
1

Supporting the Construction of Programs
on a Mobile Device: A Scaffolding

Framework

Chao MBOGO1, Edwin BLAKE2 , Hussein SULEMAN3

1,2,3Department of Computer Science, University of Cape Town, South Africa
Email: chao.mbogo@uct.ac.za1, edwin@cs.uct.ac.za2, hussein@cs.uct.ac.za3

Abstract: Computer programming is a difficult subject for
most novice learners. Providing support that complements
classroom learning could contribute to tackling the
difficulties. Due to the ubiquity of mobile devices, such
support can be provided by scaffolding the construction of
programs on a mobile device. In order to design such a
mobile intervention, learners’ needs and limitations of
mobile devices need to be placed at the center of the design
process. This paper combines learners’ needs and
limitations of mobile devices to identify scaffolding
strategies. Identification of scaffolding strategies is based
on a scaffolding framework. Using specific examples, this
paper will then show how the scaffolding strategies have
been implemented on a mobile device.

Keywords: Computer Programming, Scaffolding, Mobile,
Framework

1. Introduction

Computer programming is a difficult subject for most novice learners. Research
indicates this to be a universal problem (Apiola et al., 2011) (Maleko et al.,
2012). This paper forms part of research that aims to contribute to tackling
challenges among novice learners of programming, especially in resource-
constrained environments.

Scaffolding refers to support provided so that the learner can engage in
activities that would otherwise be beyond their abilities (Jackson et al., 1998).
Providing such support, in addition to the learners’ classroom learning, could

mailto:chao.mbogo@uct.ac.za
mailto:edwin@cs.uct.ac.za
mailto:hussein@cs.uct.ac.za

2

contribute to tackling learning challenges. Supporting learners outside the
classroom recognizes that learning can take place at any place, in any situation.
Therefore, the aim is to make the most of the resources available to support
learning, by making their provision more flexible, open and responsive to the
needs of individual learners (Bentley, 2012).

The ubiquity of mobile phones provides an opportunity to use them as a
resource to support flexible learning beyond the classroom. Moreover, mobile
phones could be used to support learning in cases where a learner does not own
a personal computer while away from school, or is in a situation where using a
personal computer would be inconvenient. In addition, recent work by
Microsoft on TouchDevelop (Tillmann et al., 2012) indicates that a programing
environment that runs on a mobile device has the potential to dramatically
reduce the technical learning overhead.

In order to design such a mobile intervention, learners’ needs need to be
understood, which helps in informing the design of an intervention that seeks
to support them. In addition to addressing learners’ needs, designing such a
mobile intervention requires that the limitations of mobile devices be
addressed. This is because, in order for handheld devices to become effective
learning tools, the unique design challenges inherent in such a system must be
understood (Luchini et al., 2002). Significant research has been carried out to
propose guidelines for designing on mobile devices for learning (for example
(Luchini et al., 2004) (Churchill & Hedberg, 2008) (Elias, 2011)). This paper
will refer to some of these studies in order to address design issues for
supporting construction of programs on a mobile device.

Having identified learners’ needs and limitations of mobile devices, the
next task is to propose scaffolding strategies that could address them. To
achieve this, this study utilizes a 5-step scaffolding framework that culminates
in implementing the scaffolding strategies on a mobile device.

The rest of the paper is organized as follows: using 3 examples, section 2
reports on challenges and covers both learner-cited challenges and mobile
limitations; section 3 consolidates the learners’ needs and mobile limitations
within a scaffolding framework in order to identify scaffolding strategies, and
illustrates how these scaffolding strategies have been implemented on a mobile
device; and Section 4 concludes the paper.

2. Challenges

2.1 Learner-cited challenges
In order to understand the needs of programming learners, an online survey
was conducted among 160 learners of programming from three African
universities: University of Cape Town (UCT) (61 learners); University of
Western Cape (UWC) (37 learners); and Kenya Methodist University (KeMU)

3

(62 learners). The three universities were chosen because of their convenience
in terms of having established contacts. The survey was conducted by sending
an electronic questionnaire to the learners. The targeted learners were all from
computer related courses because programming is part of their curriculum.

