

This paper discusses how software design decisions
can have a positive effect on broad contextual issues
which affect Information and Communication
Technology for Development (ICT4D) projects. We
present five decisions which we made during the design
of a web application intended for use by members of low-
income communities in Cape Town. Our decisions were
based on our knowledge of the context of deployment but
increased the effort required of the development team.
We use the Bridges.org Real Access / Real Impact
criteria to categorise the benefits of our decisions and
justify our prioritisation of concerns other than
minimising the development effort.

Index Terms—ICT4D, Software Design

I. INTRODUCTION

This paper shows how software design decisions in the
initial stages of Information and Communication
Technology for Development (ICT4D) projects can have a
profound effect on their outcome. We present five choices
made during the development of a web application that were
decided based on our knowledge of the intended users: an
NGO working with low-income communities in Cape Town
and the members of those communities. The Bridges.org
Real Access / Real Impact criteria [2] are used to categorise
the consequences of our decisions.

II. BACKGROUND

A. The Warehouse and Link Programme

We are building a web application in collaboration with an
NGO called The Warehouse [5]. The application will be
deployed as part of a developmental programme called Link
which provides career guidance to people from low-income
communities. The Warehouse will capture relevant content
and support the site after deployment.

B. Bridges.org Real Access / Real Impact Criteria

The Real Access / Real Impact (RA / RI) Criteria [2] is a
framework created to provide a holistic overview of the
factors which influence the success of ICT4D interventions.
Of the twelve factors, we single out five because they relate
to this work: physical access to technology, appropriateness
of technology, affordability of technology, human capacity
and training, locally relevant content and services.

III. CASE STUDY: LINK WEBSITE

In this section we present the design decisions we made.

A. Limit Unique Implementation Code

We were ethically required to ensure that our work could

be understood and modified by other developers with as
little cost to the NGO as possible. Our observation was that
code with which future developers were already familiar
would be better understood than our own, and hence we
took a decision to use a framework which had an existing
development community. This would reduce the cost of
maintenance. Although we lost the flexibility of architecting
our own solution specific to our problem domain, this
decision positively impacted the RA / RI criteria
affordability of technology and technology use.

B. Choose technologies which utilise existing capacity

While the NGO does not have staff with software
development skills, the staff is computer literate, managing
their operations with email and office software. On the Link
programme, existing career guidance data was organised in
spreadsheets. We knew that to make best use of the
programme's existing human capacity, the addition of new
content to the site had to be a task that could be completed
by the same people who maintained the spreadsheets, i.e.
without any programming knowledge.

The NGO already had a website for informing funders
and volunteers of their activity. Content on that website was
being maintained by non-technical users. It was built on top
of a proprietary Content-Management System (CMS) called
ExpressionEngine (EE) [3], which we determined could be
used for our application. The possibility of skills transfer
from staff and volunteers who worked on the other site
(creating content and providing technical support) was
attractive due to the reduced need for external support.

The choice of CMS dictated our choice of programming
language, as EE was written in PHP, as would be any
modifications we made. We were comfortable that even
without EE experience, volunteers with a knowledge of PHP
would be able to transfer their skills due to the popularity of
other similar PHP tools such as Joomla, Wordpress and
Drupal (Drupal has also been used by The Warehouse, but
the staff and volunteers indicated a preference for EE).

Using EE and PHP increased our development time, as
we were not familiar with either before the project began.
However, the benefits for long-term maintenance and
support will positively impact affordability of technology
and technology use as well as human capacity and training.
The availability of locally relevant content is also positively
affected as it relates to availability of up to date content.
This which would have been impeded had we required
content administrators to learn a new data entry paradigm or
work with a structured language such as HTML.

Consequences of Software Design Decisions for Low-
Income Communities: A Case Study

Fritz Meissner, Edwin Blake
Department of Computer Science

University of Cape Town, Private Bag X3, Cape Town 7701
Tel: +27 21 6502663, Fax: +27 21 6503551

email: {fritz.meissner }@gmail.com; {edwin} @cs.uct.ac.za

C. Use conventional paradigms for custom code

Two principles applied when we needed to modify
standard EE functionality. First, we used EE modules written
by the development community where possible, and second,
where no modules were available we would package our
own modifications as modules instead of modifying the
"core" code. Examples of the former principle were tagging
articles and rich text editing modules supported by the EE
community. An example of the second is a search module
which we implemented ourselves that offered support for
ranking by relevance not provided by EE. Adopting the
standard EE module system gave the code a structure which
other developers familiar with EE should be able to
understand.

