese sequences are not �nite they have rapid exponential decay and can betruncated after about twenty terms with little obvious e�ect (see Figure 6).However, this truncation should not be done arbitrarily, but with respect tothe sequences centre's of symmetry (if one wishes to preserve the distortionlessproperty of the decomposition). The symmetry of these sequences is clear fromthe following relationshipsamm�j = amj (29)bm3m�2�j = (�1)mbmj ; j 2 Z: (30)One may use this symmetry to reduce storage and computational overheads.The 2-D scaling function and wavelets are obtained from these 1-D versionsby means of tensor products. The details of this extension are given in Section .5.1. Calculation of �c0ij	: the level 0 approximation coe�cientsThe resolution ladder stretches o� to in�nity in both directions; however, weare only able to measure our image at a �nite resolution, denoted I0. Thisis our initial approximation of the continuous image data. The superscriptzero indicates that we have chosen the resolution level j = 0 as our referencelevel. In this case, the cardinal spline which constitutes our scaling function has347
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Figure 3. Cubic and Quadratic scaling functions and wavelets. `A' is thequadratic scaling function (the 3rd order cardinal B-spline) and `C' the cor-responding wavelet. `B' is the cubic scaling function and `D' the cubic-splinewavelet. Observe that the cubic wavelet is symmetric, while the quadraticwavelet is antisymmetric.knot points at the integers (we assume that the pixels lie on a two dimensionalinteger lattice); therefore, the image function expressed on this spline basiswill consist of polynomial segments (patches) of degree m � 1 translated andsummed over the intervals between the knots (pixels), and will thus yield a newpolynomial of degree� m�1 over each knot interval. Naturally, since our imageis unde�ned between the discrete pixels, we will only sample our reference imageat these integer knot points. Thus, from Equation (17), we have our zerothlevel (continuous) approximation, with Nm(x) de�ned by Equation (24)I0(x; y) =Xp Xk c0pkNm(x � p)Nm(y � k): (31)In general, we wish to decompose our approximation from this reference levelto some arbitrary lower resolution level, say j. Since j must be less than zero(lower resolution) we writeI�j(x; y) =Xp Xk c�jpkNm(2�jx� p)Nm(2�jy � k): (32)in keeping with our earlier de�nition, where j = 1; 2; 3; : : :As the formulae stand, they contain summations which range across Z. How-ever, since our image has �nite spatial extent, the ranges of summation forboth the detail and smoothing coe�cients must be curtailed. Our input image,I0(i; j) is expressed on the zeroth level basis with the smoothing coe�cients asweights. Inspection of the formula, coupled with the assumption of our image's�nite extent, produce the necessary ranges of summation for c0ij , and hence348



reveal the number of these coe�cients we are required to calculate. The limitson the decomposition and reconstruction algorithm are estimated by consider-ing the maximum range of index values (given the �nite range of the sequencesfakg; fbkg; fpkg; fqkg) which produce non-zero multiplications in the formu-lae. Of course, these ranges di�er from level to level, since the convolutions aredown- or up-sampled as required.Unfortunately, assuming that our image has zero intensity outside some spe-ci�c interval will introduce irritating boundary e�ects, particularly as one viewslower resolution approximations. The method used to deal with such artefacts,is to extend the image by symmetry, thus ensuring a smooth transition acrossboundaries. However, extending our image generates additional non-zero ap-proximation (and consequently, detail) coe�cients, since these represent ourimage and hence mirror any increase in its extent. Fortunately, the numberof additional coe�cients that one need consider is small (< 10), since distantpixel values have progressively less inuence the further away they are fromthe pixels on the periphery, and we have no wish to display pixels beyond ourinitial image boundary. An alternative strategy would be to allow the imageto decay to zero beyond its support.From the above it is clear that we need to calculate �c0ij	 before we are able tobegin our decomposition. That is, we must obtain a representation of our imageas a sequence of expansion coe�cients on the basis given in Equation (32) |we wish to project our true