76% of the total respondents indicated one challenge or the other that
they have faced or do face while learning programming. The learners were also
asked if they had used a mobile phone to construct programs, with 99% of the
learners indicating that they have not. For the sake of providing detailed
illustration, the 3 learner-cited challenges below are randomly selected from the
ones cited, and will be used as running examples for the rest of the paper.

i. Difficulty in combining required program parts into a working program and
hence making logic or sense out of a program is challenging. This challenge
is further supported by research pointing to two key problems preventing
success in programming among novice learners (Guzdial et al., 1998):
decomposition problem, where learners have difficulty choosing which of the
available program components are needed for a solution; and composition
problem, in which even when learners identify program components, they
have difficulty assembling the modules into a proposed solution.

ii. Unclear error messages while debugging. A study that looked at common
Java errors made by learners (Hristova et al., 2003) indicates that even
though compilers may flag some of the error messages while programming,
often the error messages are so cryptic to students that they have a hard
time understanding them.

iii. Small screens of mobile devices pose a challenge in using it as a resource to
learn programming. This limitation is described in the next subsection.

2.2 Mobile phone limitation
There are certainly several factors that have to be taken into consideration
when it comes to mobile devices since they present usability problems
(Kukulska-Hulme, 2005) (Kukulska-Hulme, 2007). However, to define the
scope of which mobile limitations to consider, this paper will look at screen size
(as pointed out by the learners) and the small keypad. Considering these
limitations is crucial because, in writing a program, a learner needs to see (on a
screen display) what they are constructing (through typing).

Small screen and keypad size
The key limitation of handheld technology for the delivery of learning objects is
the small screen that is available for effective display (Churchill & Hedberg,
2008). Research indicates that the following strategies could address the small
screen sizes of mobile phones while designing for learning:

i. Using activity decomposition to structure handheld tools (Luchini et al.,
2004) and package contents in small chunks (Elias, 2011).

4

ii. Design interface elements to serve a dual role by providing both
functionality and scaffolding (Luchini et al., 2004).

iii. Minimize scrolling as much as possible (Churchill & Hedberg, 2008).
Scrolling can be reduced by placing navigational features near the top of the
pages in a fixed place (Jones et al., 1999).

iv. Provide one step interaction, which can be achieved by immediate update
upon interacting with a widget or a button. (Churchill & Hedberg, 2008).

v. Design to include movable, collapsible, overlapping and semitransparent
interactive panels (Churchill & Hedberg, 2008).

vi. Use focus and content visualization technique. Users can view local
information they are interested in (focus) in details on a segment of the
screen, while other peripheral information (context) is shown in the
surrounding area with reduced granularity of detail (Adipat & Zhang, 2005).

The small keypad of mobile phones also presents a usability challenge.
While typing is needed to write a program, automating some tasks could
minimize the disadvantage of having to type on a small keypad. However, care
should be taken not to have an interface that is too automated such that
students complete the task by rote rather than mindfully engaging and learning
about the task (Luchini et al., 2004).

Mobile devices with touch screens have a soft keypad that pops up
when typing, hence covering up nearly half the screen. Minimizing scrolling by
use of a tabbed screen (such that users can scroll across and not downwards),
could reduce the amount of information that gets covered up by the soft
keypad. In addition, using activity decomposition such that smaller tasks are
presented on the screen could also mean that most, if not all of the task is
visible at the top half of the screen.

