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AbstractÐWe present a new graphical representation of the level-of-detail state spaces generated by hierarchical geometric scene

descriptions with multiple levels of detail. These level-of-detail graphs permit the analytical investigation of the hierarchical level-of-

detail optimization problem that arises for such descriptions. As an example of their use, we prove the equivalence of two hierarchical

level-of-detail algorithms.
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1 INTRODUCTION

LEVEL-OF-DETAIL rendering techniques aim to manage
intelligently the complexity of rendered scenes at

render time in order to regulate frame rates while
maximizing the perceptual benefit of the rendering to the
user. Successful methods are typically based on the use of
hierarchical scene descriptions that combine the elegance of
a recursive hierarchical spatial or geometric decomposition
of the scene with the ability to provide simplified drawable
representations for groups of related subobjects. The use of
such techniques for active frame rate control has created the
need for intelligent hierarchically aware level-of-detail
optimization algorithms whose task is to select at render-
time between the multiple drawable scene representations
that may be extracted from hierarchical scene descriptions.
Their aim in this selection is the maximization of the
perceptual benefit of the resulting rendering, subject to a
constraint on its total rendering cost, so as to maintain
regular frame rates while making the best use of available
resources. Although several such algorithms have been
proposed, there has been little in the way of robust
analytical investigation of the hierarchical level-of-detail
optimization problem. In this paper, we present a semantic
aid to this investigation in the form of the level-of-detail
graph, a graphical representation of the level-of-detail state
spaces generated by hierarchical scene descriptions in
which any number of simplified representations may be
provided for groups of related objects. We demonstrate by
example in Section 6 how these graphs have enabled us to
gain a better understanding of the meaning of shared object
representations and to derive new analytical results
concerning level-of-detail optimization algorithms.

We begin in Section 2 with a review of related work. In
Section 3, we define a generalized hierarchical level-of-
detail scene description that will serve as the basis for the
development of level-of-detail graphs and algorithms for
their generation in Section 5. In this development, we make
use of a transformation, described in Section 4, of the
hierarchical description to an equivalent constrained non-
hierarchical one. This transformation was originally pro-
posed in [6]. In Section 6, we provide an example of the use
of level-of-detail graphs in the form of a proof of
equivalence for two hierarchical level-of-detail algorithms.
Finally, we make some concluding remarks in Section 7.

2 BACKGROUND

The first use of level-of-detail in rendering, suggested by
Clark [3], was hierarchical in nature, making use of a
recursive decomposition of the scene in order to associate
simplified representations with groups of related subob-
jects. Most subsequent approaches, such as those of Blake
[1], Chamberlain et al. [2], and Shade et al. [7], have been
extensions of the same basic idea. Funkhouser and SeÂquin
[4] were among the first to note that predictive level-of-detail
selection could be used for active frame rate control. The
approach of Maciel and Shirley [5], as well as that of Mason
and Blake [6], represent, broadly, extensions of the
predictive, but essentially nonhierarchical optimization
approach of Funkhouser and SeÂquin to hierarchical level-
of-detail scene descriptions.

The level-of-detail optimization problem is the task of
selecting, for each frame, the scene representation that
provides the maximum perceptual benefit (however it is
approximately measured) for a limited rendering cost.
While Funkhouser and SeÂquin note that the predictive
level-of-detail optimization problem is equivalent to the
Multiple Choice Knapsack Problem (MCKP) [4], Mason
and Blake demonstrate in [6] that this equivalence is
broken by the shared representations for groups of objects
that characterize truly hierarchical level-of-detail scene
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descriptions and that the hierarchical level-of-detail
optimization problem is equivalent to a more complex
hierarchical generalization of the MCKP. Otherwise, the
hierarchical level-of-detail optimization problem has re-
mained largely unanalyzed. In this paper, we provide a
formal, intuitive, and graphical description technique for
the state spaces generated by hierarchical level-of-detail
descriptions as an aid to this investigation.

3 GENERALIZED HIERARCHICAL LEVEL-OF-DETAIL

DESCRIPTION

Here, we define a generalized hierarchical level-of-detail
scene description which will serve as the basis for the
following sections. An object is defined recursively as the
union of other smaller objects which are its parts, or
children. The hierarchy of objects forms a part-whole
decomposition of the scene from a single scene object at the
root to the smallest, indivisable components at the leaves
(see Fig. 1). Each leaf object has a number of associated
impostors, or drawable representations.1 In addition, group
(or nonleaf) objects may also each be provided with their
own set of impostors. An impostor of a group object serves
as a unified drawable representation of all the parts of the
group. In this way, each object has as its drawable
representations not only its own explicitly associated
impostors at various levels of detail, but also the multiple
more detailed combinations of the impostors of its
descendents. Together these representations constitute the
available levels of detail of that object.