image onto its zeroth level approximation. In orderthat we may accomplish this projection, it is necessary that our signal functionbe bounded and continuous. Neither of these restrictions is problematic forimages; they are certainly bounded in the intensity values they may take onand, since we only sample discrete points, we can always assume that our imageis continuously interpolated between these points.We wish to determine the solution set fc0i g; i 2 Z2, of Equation (31), whereour variables x, y are constrained to be integers and the values I0(x; y) are ourinput intensity values. A true interpolation scheme, in which the interpolantpasses though each input (x,y,I0(x; y)) triple, would require the inversion of alarge matrix, at considerable computational expense. Quasi-interpolation [4, 3]o�ers a cheaper alternative, since it only uses local data to determine the valuesof the c0ij . However, the interpolant no longer passes through each input pointunless some very strong conditions are imposed (see below) or the computationsare made su�ciently non-local. The scheme is based on a 2-D convolutionaloperator. This 2-D operator is applied to the input intensity values to producethe c0ij . See Equation (34). This operator has a sequence support that growswith the order, k, of the quasi-interpolation scheme. For quadratic and cubiccardinal splines, we have an operator of size (2k + 1)� (2k + 1).The parameter k also determines the accuracy of the �t: as k grows larger,quasi-interpolation tends to true interpolation [3, pg. 105]. In addition, quasi-interpolation has the property that it will interpolate a polynomial (in s vari-ables) of total degree � m � 1 (that is, an element of �sm�1) perfectly, ifk > m�32 , [4, pg. 646]. For example, when m = 3; s = 2 (quadratic cardinal349



splines in 2 variables) [4], we may choose any k > 0 to achieve perfect repro-duction of a second degree 2-D polynomial. However, this property is of littleuse to us, since our image can contain arbitrarily irregular data.The method may be encapsulated (in our case) as follows [4]:(QkI)(x; y) =Xi;j (�kI)(i; j)Nm(x + m2 � i)Nm(y + m2 � j); (33)where k is the order of the quasi-interpolation operator7, Qk. The � coe�cientsare obtained as follows (by applying the convolutional operator to the inputdata set):f(�kI)(i)g = (� �m+ � � �+ (�1)km � � � � �m| {z }k times ) � I0; i 2 Z2; (34)where � represents 2-D discrete convolution and m = fmig ; i 2 Z2 withmij = � Nm(0 + m2 )Nm(0 + m2 )� 1 for i; j = 0;Nm(i+ m2 )Nm(j + m2 ) for i; j 6= 0:and � = f�i0g, where �i0 = 0 if i 6= 0 and �00 = 1.It can be seen that, as the order k grows, it becomes increasingly irksometo compute explicit representations for this; we have computed such explicitcoe�cients fore the cases k = 1; 2, with sequence supports of 3� 3 and 5� 5(Appendix ). Note that the cardinal B-splines have been centred, since thealgorithm in [4] requires this (before this shift, they are symmetric with respectto m2 .) To reconcile Equation (33) with Equation (31) (and hence extract theinitial smoothing) coe�cients, we make the identi�cation�c0ij	 = f(�kI)(i; j)g : (35)However, we must remember to introduce the appropriate shift ( 32 or 2) whenwe compute our approximation function Equation (32)8.6. Implementation6.1. The Di�erence EngineThe Di�erence Engine is the �nal component in the rendering pipeline of a newdisplay architecture produced at CWI. Its function is described more fully in[1], but essentially it generates the pixel stream which produces the image onthe display. This processor may be described as a forward di�erence engine forarbitrary order polynomials | that is, given the appropriate initial di�erences,it will interpolate an arbitrary order polynomial (representing the intensitypro�le) across a span of pixels. The logic is implemented by a systolic array,7We deal with boundary problems by extending the input image symmetrically about itsedges before computing the quasi-interpolant.8By making this identi�cation, we are shifting our entire image by m2 in both dimen-sions; thus we must remember to add this value to the x and y arguments of our jth levelapproximation. 350