3. Scaffolding framework

Having identified learner challenges and mobile limitations, the next step is to
integrate them within a scaffolding framework. The scaffolding framework
comprises a 5-step framework that follows the following phases:
i. Step 1: Identify learner challenges.
ii. Step 2: Categorize each learner challenge into one of three types of

cognitive challenges (Quintana et al., 2009): Sense making, which involves
the basic operations of interpreting data; Process management, which
involves strategic decisions in controlling an inquiry process; and
Articulation and reflection, which is the process of constructing, evaluating
and articulating what has been learnt.

iii. Step 3: Identify what kind of scaffolding type the learner challenge may
need, from three types (Jackson et al., 1998): Supportive scaffolding, which
offers support for doing the task while the task itself remains

5

unchanged; Reflective scaffolding, which offers support for thinking about
the task; and Intrinsic scaffolding, which offers support that changes the
task itself and reduces complexity.

iv. Step 4: Identity the scaffolding guideline based on which the intended
tool can modify the task to help learners overcome obstacles. Seven
scaffolding guidelines exist (Quintana et al., 2009) and are redefined to
fit into this study towards a mobile strategy for supporting learners of
programming:
a. Guideline 1: Use representation and language that bridge learners’

understanding of programming.
b. Guideline 2: Organize the mobile strategy around the semantics of

the programming language.
c. Guideline 3: Use representations that learners can inspect in different

ways to reveal important properties about underlying data.
d. Guideline 4: Provide structure for complex tasks and functionality.
e. Guideline 5: Embed expert guidance about programming practices.
f. Guideline 6: Automatically handle routine tasks.
g. Guideline 7: Facilitate ongoing articulation and reflection during

program construction.
v. Step 5: In this step, specific scaffolding strategies are chosen to be

implemented on the mobile device in order to support construction of a
program.
The next subsections discuss how steps 2 to 5 can be applied to the 3

learner challenges, leading to the selection of specific scaffolding strategies as
possible solutions. The strategies identified are implemented on a mobile device
developed for the Android platform. Android has been selected for
development because it is open source. Java has been selected as the language
of program creation within the application. This is because it is the common
language taught across the 3 universities where the online survey was
conducted. In addition, most, if not all universities offer a first-year
programming course taught using Java.

3.1 Difficulty in connecting program parts into one
Step 2: Cognitive type
This learner challenge is one of sense making because it involves being able to
make sense out of a program and its constituent parts, while it is also one of
process management because it requires scaffolding strategies that can control the
learner’s inquiry process, that is construction of a program.
Step 3: Scaffolding type
A supportive scaffolding type can be provided to provide support while the
learner is attempting to make sense of the different parts and functionality of a

6

program. At the same time, an intrinsic scaffolding type can be provided to
reduce the complexity while creating the program.
Step 4: Scaffolding guideline
In order to support the learner in trying to make sense out of a program and its
constituent parts, using representation and language that bridge learners understanding,
and using representation that learners can inspect in different ways could be used as
scaffolding guidelines. In order to reduce complexity while the learner is
creating the program, providing structure for complex tasks and functionality could be
used as a scaffolding guideline. These three scaffolding guidelines can be met by
the scaffolding strategies described next, as possible solutions to support a learner
to connect the different parts of a program into one.
Step 5: Scaffolding strategies and implementation
3.1.1 Provide visual organizers in order to give access to functionality
This strategy can be implemented by providing a layout of the parts of a Java
program in order to give the learner an overview. The order of the parts in the
interface is guided by standard Java coding guidelines (Sun-Microsystems,
1997), where a Java source file has the following ordering: beginning
comments, package and import statements, and class and interface declarations.
Figure 1 shows the designed interface with program parts that can support the
kind of programs written in a beginner Java class.

 Figure 1. Main interface Figure 2. Restricted order Figure 3. Unrestricted order
3.1.2 Restrict a complex task by setting useful boundaries for learners
In order to provide structure for complex tasks and functionality, this strategy
can be implemented by restricting a learner to complete a program in a certain
order. For example, a learner can be guided to first complete the main class
because it is also used as the name of the program; then the header comment in
order to guide the learner to give the description of the program they are about
to write; then the main method as the entry point of the program; then they can
complete methods and import sections if needed.