Definition 1 (Level of Detail). A level-of-detail s of an object
O is a set of impostors fi1; i2; i3; . . . ; ing such that exactly one
of the impostors on the path from O to each of the leaves of the
subtree rooted at O is an element of s.

For example, the valid levels of detail of the scene object
in Fig. 1 are f1g, f2g, f4; 5; 3g, f4; 6; 3g, f4; 5; 7; 8g, and
f4; 6; 7; 8g. Each constitutes a complete and unambiguous
representation of the scene.

Definition 2 (Replacement Set). The replacement set of an
impostor belonging to an object O is the immediately higher
detail impostor of O, if one exists, or the set of the lowest detail

impostors of the nearest impostor-bearing descendents of O,
otherwise.

In Fig. 1, the replacement sets of impostors 1, 2, 3, and 5
are f2g, f4; 5; 3g, f7; 8g, and f6g, respectively. Impostors 4,
6, 7, and 8 have no replacement sets.

An incrementation of a level-of-detail s of an object O is
the replacement of some impostor i 2 s by its replacement
set r to produce another level-of-detail s0. Conversely, a
decrementation of s is the replacement of some complete
replacement set r � s by the impostor whose replacement
set is r. The levels of detail of each object are partially
ordered by the following relation:

Definition 3 (Partial Ordering of Levels of Detail). Two
levels of detail s and t of an object O are related by s � t if
there exist levels of detail l1; l2; l3; . . . ; ln such that l1 � s,
ln � t, and li�1 is the result of some incrementation of li for all
i 2 f1; 2; 3; . . . ; nÿ 1g.

We say that s is a lower level of detail than t and that t is a
higher level of detail than s. If s � t and s 6� t, then we say
that s is a strictly lower level of detail of O than t, denoted
s < t. For example f2g < f4; 5; 3g < f4; 6; 3g in Fig. 1. If s � t
and s \ t � ;, then we say that s is uniformly lower than t.
The lowest and highest levels of detail of an object are those
such that there exist no other levels of detail that are lower
and higher, respectively.

Definition 4 (Covering of Replacement Sets). We say that a
replacement set r is covered by a level-of-detail s of an object
O if there exists a level-of-detail t of O such that t � s and
r � t.

This implies that, in some sense, s contains a representa-
tion of the part of the scene represented by r that is at least
as highly detailed as r.

Definition 5 (Ancestor Replacement Sets). A replacement
set r is an ancestor replacement set of another
replacement set q if there exists a (possibly trivial) list
of replacement sets r1; r2; r3; . . . ; rn such that r1 � r,
rn � q, and ri�1 is the replacement set of some impostor
in ri for i 2 f1; 2; 3; . . . ; nÿ 1g.

Conversely, r is a descendent replacement set of q if q is an
ancestor replacement set of r. In Fig. 1, f3; 4; 5g is a
descendent replacement set of f2g and an ancestor replace-
ment set of f6g and f7; 8g.

4 CONSTRAINED NONHIERARCHICAL DESCRIPTION

In this section, we provide a transformation of the
hierarchical level-of-detail description defined in Section 3
to an equivalent constrained nonhierarchical one.

Note that the impostors of group objects are equivalent to
shared low detail impostors of the children, or parts, of those
group objects. The shared impostor must either be selected
for all of the parts at once or for none at all. By repeatedly
transforming group object impostors to inherited shared
impostors of the children of those group objects, we can
create an equivalent constrained nonhierarchical level-of-detail
description, as shown in Fig. 2. Each object in this new
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1. We use impostor in its most general sense, referring to any drawable
object representation [5].