allowing the (intensity) data to propagate along the scan-line in a time whichdepends on the order of the polynomial and not the length of the pixel span.Since the processor has an 11ns cycle time, and the systolic array elements needonly perform adds as the data propagates, this leads to very rapid calculationtimes; indeed, the Di�erence Engine is able to produce pixel streams at thedisplay refresh rate. Originally intended for the rapid production of Phongshading values along pixel spans, it was realised that the chip's design was suchthat it was ideally suited for the synthesis of images consisting of polynomialspline patches that is, those which have an appropriately smoothed intensitypro�le. Naturally, a means would have to be discovered of generating suchan images. Inspired by the spline-wavelets of Chui [3], such a connection wasposited and subsequently veri�ed (see later sections).6.2. The Di�erence Engine and Multi-Resolution ApproximationsIn order to interpolate a span of pixels, one must �rst decide on the orderof the polynomial to be employed, for this determines the number of initialcalculations which must be performed on each span. For example, quadraticinterpolation requires only the computation of �rst and second di�erences.Once these di�erences have been computed, the chip is able to interpolatea span of arbitrary length within the limits imposed by rounding errors [1].Higher order polynomial interpolation achieves a better approximation to theoriginal image, but this accuracy comes at the expense of additional di�erencecalculations, longer instructions and a rapid decrease in the length of the spanswhich may be accurately interpolated.We implement the algorithm as follows. For a particular resolution levelj, the basis elements of our spline space are translations of the tensor prod-uct Nm(2�jx)Nm(2�jy) which has support on [0; 2jm]2 and has knot-points at2jZ2 on this support. If we restrict I�j(x; y) to the intervals [2jk; 2j(k+1)]2; k 2Z we obtain a polynomial patch (of degree � m � 1), uniquely describable interms of a single set of coe�cients9 and hence suitable for our di�erence ma-nipulations. Since the Di�erence Engine operates in one dimension, we �x theparameter y in our expression for I�j(x; y) and proceed to calculate the requi-site number of di�erences by evaluating this expression at successive horizontalpixel locations. Once we have the di�erences, we compose the appropriateprocessor instruction and output this to the Di�erence Engine, which thenproceeds to interpolate the span of length 2j pixels10.7. ResultsThese ideas were investigated on a simulator which emulates the action ofthe Di�erence Engine. The controlling program performs the wavelet decom-position/reconstruction (as well as several other functions) and generates the9See the earlier characterization of Vj (the restriction of our images to the region betweenthe knots points 2jZ2 has �xed polynomial character - remember: our 2-D Vj is just obtainedby taking the tensor product of our 1-D Vj).10The span is actually of length 2j+1. However, the last pixel is set by the next instruction.351



Di�erence Engine instruction stream, which is then piped to the simulator.The theoretical analysis of the previous sections was used to produce a viableimage encoding scheme. The primary purpose was to evaluate the suitabilityof the Di�erence Engine as a reconstruction engine.7.1. Di�erence Engine performanceWe may quantify the reduction in processing required when displaying a multi-resolution approximation image, in terms of function evaluations gained perspan. That is, the number of intensity function evaluations along a span whichwe are no longer required to perform because of our interpolation scheme. Weonly need to evaluate Equation (32) when we compute our di�erences; theDi�erence Engine does the rest.The maximum number of operation occurs when we wish to display ourzeroth level approximation: in this case we are forced to transmit an instructionto set each pixel | this is our baseline count. If we proceed to level one, wehave spans of length three (the last pixel being taken as the �rst pixel of thenext span); we are thus able to compute the necessary di�erence information.However, it would be more economical to just set each pixel, since this meanswe no longer have to compute di�erence information. For the both the abovecases, then, we need to transmit N�M instructions for a display of size N�M .If we employ the quadratic spline approach, we realise gains from the sec-ond resolution level downwards. The calculation of the (quadratic) di�erencesinvolves the evaluation of our intensity function at three consecutive points onour span, via Equation (32). Since the spans overlap, and we are interpolat-ing a span of 5 pixels, we