Figure 1 shows only the main class activated when the program is
started, while Figure 2 shows the main class completed (in green) and the
header comment is activated. After completion of a certain number of
programs in this restricted order, a learner can be presented with an interface
where all the parts are enabled and the learner is able to complete the program
in any order (Figure 3). A similar technique has been used in a recent study of

7

scaffolding a programming course on a PC (Vihavainen et al., 2013), where
fading of a restrictive scaffold is realized by using open exercises that do not
enforce any specific program structure or approach.

While the learner can work with the interface in Figure 3, they are able
to go back to the restricted interface if they wish to. This allows for the scaffold
to fade but a learner can enable it by choice. This also provides structure to
complete the task using ordered decomposition (restricted) and unordered
decomposition (unrestricted) (Quintana et al., 2009).

3.1.3 Embed expert guidance to help learners use content
In order to bridge the learner’s understanding with standard coding structure,
or what they are learning in the classroom, some default code can be provided.
Figure 4 shows implementation of default code in creating the main class
declaration, which the learner can then edit (Figure 5). Figure 6 shows
implementation of default code in creating a method that the learner can then
edit (Figure 7). Additionally, the learner’s coding history can be saved and such
text can then be reused, as done in TouchDevelop (Tillmann et al., 2012).

Further, in order for the learner to be able to know which page they are
working on or which one to swipe to, the different pages of the application can
be labeled at the top as shown in figures 4 to 7.

 Figure 4. Main class Figure 5. Edit main class Figure 6. Method Figure 7. Edit method

3.2 Difficulty in debugging errors in programs
Step 2: Cognitive type
This learner challenge is one of process management because it requires scaffolding
strategies that can contribute to the learner’s inquiry process, that is, debugging
of a program. It is also one of articulation and reflection because it contributes to
thinking about and evaluating what has been constructed.
Step 3: Scaffolding type
An intrinsic scaffolding type can be provided as error prompts to reduce the
complexity while debugging the program. This also offers a reflective scaffolding
type that enables the learner to think about the program.
Step 4: Scaffolding guideline
In order to support process management, the intervention should embed expert
guidance about the scientific practice, in this case being Java coding guidelines. In

8

order to support articulation and reflection, the intervention should provide
ongoing articulation and reflection during completion of the program. These two
scaffolding guidelines can be met by the scaffolding strategies described next.
Step 5: Scaffolding strategies and implementation
3.2.1 Embed expert guidance to clarify characteristics of Java practices
While a novice learner constructs a program, they will inevitably make mistakes
that will lead to compile time or run time errors. While it is not possible to
predict all the types of mistakes that learners can make, this study will attempt
to address Java-syntax related errors. This is because learners indicated syntax
to be a difficulty in the subject, and another study indicated Java programming
syntax as among the top 5 difficulties while learning programming (Sivasakthi &
Rajendran, 2011).

Figure 8 shows creation of a main class, albeit using an incorrect syntax
of starting a Java class name in lower case. If the learner proceeds with this
class name creation, then an error message is displayed (Figure 9). If they
choose to not edit the class name, they can exit this window but no changes will
be made to the class name, hence it will be considered as not having been
created.

Figure 10 shows creation of a main method. Assume a learner
erroneously writes the return statement here, an error prompt will be displayed
indicating this error (Figure 11).

 Figure 8. Main class Figure 9. Prompt Figure 10.Main method Figure 11. Prompt

3.3 Small screen size and small keypad of a mobile device
Step 2: Cognitive type
This learner challenge is one of process management because it requires scaffolding
strategies that can support the learner’s inquiry process on a mobile device,
which has these limitations.
Step 3: Scaffolding type
A supportive scaffolding type can provide support while the learner is using the
small screen size and small keypad.
Step 4: Scaffolding guideline
In order to support the learner in using the mobile device with these
limitations, providing structure for complex tasks, and automatically handling non-salient
and routine tasks could be used as scaffolding guidelines. These two scaffolding