Fig. 1. A simple level-of-detail hierarchy. Objects are represented by
circles and their impostors by triangles. The impostors of each object are
shown in order of increasing detail from left to right. Impostors are
labeled arbitrarily for convenience.



description corresponds to a leaf object in the original
hierarchy and has as its impostors all those that lay on the
path from the root object to itself, in top-down order.
Notice, for example, that impostor 1 in Fig. 2, being an
impostor of the scene object, is implicitly a representation of
every leaf object. The hierarchical set of constraints
preserves the original structure by requiring that each set
of inherited impostors is always selected in unison. A valid
level-of-detail of such a constrained description is a set of
impostors such that all constraints are satisfied and exactly
one impostor is selected for each object. Note that if an
impostor of an object O is constrained by a constraint A,
then the immediately lower detail impostor of O must be
constrained by some other constraint B. If an impostor of
another object P is also constrained by A, then the
immediately lower detail impostor of P must be con-
strained by B.

5 LEVEL OF DETAIL GRAPHS

Every valid level-of-detail of a level-of-detail description
gives rise to a different rendering of the scene. Together,
these levels of detail and the ordering relationships between
them form a state space. Our aim is to provide a simple
conceptual representation of this state space.

A level-of-detail graph consists of a set of nodes, a set of
arcs connecting those nodes, and a partial ordering on the
nodes. Each node corresponds to a level-of-detail. It is
connected by arcs to all of the other nodes whose
corresponding levels of detail may be reached from that
one by means of a single incrementation or decrementation.
The partial ordering � that was defined for levels of detail
in Definition 3 is also applied to the nodes of the associated
level-of-detail graph. Any two nodes s and t such that s < t
are always represented in the graph such that s is lower (in
some spatial dimension) than t.

Fig. 3 shows some example nonhierarchical level-of-
detail descriptions and the level-of-detail graphs that they
generate. In these descriptions, the replacement set of an
impostor is always simply the immediately higher impostor
of the same object, if one exists. The level-of-detail graphs
generated by such nonhierarchical descriptions are all
regular lattices in n dimensions, where n is the number of
objects in the scene. The number of nodes on each side of
the lattice corresponds to the number of impostors of each
object, respectively. Notice that the arcs on opposite sides of
any square in the lattice correspond to the selection of the

same replacement set (or, in this case, impostor). Every path
between the same two levels of detail involves the same
series of replacements, although the ordering of the series is
unique to each path. Notice too that every level-of-detail is
reachable from every other level-of-detail by some series of
incrementations and decrementations.

The level-of-detail graphs of hierarchical level-of-detail
descriptions differ from those of nonhierarchical descrip-
tions in that they are not in general regular n-dimensional
lattices. Recall from Section 4 that any given hierarchical
level-of-detail description may be transformed to an
equivalent constrained nonhierarchical one, where the
constraints serve to preserve the hierarchical replacement
set structure. The effect of introducing a single constraint is
illustrated in Fig. 4. A constraint removes all the states that
contain some, but not all, of the impostors that it constrains.
Any arcs incident to a removed state are also removed. New
arcs are created from each of the states containing all of the
constrained impostors to the states that are identical except
for the replacement of the constrained shared impostors by
their replacement set. We refer to this as the Constraint
Algorithm.

Typical hierarchical level-of-detail descriptions are
equivalent to constrained nonhierarchical descriptions with
more than one constraint, such as that in Fig. 2. The level-of-
detail graph of any constrained nonhierarchical description
that is equivalent to a valid hierarchical one may be
generated by beginning with the graph of the unconstrained
nonhierarchical description and applying the Constraint
Algorithm for each constraint in turn, in increasing order of
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Fig. 2. Transformation of a level-of-detail hierarchy to an equivalent constrained non-hierarchical description. Constraints, shown as links, indicate

that the inherited shared impostors must be selected in unison. The shared impostors are labeled with letters to distinguish them from one another.

Fig. 3. Level of detail graphs of nonhierarchical descriptions. Three
simple nonhierarchical level-of-detail descriptions, numbered (a) to (c),
and their corresponding level-of-detail graphs. Some nodes are
unlabeled in (c) for clarity.



detail of the impostors they constrain. Fig. 5 shows an
example hierarchical level-of-detail description, its equiva-
lent constrained nonhierarchical description, and the gen-
eration of its corresponding level-of-detail graph.2 Notice
that the final graph accurately represents the valid levels of
detail of the hierarchical description and the partial
ordering of incrementations and decrementations defined
on them. Fig. 6 shows the level-of-detail graph of the
hierarchy in Fig. 1.

6 PROOF OF EQUIVALENCE OF TWO ALGORITHMS

As an example of the application of level-of-detail graphs,

we present a proof of the equivalence of two algorithms.