gain one function evaluation per span. For levelthree we gain a reduction in computation and transmission costs equivalent to�ve function evaluations. On the jth resolution level we gain 2j � 3 functionevaluations per span (when utilising quadratic interpolation). In the case of acubic, we may quantify the number of function evaluations gained per span as2j�4: For an image of size 2x�2y pixels, utilising an mth order cardinal splinescheme, we require approximately 2xm2j 2y = 2x+y�jm Di�erence Engine instruc-tions to produce a jth resolution approximation of the input image, since ourspans overlap and each scan-line must be interpolated separately. We assumehere that j � x i.e. our spans are no wider than the image. This formulaholds for any order of polynomial interpolation11. However, one must bear inmind that at least n + 1 pixels must be available to allow calculation of theinitial di�erences in an nth order scheme. Clearly, as the resolution becomescoarser these operations become more economical, eventually permitting oneto interpolate the entire scan-line with one instruction. The compression rela-tive to the baseline case is given by 2jm : 1; thus for m = 3; j = 2 (second levelapproximation based on quadratics) we achieve a 43 : 1 compression gain overthe baseline case. We have implemented both quadratic and cubic schemes; thedi�erence in quality is scarcely discernable (numerically the quadratic scheme11Recall that an mth order scheme is based on polynomials of degree m� 1.352



Quadratic Case Mean Standard Deviation jMax Errorjk = 1 0.00 1.69 21k = 2 0.01 0.90 10Cubic Casek = 1 0.01 2.74 34k = 2 0.00 1.79 21Table 2. The error induced by quasi-interpolation of our test image. Thequadratic scheme ensures both a lower projection error and a lower maximumerror. The bene�t of using a higher order quasi-interpolation is clear: evenk = 2 provides a considerable gain over k = 1.wins out because it, requires fewer di�erence computations and, as we shallsee, has lower interpolation error and is able to reproduce good images evenwhen the �lters are severely truncated).7.2. Reconstruction errorsThe following sections deal with the three sources of error we have identi�ed inour scheme: interpolation error, the error induced by sequence truncation andthe error caused by neglecting small detail coe�cients.7.2.1. Interpolation errorThe prime source of error in our approximation is a consequence of our em-ploying a quasi-interpolation scheme (Equation (33)), and not interpolatingthe data precisely, (Figure 4). Also, since we are projecting our function intothe space of cardinal splines (which are forced to obey certain smoothness con-straints at their knot-points) we must expect a measure of smoothing. However,this is minimal at the input resolution level and can be eliminated entirely ifone employs true interpolation. To quantify these results, we have the followingestimate for an upper bound on the projection error (adapted from [3]):max` j(Qkf � Jmf)(`)j � (max` f(`) + min` f(`))12�k+1m (36)where the function f represents our (�nitely supported) image values, m iseither 3 or 4, depending on whether the scheme used is based on quadratics orcubics and �3 = 12 ; �4 = 23 : The function (Jmf)(l) is a true interpolant basedon the appropriate spline. It is clear from this that the quadratic schemeproduces a better approximation than the cubic scheme; this rather counter-intuitive result is borne out by Table 2.Table 2 also illustrates the kind of errors which arise from such an approxi-mation; in particular, the mean error is very acceptable even for such low orderk's, although the maximum error can be large. Fortunately, the regions wheresuch error would occur (i.e. sharp spikes) can be less accurately interpolatedwithout noticeable degradation of the image. Smoothing is an integral partof picture capture, since any device has a �nite spatial-frequency bandwidth353
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Figure 4. Quasi-interpolation Error E�ects. Cross-section at scan-line 133 ofthe lenna image; the interpolation error is biased by 128. `A' gives the quadraticquasi-interpolation (k = 2) of the scan-line, `B' the cubic interpolation (k = 2).The graph `C' is the input data for scan-line 133. Graph's `D' and `E' givethe interpolation error for the quadratic and cubic cases, respectively. Observethat the interpolation error for the cubic scheme is greater than that of thequadratic scheme for the same k.
