
A Mobile Scaffolding Application to Support Novice
Learners of Computer Programming

 Chao Mbogo
Computer Science Department

University of Cape Town
 chao.mbogo@uct.ac.za

Edwin Blake
Computer Science Department

University of Cape Town
 edwin@cs.uct.ac.za

Hussein Suleman
Computer Science Department

University of Cape Town
 hussein@cs.uct.ac.za

ABSTRACT
Support for novice learners of computer programming can be
provided by scaffolding the construction of programs. The
ubiquity of mobile phones allows us to support learners whenever
they wish to work on a program outside the classroom. This paper
describes the development of an application that scaffolds the
construction of programs on a mobile phone. The application was
designed based on a five-level scaffolding framework and
implemented on the Android platform.

The application scaffolds the construction of programs on a
mobile device by: (i) representing a program in parts; (ii)
restricting a learner to complete the program in a certain order;
(iii) enabling construction of a program one part at a time; (iv)
providing instructions, steps, default code to be edited, hints, and
error prompts where appropriate; and (v) fading the scaffolds as
the learner progresses from one successfully completed and
compiled program, to the next.

Experiments are currently ongoing to test and evaluate the mobile
application.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Education
– Computer-assisted instruction, Computer-managed Instruction,
Distance Learning.

General Terms
Design, Human Factors.

Keywords
Mobile Application, Novice Learners, Computer Programming,
Support, Scaffolding.

1 INTRODUCTION
Learning computer programming at undergraduate level has long
been challenging [3]. Research from a developing country points
to the importance of experimenting with new pedagogical
approaches to tackle these challenges [2].

Instructional scaffolding [6] is defined as “an adult controlling
those elements of the task that are essentially beyond the learner’s
capacity, thus permitting him to concentrate upon and complete
only those elements that are within his range of competence”.

The definition of scaffolding that this paper adopts is; “modifiable
support that enables a learner to fulfill a goal”. The goal for
learners is effective construction of programs since programming
is best learnt through doing.

The ubiquity of mobile devices provides an opportunity to use
them in supporting novice learners of programming. A recent
study indicates that programming directly on mobile devices is
quite potent and accessible for learners who are beginning to learn
programming [5].

This paper discusses a mobile scaffolding application that
supports the construction of Java programs. There are several
mobile Java IDEs available on the Google App store, such as
DeuterIDE. However the interfaces of these IDEs mimic a PC
IDE such as Eclipse and do not offer additional support that a
novice learner of programming may need such as; hints for
completing a program, or error prompts that indicate basic errors
at the point of constructing the program.

In contrast to these IDEs, this paper describes a mobile application
that scaffolds the construction of Java programs, while using
design guidelines that would assist in supporting a novice learner.
In addition, specific design guidelines have been implemented to
address the restrictive qualities of small screen sizes in mobile
phones.

The design goals of the mobile application are:

1. To support the construction of programs on a mobile device
using scaffolds.

2. To provide scaffolds that adapt to the learner’s level and if
disabled, can be enabled by the learner at will.

3. To address the qualities of mobile phones such as small
screen sizes.

To achieve these goals, the developed mobile application is
designed based on a five-level framework. The framework is
based on a theory-driven model [2] which has three main phases:
type of cognitive learning challenge; specific learning challenge;
and scaffolding guidelines. In addition to these three phases, two
other phases were added in order to accommodate: (i) a model for
categorizing the type of scaffolding to use; and (ii) scaffolding
strategies, which are specific types of implementation approaches
that can achieve scaffolding guidelines. The scaffolding strategies
were then implemented on a mobile application. Experiments are
currently being undertaken to test and evaluate the mobile
application.

The rest of the paper is organized as follows: Section 2 describes
scaffolding strategies; Section 3 describes the system
implementation by using a Java program example; and Section 4
concludes the paper.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
ICTD 2013, Dec 07-10 2013, Cape Town, South Africa
ACM 978-1-4503-1907-2/13/12.
http://dx.doi.org/10.1145/2517899.2517941

mailto:chao.mbogo@uct.ac.za
mailto:hussein@cs.uct.ac.za
http://dx.doi.org/10.1145/2517899.2517941

2 SCAFFOLDING STRATEGIES
The scaffolding strategies were arrived at after identification of
learner-cited cognitive learning challenges. These challenges were
then mapped to given scaffolding guidelines and types of
scaffolding. Table 1 shows how each scaffolding strategy fits into
the scaffolding framework. The table shows examples of learner
challenge as cited by findings from learners of programming.

To meet the design goals described in the previous section, the
system is based on the following scaffolding strategies:

1. Represent a program in parts.

2. Restrict a learner to complete a program in a certain order.

3. Enable construction of a program one part at a time.

4. Providing instructions, default code, steps, hints, examples,
and error prompts where appropriate.

5. Fading the scaffolds as the learner progresses from one
successfully completed and compiled program, to the next.

2.1 Represent a Program in Parts
To meet the first and third design goals, the main interface is
represented in five parts. These parts identify the five parts of a
Java program: header comments, imports, main class, method and
main method.