These algorithms are corrected versions of those presented

in [6]. They are hierarchical generalizations and improve-

ments of those presented by Funkhouser and SeÂquin [4] and

a slightly altered nonhierarchical specialization of this proof

would serve as a proof of the previously unproven

equivalence of the Funkhouser-SeÂquin algorithms.

Algorithm A is a greedy approximation algorithm for the

hierarchical level-of-detail optimization problem. Algo-

rithm B is an equivalent incremental version designed to

exploit frame-to-frame coherence. Both attempt to find the

level-of-detail with maximum (predicted) total perceptual

benefit, subject to an upper limit on total rendering cost,

given numerical predictions of the perceptual benefit and

rendering cost of each impostor in the current frame.

Whereas A always begins with the lowest level-of-detail, B

begins with the solution found for the previous frame on

the assumption that successive solutions are likely to exhibit

significant coherence.

Algorithm A iteratively considers currently selected

impostors for replacement with their replacement sets. In

each iteration, the impostor considered is that whose

replacement set r has greatest relative value3 RV�r�. The

incrementation is performed if it can be afforded without

exceeding the available frame rendering time, otherwise the

algorithm terminates.
Algorithm B differs in that, in each iteration, it both

increments and optionally repeatedly decrements the
selected level of detail. The impostor selected for replace-
ment in each incrementation step is that whose replacement
can be afforded and whose replacement set has greatest
relative value. In the same iteration, the algorithm repeat-
edly decrements the selected level-of-detail until the total
cost of the selected level-of-detail is reduced to satisfy the
rendering cost limit. Each decrementation replaces a
currently completely selected replacement set with its
associated impostor. The replacement set selected for
replacement in each step is that with lowest relative value.
The algorithm terminates when, upon completion of an
iteration, it finds that the replacement selected in the
incrementation step of that iteration was subsequently
deselected in one of the decrementation steps.

Algorithms A and B are equivalent as long as replace-
ment sets always have greater total perceptual benefit and
rendering cost than the impostors they replace and ancestor
replacement sets always have greater relative value than their
descendents (which implies that more detailed renderings
provide increased perceptual benefit with diminishing
returns). We therefore assume that to be the case in this
proof. We prove the equivalence by denoting the level of
detail corresponding to A's solution by g (for the ªgreedyº
solution) and considering the actions of B in each of its
possible current states. The states of B, corresponding to
selected levels of detail, are partitioned into four classes in
terms of their relation to g. For any level of detail s, it is true
that either s � g, s < g, s > g, or s and g are not related
(which we denote for convenience by s 6� g). This is shown
by means of shading in Fig. 7, which illustrates the proof for
a simple example.

Considering incrementations, we show that, whatever its
current state t, B will always choose an incrementation
selecting a replacement set covered by g, if one is available,
over any that select replacement sets not covered by g. The
only interesting case is that in which t and g are not related
since if t < g, then all possible incrementations select
replacement sets covered by g, and if t � g or t > g, then
all incrementations select replacement sets not covered by g.
In the interesting case where t and g are not related, there
may exist at least one incrementation selecting a replace-
ment set i covered by g and at least one selecting a
replacement set j not covered by g. Then, there must exist a
level of detail t0 from which A chose an incrementation
selecting i over one selecting another replacement set j0 that
is an ancestor4 of j since i is covered by g. Therefore,
RV�i� � RV�j0�. By assumption, RV�j0� > RV�j�, hence
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Fig. 4. Effects of the addition of a single constraint. The unconstrained

description and its level-of-detail graph are shown in (a). The

constrained description and its level-of-detail graph are shown in (b).

2. An unfortunate feature of this process is that the dimensionality of the
initial graph is the same as the number of leaf objects in the hierarchy.
Graphs of dimension higher than three, although perfectly well-defined, are
difficult to visualize. Nevertheless, their sense is clear from the examples of
lower dimensionality that may be visualized. Moreover, they may be
generated automatically and their topology may be inspected by means of
queries.

3. The relative value of the replacement set r of an impostor i is defined as

the ratio of the difference in perceptual benefit and the difference in

rendering cost between r and i, i.e., RV�r� � �
P

j2r benefitj�ÿbenefiti

�
P

j2r costj�ÿcosti
.