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Figure 5. Failure of the cubic �lters at low truncations. `A' gives the data onscan-line 20, `B' the 2nd resolution level cubic decomposition approximatingthe image and `C' the reconstruction to level 2 after decomposing with the overtruncated cubic decomposition sequences. When the cubic �lters are not overtruncated, they result in a reconstruction which is very similar to the quadraticcase. Note: the reconstruction sequences are never truncated.354



Quadratic Case Mean Standard Deviation jMax Errorjk = 1 0.50 1.71 21k = 2 0.50 0.93 11Table 3. E�ect of reconstruction after projecting with di�erent order quasi-interpolation schemes. With k = 2 the reconstruction is, on average, withinone grey-scale value of the input image.#a #b Mean Std Dvtn jMax Errorj O(Pa) O(P b)Quad 40 36 0.14 0.91 10 10�4 10�4Cubic 39 33 1.48 2.07 23 10�3 10�2Quad 34 30 -0.2 0.91 10 10�4 10�4Cubic 33 27 1.31 2.09 25 10�3 10�2Quad 30 26 0.5 0.93 11 10�4 10�4Cubic 29 23 -2.57 2.71 22 10�3 10�2Quad 14 10 15.51 6.36 44 10�2 10�4Cubic 13 7 -40.78 32.42 244 10�2 10�1Table 4. Reconstruction error after truncating the decomposition sequences(order 2 quasi-interpolation). The left-most two columns indicate the numberof a; b coe�cients we maintain after truncation. The statistical data givesan indication of the e�ects of our truncation on the error image. The �naltwo columns indicate the order of magnitude of the error to within which thesequences approach their �lter conditions, Equations (37).and thus performs a low-pass �ltering on the original image; a little additionalsmoothing is more than acceptable when one considers the local nature of thequasi-interpolation operator.7.2.2. Errors induced by sequence truncationThe length of the decomposition sequences has a profound e�ect on the pro-cessing required to calculate the detail and smoothing coe�cients and on theaccuracy of these coe�cients. Longer sequences require more work but resultin a more accurate image representation.How then, does intensive truncation of the decomposition sequences fakgand fbkg a�ect the quality of the image? We truncated the sequences simul-taneously. Table 4 provides some data to quantify our experiments. It is clearthat for low truncation limits the reconstruction is badly distorted; as thenumber of terms increases the error quickly falls to acceptable limits. Thereis, however, a very noticeable asymmetry in the performance of the quadraticand cubic schemes, which is manifest at low truncations. The cubic represen-tation su�ers noticeable high-frequency distortion when we truncate to belowa critical threshold (23 terms in fbkg). This noise is realised as a tartan-likepattern which distorts the image (see the cross-section scan Figure 5) and is a355
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Figure 6. The decomposition sequences fag and fbg for the quadratic case.Both these sequences have in�nite extent but decay exponentially. fag is sym-metric about 1.5 while fbg is anti-symmetric about 3.5.consequence of the �lter's full-integer symmetry (that is, it is symmetric abouta particular coe�cient index in the sequence (index 5 for the cubic case). Boththe �lters fag and fbg are required to satisfy the following conditions:Xk fakg = 1; Xk fbkg = 0: (37)If these conditions are not met, then the �lters are dysfunctional and the outputsignal is polluted by unwanted frequency components.Referring to Table 4, we see that the cubic fbg sequence is very sensitiveto truncation when we take few terms. This same sensitivity is not presentin the quadratic case, since the sequence fbg is perfectly symmetric with re-spect to a half-integer point and hence tends to zero regardless of our trunca-tion level (that is, its form is ...d,e,f,-f,-e,-d... about its centre of symmetry,whereas the cubic case is ...d,e,f,g,f,e,d... about its centre of symmetry (g) andis thus not guaranteed to sum near zero unless the coe�cients surroundingthe centre of symmetry are appropriately de�ned, which no longer happensbelow 23 terms for fbg). Note that, in all cases, we truncate so as to preservethe sequences' symmetry (which is responsible for the linear phase propertythat eliminates/reduces distortion). A comparative test of the impact of thisformalism's linear phase aspect was not done, since we did not implement anon-linear-phase scheme. However, one can see from Figure 7 that even withvery severe truncation of detail, the main structures persist and strong edgesare essentially undistorted.7.2.3. Errors induced by detail coe�cient eliminationTo determine the suitability of the spline-wavelet transform for compression356



Threshold %zeroed Mean max jErrorj Std Devn0.1 86% 0.55 35 6.440.16 91% 0.67 55 10.360.2 93% 0.72 65 13.000.3 96% 0.85 100 19.81Table 5. The e�ect of zeroing detail (wavelet) coe�cients | quadratic case.The threshold determines the percentage of detail coe�cients which are ne-glected in the reconstruction. The other three columns give statistical infor-mation about the nature of the reconstruction error.