2.2 Restrict a Learner to Complete a
Program in a Certain Order

To support the construction of programs on a mobile device, a
learner is restricted to construct a program in a certain order. First,
the learner is required to complete the main class declaration. The
header comments are completed next where a learner is required
to give author’s name and describe the program. The learner can

then complete the main method, and thereafter complete the
methods and import parts if needed.

2.3 Enable Construction of a Program one
Part at a Time

To address the small screen sizes of mobile phones,
decomposition is used as a scaffolding strategy where only one
decomposed ‘chunk’ can be worked on a time, while being able to
relate to the whole part by viewing the full program. This relation
would keep the learner connected to the chunks, while at the same
time able to appreciate existence of the whole problem [1].
Therefore decomposition will also be used to reduce the
complexity of the learning process.

2.4 Providing Instructions, Default Code,
Steps, Hints, Examples, and Error
Prompts where Appropriate

Instructions and steps on how to interact with the application are
provided. These guide the learner on availability of menu options
and how to move from one part to another. Default code is
provided to reduce the cognitive load on the learner, and the
learner is able to edit this in completing part of a program. Hints
are part-specific and are based on standard coding guidelines on
how to complete the different parts of a Java program. Error
prompts are also part-specific and only pop up if a program part
has an error. Examples are viewable and are related to the part of
the program being completed, as opposed to examples that contain
a full program.

2.5 Fading the Scaffolds
To provide scaffolds that adapt to the progression of the learner,
certain scaffolds in the application fade. First-time instructions
and steps on how to complete one part at a time are provided only
in the first program. In the subsequent program, the learner is

Table 1: Table that shows how scaffolding strategies fit into a five-level framework

Type of
cognitive
challenge

Specific learning
challenge

Scaffolding
type

Scaffolding guideline Scaffolding strategy that can be
implemented on a Mobile Device

Sense Making The simple yet confusing
rules of programming

Supportive Use representation and language
that bridge learners’ understanding
of programming.

Provide default code that the learner can
edit

Sense Making It’s hard to join different
parts of code into one

Supportive/Intrinsic Organize the mobile strategy
around the semantics of the
programming language.

Represent a program in parts
Restrict a learner to complete a program
in a certain order

Sense Making Constructing logic from
programs is difficult

Reflective/ Intrinsic Structure task and functionality by
restricting a complex task by
setting proper boundaries for
learners.

Enable construction of a program one
part at a time.
Force the learner to complete ‘first level’
tasks before ‘unlocking’ ‘second level
tasks’ and so on

Sense Making Unclear error messages
when debugging.
Debugging is sometimes
frustrating.

Supportive Use representation and language
that bridge learners’ understanding
of programming.

Prompt the learner as soon as they make
a mistake in a piece of code instead of
having to wait till they compile the
program

Articulation and
Reflection

Lack of documentation
and practical examples

Reflective Embed expert guidance about
programming practices.

Provide examples that are relevant to the
program part being completed.

Process
Management

It takes too much time to
code programs
Finding ways to accom-
plish a task in the shortest
way possible

Supportive/Intrinsic

Organize the mobile strategy
around the semantics of the
programming language.

Represent a program in parts
Provide steps, default code and
instruction on completion of the program
while using the application

notified that the steps and instructions have been disabled and
they can enable them by selecting from a menu. After a learner
successfully completes three programs, the interface changes from
one which one part has to be completed at a time, to one which
any part can be completed. A learner is able to go back to the
basic interface if they wish to, by pressing on a related menu.

3 SYSTEM IMPLEMENTATION
A mobile application was developed for the Android platform
based on the design strategies described in the previous section.
The mobile application uses the Ideone API1 for compilation and
running of programs. This section will be explained using the Java
problem example below.

Problem: Write a program called ‘Testing’ that prints the
words ‘This works!’.

The application has two main screens: Main Interface and Code
Editor. The main interface is the entry point of the application and
the learner is presented with the interface as shown in Figure 1(a).
Any chunk with a plus sign is enabled, and on start the main class
is the only one enabled. Figure 1(b) shows the main class clicked
and steps are shown above, instructing the learner on what to do
next.

On clicking inside the expanded area of the main class, the learner
is taken to the code editing screen as shown in Figure 2 (a) where
the step instruction guides them on what to do. If the learner
completes the class name starting with a lower case, they get an
error prompt (Figure 2 (b)). This error prompt is an example of
how an error in the program gets highlighted to the learner before
compilation.

On successful creation of class name and on pressing the phone
back button, the main interface is displayed (Figure 3 (a)) and the
program is saved onto device (Figure 3(b)). The main class is
highlighted as green to indicate completion, and header comments
part is now activated as is now shown with a plus sign.