4. That is, there exists a list of replacement sets r1; r2; r3; . . . ; rn such that
r1 � j0, rn � j, and ri�1 are the replacement set of some impostor in ri for
i 2 f1; 2; 3; . . . ; nÿ 1g.



RV�i� > RV�j�. Therefore, B will choose the incrementation
selecting i over that selecting j.

Considering decrementations, we show that, whatever
its current state u, B will always choose a decrementation
deselecting a replacement set not covered by g, if one is
available, over any that deselect replacement sets covered
by g. Here, the only interesting cases are those in which u
and g are not related and those in which u > g, but u is not
uniformly higher than g since if u is uniformly higher than
g, then all possible decrementations deselect replacement
sets not covered by g, and if u � g or u < g, then all
decrementations deselect replacement sets covered by g. In
the interesting cases, there may exist at least one decre-
mentation deselecting a replacement set p not covered by g
and at least one deselecting a replacement set q that is
covered by g. Then, there must exist a level-of-detail u0 from
which A chose an incrementation selecting q over one
selecting another replacement set p0 that is an ancestor of p
since q is covered by g. Therefore, RV�q� � RV�p0�. By
assumption, RV�p0� > RV�p�, hence RV�q� > RV�p�. There-
fore, B will choose the decrementation deselecting p over
that deselecting q.

Table 1 shows the actions of B in a given iteration for any
possible current state. Recall that, in each iteration, B
increments once and then decrements repeatedly, while the
total rendering cost exceeds the limit. By inspection of the
table, it can be seen that B must eventually halt in state

s � g. If B begins in state s � g, then it increments once, but
then immediately decrements back to g since the replace-
ment set selected by the incrementation is then the only set
not covered by g and, hence, will be deselected by the
decrementation. If B begins in state s > g, then it increments
once and then decrements repeatedly until it reaches s � g.
In each decrementation step, a replacement set not covered
by g will be available until the current state becomes g,
whereupon the algorithm will have deselected the replace-
ment set selected in the single incrementation. If the initial
state is s < g, then the algorithm increments once, selecting a
replacement set covered by g rather than one not covered by g,
and the resultant state is either s � g or s < g, and the
algorithm iterates again. Finally, if the initial state s is not
related to g, then the algorithm will increment once and then
possibly decrement several times. The incrementation selects
a replacement set covered by g and each decrementation, if
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Fig. 5. Generation of a level-of-detail graph. A hierarchical level-of-detail description, its equivalent constrained nonhierarchical description, and the

generation of its level-of-detail graph. We begin with the graph of the unconstrained nonhierarchical description and apply the constraints 1 and 2 in

that order.

Fig. 6. Another example. The level-of-detail graph of the hierarchy in

Fig. 1.

Fig. 7. Illustration of the proof. Levels of detail s < g and s > g are
shaded. Arrows indicate the path taken by algorithm A in reaching its
solution g. Arrows from t and u show incrementations and decrementa-
tions available at those levels of detail. Some arcs are labeled with the
replacement sets whose selection or deselection they represent. Recall
that arcs on opposite sides of any square represent the selection or
deselection of the same replacement set.



any, deselects a replacement set not covered by g and the
resultant state is s < g or s � g or s 6� g. In any event, the
algorithm iterates again. Note that it is impossible for the
algorithm to remain in state s < g or s 6� g indefinately since
the incrementations and decrementations performed serve
to reduce the distance between s and g at each step
(measured as the minimum total number of incrementa-
tions and decrementations by which g may be reached from
s). Therefore, B's solution tends to and must eventually
reach A's solution, and the two algorithms are equivalent.

7 CONCLUSION

We have presented a new graphical representation of the
state spaces generated by hierarchical level-of-detail scene
descriptions. These level-of-detail graphs allow the simulation
and analysis of hierarchical (and nonhierarchical) level-of-
detail optimization algorithms and serve as a conceptual
tool for the exploration of level-of-detail state spaces. We
have described algorithms for the generation of the level-of-
detail graphs of a well-defined class of hierarchical level-of-
detail scene descriptions. As an example of the use of level-
of-detail graphs, we have provided a proof of the
equivalence of two hierarchical level-of-detail optimization
algorithms.
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TABLE 1
Actions of Algorithm B

Columns show the current state s, the number of incrementations performed in this iteration, whether the replacement sets selected are covered by
g, the number of decrementations, whether the replacement sets deselected are covered by g, the new state, and whether the algorithm halts in this
iteration.