Figure 7. Reconstruction after zeroing detail coe�cients. Truncation thresh-olds 0.1, 0.3purposes, we zeroed all the detail coe�cients below a speci�ed threshold andproduced the data in Table 5; the corresponding reconstructed images are inFigure 7. From this data we can see that the Multi-Resolution structure can beused to encode an image e�ciently; one merely decomposes until the supportof the smoothing coe�cients is acceptably small and then applies a suitablychosen limit which eradicates a large number of detail coe�cients. The positionof the coe�cients can be encoded using some kind of run-length encoding whilethe magnitude of the coe�cients has to be quantized (the data may be furtherreduced by an entropy coding). From the images one can see that as we zeromore detail coe�cients we begin to lose texture and eventually larger scale high-frequency data, such as edges. Examination of our �rst level approximationimage reveals very little di�erence from the input image; hence we can zeroall �rst level detail coe�cients (cf. Figure 1). One can also see the e�ectsof our assumption of �nite image extent (the support of our input sequenceis essentially the same as the unexpanded image support) in the slight low-frequency ripples which emanate from the image edges. Taking a larger inputcoe�cient support will reduce these e�ects (which are not noticeable when we357



do not engage in intensive thresholding).The above provides some indication of the Wavelet Transform's suitabilityfor image compression. Of course, to obtain high quality reconstructions withmaximal compression, we would have to threshold in a more intelligent wayand/or utilise a scheme such as Vector Quantization. This is an area we areinvestigating further.8. ConclusionIn this paper we have shown how one might exploit the architecture of CWI'sDi�erence Engine to achieve more e�cient output of an image, provided one iswilling to accept some measure of \blurrings". Since such a scheme producesfewer processor instructions, we can produce images at a higher rate.Another advantage of such a scheme is the ease with which one can achieveprogressive transmission | we merely transmit the next tier of detail coe�-cients, which are then combined to produce our new approximation image. Onecould, conceivably, use this ability to rapidly scan through a video database inorder to get a feel for the material it contained.We performed some elementary tests which con�rmed the choice of the semi-orthogonal wavelet transform as one which will enable us to achieve our dualgoals of rapid compression and e�cient display. To achieve higher compres-sion, we must utilise a Vector Quantization scheme; preferably one which canexploit the multi-resolution structure of the WT, as was done in [10]. An e�ec-tive quantization scheme can ensure high compression ratios while maintainingimage quality, particularly when followed by an entropy coding scheme such asHu�man coding.8.1. 2-D Area InterpolationOur 2-D multi-resolution approximations are required to have a �xed polyno-mial character over squares with support [2jk; 2j(k + 1)]2. This coherence isnot exploited in our decoding, since the Di�erence Engine is inherently onedimensional. This state of a�airs could be recti�ed if two-dimensional interpo-lation were used. That is, instead of interpolating along spans only, we couldalso interpolate across scan-lines. Naturally, the �nal instruction stream wouldhave to be a one dimensional pixel stream | we could thus maintain the Dif-ference Engine and precede it by a \Y-processor" which would accept (square)area primitives, each supporting a spline patch, and then perform a di�erenceinterpolation scheme in the y�direction, outputting a scan-line's worth of Dif-ference Engine instructions after each new scan-line. We would be requiredto produce eight di�erences per 2-D instruction. In addition, we would needcorresponding instruction �elds for the y starting position, initial intensity andthe span length (the same for both dimensions). Thus, to interpolate a blockof size n � n, we would have to produce 12 pieces of information, comparedwith the 5n (5 �elds per span over n scanlines) required for a straight Dif-ference Engine interpolation. With larger block sizes, the gain would becomemore signi�cant. The fact that we are now interpolating in 2-D would cause a358