This approach is a reflection of our prioritisation of the
time of developers who would need to be paid to modify our
work. By making their work easier (at the expense of the
time we spent learning how the EE module system worked),
we avoided a negative impact on RA/RI criterion three,
affordability of technology.

D. Avoid complex data relationships

Early data modelling efforts were very relational. Job
adverts and study courses were related by field, for instance.
Using this information, the site could display jobs available
for potential graduates if a user was viewing a course, or
courses necessary to work in a field when viewing a job. The
data model grew more complicated as we considered the
need for other relationships such as sector and career. Upon
reflection we realised that requiring the data capturers to
correctly differentiate between relationships would lead to
frequent mistakes.

Our solution was to provide the ability to tag entries. This
would allow the site to suggest to users that an unread article
might be related to one they were currently reading based on
tags in common, but without having to identify which sort of
relationship applied. New relationships could emerge and
not every relationship need apply between every possible
pair of entries. This freed both data capturer and end users
from the time consuming task of distinguishing between
relationships. Although some time spent on our relational
data model design was discarded, we knew that this
decreased our need for new human capacity and training.

E. Reduce infrastructure barrier

The web technologies used to build the site were chosen
based on existing infrastructure. We consider two areas:
hosting platform and end user computer access.

The choice of CMS dictated the use of PHP, but we did
consider a deviation from the language, in order to use
Apache Solr, an Java full-text search server [1]. However,
the NGO’s existing web host refused to support Java. When
we considered that we would be adding to the workload of
the volunteer who provided technical support by requiring
him to manage an account at a new host, we decided against
the change. Fortunately we were able to compromise
between prioitising existing capacity and using the library
we wanted by using a PHP port of the Java code which
underpins Solr.

Household access to computers is unusual in the
communities with whom we are working [6], hence reliance
on telecentre infrastructure such as Smartcape [4]. A
consequence of not having control of the computers on
which our website is viewed is that our site has to work on
low-end computers. From a bandwidth perspective, this
meant not offering a graphic intensive or AJAX heavy site.
From a client machine perspective, the site will avoid
Javascript or other client-side technology where possible.

By setting aside our own technology preferences because
of infrastructure considerations we positively affected four
RA / RI criteria: physical access to technology,
appropriateness of technology, affordability of technology
and finally human capacity and training.

IV. CONCLUSION

We have presented five choices made during development
of the Link web application: to use existing code as much as
possible, to use technologies that require as little re-training
as possible, to code in the standard paradigm of our chosen
CMS, to avoid complex data relationships and to leverage
existing infrastructure. Our decisions had a negative impact
on the initial development effort due to time spent learning
new technologies and discarding early data model design
work. However, we have shown that these decisions
positively impacted five RA / RI criteria: physical access to
technology, appropriateness of technology, affordability of
technology, human capacity and training, locally relevant
content and services. In so doing we have avoided many
ICT4D pitfalls of which the RA / RI criteria warn.

V. REFERENCES

[1] Apache Software Foundation: Apache Solr, 2007.
Retrieved June 14, 2011 from Apache Software Foundation:
http://lucene.apache.org/solr/
[2] Bridges.org: Real Access / Real Impact Criteria |
bridges.org, 2005. Retrieved September 3, 2010 from
Bridges.org: http://www.bridges.org/Real_Access
[3] EllisLabs: ExpressionEngine – Publish Your Universe.
Retrieved June 14, 2011 from ExpressionEngine:
http://www.expressionengine.com
[4] Smartcape: About – Smartcape, 2010. Retrieved June 14,
2011 from Smartcape:
http://www.smartcape.org.za/about.html
[5] The Warehouse: Welcome to the warehouse. Retrieved
June 14, 2011 from The Warehouse:
http://warehouse.org.za
[6] Walton, M. 2010. Mobile literacies & South African
teens: Leisure reading, writing, and MXit chatting for teens
in Langa and Gugulethu. Research report prepared for the
Shuttleworth Foundation m4Lit project.
http://m4lit.files.wordpress.com/2010/03/m4lit_mobile_liter
acies_mwalton_20101.pdf

Fritz Meissner received his Computer Science

Honours degree in 2006 from UCT before working as

a software developer for three years. In 2010 he

began working towards his M.Sc., also at UCT. His

research interests include software design and the use of

technologies in the developing world.