The header comment reveals the name of the program as created
after creation of the main class (Figure 4(a)). On pressing phone
menu and selecting to view full program, the learner is able to view
the full program as at that stage (Figure 4(b)). Figure 5(a) shows the
code editor when the learner selects to edit the header comment. On
getting back to the main interface, the header comment is updated
and main method part is now activated (Figure 5(b)).

 (a) main class enabled (b) main class clicked

Figure 1. Main Interface

1 http://ideone.com/api

 (a) editing class name (b) Error prompt

Figure 2. Code Editor

 (a) main class completed (b) file saved on device

Figure 3. Interface on successful creation of class declaration

 (a) on click of header (b) full program at this stage

Figure 4. Header and Full View

 (a) editing header (b) header completed

Figure 5. Header Edit

http://ideone.com/api

On pressing the main method button, default structure for main
method is revealed (Figure 6(a)), and on pressing inside this
expanded area the learner is shown some options to select (Figure
6 (b)). This problem requires display of output, hence the learner
can select the System.out.println() option. This takes them back to
the code editor (Figure 7(a)) and the learner can type what is
required within the brackets of System.out.println(). On pressing
the back button, the three completed section are all green as
shown in Figure 7(b).

The completed full program can now be viewed and seen as
complete (Figure 8(a)). On compilation, the output is shown in
Figure 8(b).

(a) main method selected (b) selection of option

Figure 6. Main Method

(a) edit output option (b) main method complete

Figure 7. Main Method Edit

(a) full program (b) compiled and run program

Figure 8. Completed Problem

4 CONCLUSION
A mobile application that scaffolds the construction of programs
on a mobile device has been developed. A five-level scaffolding
framework was used in order to implement the scaffolding
strategies. Scaffolding is provided in the form of: representation
of a program in parts; restriction of order of program completion;
completion of a program one part at a time; and provision of
instructions, steps, default code, hints and prompts. The
application provides fading of scaffolding that can be enabled and
disabled by the learner at will.

The application is currently under testing and evaluation with first
year learners of Java programming. Several issues that need to be
resolved as identified in early testing stages include; reduction of
textual information in the code editor, more pronounced
instructions on first use, usability of the code editor needs
improvement and it should be possible to load a saved program in
order to reuse it.

The hints, prompts and selection of options to use in program
have been positively received by the learners so far. Complete
results will be published in future papers.

Future work involves implementing user feedback into the first
prototype and iteratively testing with learners of programming.

5 ACKNOWLEDGMENTS
This study is funded by Hasso Plattner Institute and supported by
ICT for Development Laboratory at University of Cape Town.

6 REFERENCES
[1] Ackermann, E. Perspective-Taking and Object

Construction. In Kafai, Y., and Resnick, M., ed., In
Constuctionism in Practice: Designing, Thinking, and
Learning in a Digital World. Mahwah, New Jersey:
Lawrence Erlbaum Associates. , 1996.

[2] Apiola, M, Tedre, M, and Oroma, J.O. Improving
Programming Education in Tanzania: Teachers’ and
Students’ Perceptions. In 41st ASEE/IEEE Frontiers in
Education Conference (Rapid City SD 2011), Session F3G.

[3] Lahtinen, E.,AlaMutka, K.,Järvinen, H. A Study of the
Difficulties of Novice Programmers. In ITiCSE '05
Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education (
2005), 14 - 18.

[4] Quintana, C, Reiser, B, Davis, E.A, Krajcik, J. Fretz , E. A
Scaffolding Design Framework for Software to Support
Science Inquiry. Journal of the Learning Sciences, 13, 3
(November 2009), 337-386.

[5] Tillmann, N. Moskal, M., de Halleux, J., Fahndrich, M.,
Bishop,J., Samuel, A., Xie, T. The Future of Teaching
Programming is on Mobile Devices. In ITiCSE’12
Proceedings of the 17th ACM annual conference on
Innovation and technology in computer science education
(Haifa, Israel 2012), 156-161.

[6] Wood, D, Bruner, J. S, and Ross, G. The role of tutoring in
problem solving. Journal of Child Psychology & Psychiatry
& Allied Disciplines, 17(2) (1976), 89–100.0

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords

	1 INTRODUCTION
	2 SCAFFOLDING STRATEGIES
	2.1 Represent a Program in Parts
	2.2 Restrict a Learner to Complete a Program in a Certain Order
	2.3 Enable Construction of a Program one Part at a Time
	2.4 Providing Instructions, Default Code, Steps, Hints, Examples, and Error Prompts where Appropriate
	2.5 Fading the Scaffolds

	3 SYSTEM IMPLEMENTATION
	4 CONCLUSION
	5 ACKNOWLEDGMENTS
	6 References