reduction in the size of the squares we could accurately interpolate | in theregion of 64x64 with 24 precision bits for quadratic interpolation. This is notreally a limitation since spans of 64x64 pixels correspond to an eighth levelapproximation | something we would be unlikely to require.8.2. Adaptive multi-resolution encodingAnother possibility, which might reduce blurring, is to use an adaptive synthe-sis procedure: rather than using a �xed level of approximation, we generateinstructions to produce detail where necessary. We can perform such a recon-struction because our image is the sum of a sequence of detail images and alow-resolution approximation image | see Equation (20).Such a scheme would produce Di�erence Engine instructions to reproduce i)the low level approximation image and ii) the important regions of the detailimages. These important detail regions will correspond to large detail coe�-cients; hence, our level of thresholding would determine the number of detailinstructions that are generated and, consequently, the total number of proces-sor instructions. There are a number of issues that would have to be addressedbefore such a scheme could be successfully implemented.This scheme will be most appropriate if our detail coe�cients are clusteredaround major texture features, with sparse regions where these coe�cients arezero or may be approximated by zero. From the support of the processed detailcoe�cients we can determine the important non-zero detail areas in our detailimages and hence the spans across a scanline with which these regions intersect.Calculation of the detail image, gk(l;m), values requires the evaluation of thefunctions 	[p](i; j) which is signi�cantly more expensive than evaluating �(i; j)(we have three wavelets). However, if the detail regions are sparse enough thisoverhead should be less telling. One could also attempt to accelerate thesecomputations by means of LPTA (Linear Pascal Triangular Algorithms, [3,pages 189{194]).From our point of view the central issue is the number of processor instruc-tions that we can save when compared to the high-resolution baseline case,in which we must individually set each pixel. Unfortunately, this problem ishighly dependent on the image | images with little texture will require few`detail-�lling' instructions, while those with a high level of important textureinformation will require many such instructions. The level of thresholding onour detail coe�cients will directly control the number of these instructions.The automation of such thresholding is a non-trivial problem, since there is lit-tle agreement on the properties that an objective image �delity metric shouldsatisfy. Without an extensive analysis, there is little one can say aside from thefact that our gain over the baseline will be bounded below by 2jm : 1. Thus, forsu�ciently large j, the level of detail we wish to reproduce will be the primaryfactor determining the number of instructions we require. Care would haveto be taken, however, to ensure that we do not permit excessive detail-�llinginstructions to be generated: under no circumstances should we produce moreinstruction than the baseline count. 359



8.3. More e�cient compressionUsing Vector Quantization with a wavelet-based compression scheme can pro-vide compression ratios of around 40:1 with very good reproduction [10]. Thepossibility exists to improve the compression potential of the wavelet codingmarkedly by utilising a so-called \second generation" scheme, which exploitsfeatures inherent in the human visual system. One approach is to extractand code the visually relevant edge information (which produces an extremelycompact encoding) and then to code the residual error using wavelets. Thisapproach, a modi�cation of the one proposed by Carlsson [2], forms the thebasis of a compression scheme employed by Froment and Mallat [7].Such a coding should achieve better compression because the edge image weextract contains most of the high-frequency information | it is this informationthat gives us large WT coe�cients. We are currently investigating a codingscheme which combines all the above elements.9. AcknowledgmentWe would like to thank the referees for their suggestions and comments.References1. E. H. Blake and A.A.M. Kuijk (1993). A di�erence engine for im-ages with applications to wavelet decomposition. Proceedings of the SecondInternational Conference on Image Communications (IMAGE'COM), pp.309{314.2. S. Carlsson (1988). Sketch based coding of grey level images. SignalProcessing 15, pp. 57{83.3. C.K. Chui (1992). An Introduction to Wavelets: Wavelet Analysis and itsApplications, volume one. Academic Press, Boston.4. C.K. Chui and H. Diamond (1987). A natural formulation of quasi-interpolation by multi-variate splines. Proceedings of the American Mathe-matical Society 99 (4).5. C.K. Chui and J.Z. Wang (1990). Computational and algorithmic as-pects of cardinal-spline wavelets. Technical Report 235, TAMU, Centre forApproximation Theory (CAT). Note: There are some transcription errorsin the (quadratic) decomposition sequences given here.6. I. Daubechies (1992). Ten lectures on wavelets. CBMS-NSF series inapplied mathematics 61. SIAM.7. J. Froment and S. Mallat (1992). Second generation compact imagecoding with wavelets. InC.K. Chui, editor,Wavelets: A Tutorial in Theoryand Applications, volume two, pp. 655{678. Academic Press, Boston.8. H.J.A.M. Heijmans (1992). Discrete wavelets and multiresolution anal-ysis. In Koornwinder [9], pp. 49{79. This article originally appeared inCWI Quarterly, Vol. 5, No. 1.9. T. H. Koornwinder, editor (1993). Wavelets: An Elementary Treatmentof Theory and Applications, volume 1 of Approximations and Decomposi-tions. World Scienti�c. 360
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266664 O x X x Ox Q I Q xX I # I Xx Q I Q xO x X x O 377775Figure 9. The arrangement of coe�cients of the quasi-interpolation operator0 1 2 3 4 5 6 7fpkg 14 34 34 14fqkg 1480 � 29480 147480 � 303480 303480 � 147480 29480 � 1480Table 6. The reconstruction sequences for case m = 3fakg fbkg fakg fbkg0 0.033978977 0.049781017 12 -0.008232310 0.0341662411 0.655340376 0.423982818 13 -0.000934671 0.0038792802 0.655340376 -0.140377187 14 0.003544624 -0.0147112663 0.033978977 -0.900597911 15 0.000402447 -0.0016702854 -0.243780520 0.900597911 16 -0.001526227 0.0063343135 -0.025936016 0.140377187 17 -0.000173284 0.0007191826 0.103311291 -0.423982818 18 0.000657155 -0.0027273997 0.011654634 -0.049781017 19 0.000074611 -0.0003096628 -0.044411988 0.184116960 20 -0.000282955 0.0011743519 -0.005039196 0.020974988 21 -0.000032126 0.00013333210 0.019119634 -0.079343472 22 0.000121833 -0.00050564611 0.002170658 -0.009011510Table 7. The decomposition sequences for the case m = 3our splines and scaling functions e�ciently. We did not pursue this approach.The decomposition sequences are derived from the roots of an Euler-Frobeniuspolynomial [5]. This complex polynomial (of order 2m� 1) is de�ned asE2m�1(z) = (2m� 1)! m�1Xj=�m+1N2m(m+ j)zj+m�1and clearly has an intimate relationship with the cardinal splines. We do nothave enough space to develop this approach further here. Interested readers arereferred to [5, 3]; it should be noted that [5] contains some transcription errorsin the quadratic decomposition sequences. By utilising the formulae presentedthere, one can check the sequences and produce additional terms (Table 7)contains the sequences we used). 362