9

guidelines can be met by the scaffolding strategies described next, as possible
solutions to support use of mobile devices with small screen and keypad
limitations.
Step 5: Scaffolding strategies and implementation
3.3.1 Constrain the space of activities by using functional modes but

enable inspection of multiple views of the same object or data
A task can be scaffolded by enabling the program to be completed one part at a
time. Because of the restriction of small screen size, which will remain
unchanged, this scaffold is static and should not fade. Ability to work on a part
of the program at a time uses activity decomposition to package the small
chunks (Luchini et al., 2004) (Elias, 2011). This assists in working with the small
screen. Figures 8 and 10 show how working on one program part at a time
could assist in addressing the soft keypad taking up nearly half the screen, and
minimize scrolling. By placing the task to be edited near the top of the screen,
the soft keypad does not cover much of the task, if at all. In addition, Figures
12 and 13 also show use of navigation labels at the top of the screen as
recommended (Jones et al., 1999). Navigation tabs constrain the space of
activities by placing information in different segments that can be viewed by
scrolling across and not downwards.

However, for a learner to have a mental image of how the different parts
of the task work together, learners should be able to inspect the task they are
working on in multiple ways. In this case, while working on a program part (for
example editing the main method in figure 12 to add a call to the method out()),
a learner can swipe to the next tab and view the whole program (Figure 13) at
the state at which it was last saved. This ability to move between a program part
and the whole is one of diving-in and stepping out, and promotes cognitive
growth by keeping the learner connected to the chunks, while at the same time
able to appreciate existence of the whole problem (Ackermann, 1996). Ability
to view the whole program by swiping to the next tab enables focal and content
visualization (Adipat & Zhang, 2005).

 Figure 12. Editing main method Figure 13. Full program as was last saved

3.3.2 Automate non-salient portions of tasks
Because of provision of some default code (for example, Figure 4 and 6), the
learner is at least spared from typing from scratch using the small keypad.

10

However, the learner is still required to complete the program parts and hence
they need to mindfully engage and hence learn the task, as recommended
(Luchini et al., 2004). Further, the learner should be able to exit without
completing a program part, but a message indicating that the task has not been
changed could assist in making sure that a learner actually completes a task for
it to be created in the program (Figure 14).

Figure 14. Prompt for unchanged main class

3.4 Discussion
In summary, possible solutions to support a learner to connect different
program parts into one are: provide an overview of the program using standard
coding guidelines; restrict the order of completion of the program; enable
completion of the program in any order after a number of programs but allow
the learner to enable completion in a restricted order; and embed default code
as expert guidance.

Possible solutions to support a learner in debugging a program are:
prompt the learner of a syntax-error as soon as it occurs; and provide some
expert guidance in completion of program parts.

Possible solutions to address the small screen and small keypad are:
providing default code that minimizes typing; enable completion of the
program one part at a time while able to view the full program; and use
navigation tabs that allow scrolling across instead of downward.

4. Conclusion and future work
This paper has illustrated how a scaffolding framework has been used to select
scaffolding strategies to address learner challenges. A similar approach is
applied to all the other challenges that have not been presented. More
specifically, the paper has followed a learner-centered methodology where the
learners’ needs influenced the choice of scaffolding strategies. Also, the paper
illustrates how the scaffolding strategies have been implemented on a mobile
phone, considering its screen size and keypad limitations, to scaffold
construction of Java programs. Therefore, this paper has concretely shown a
theoretic derivation of scaffolding strategies, and consequently their
implementation on a mobile device.

The use of the scaffolding framework has resulted in the choice of
specific scaffolding strategies such as: providing a visual representation of a

11

Java program by showing an overview of the program parts; enabling
interaction with these parts using collapsible and expandable buttons and
clickable parts; providing some default code; providing one step navigation
ability between the pages; enabling completion of the program one part at a
time while being able to view the full program; and providing error prompts as
soon as a learner makes a mistake. These scaffolding strategies address the cited
learners’ needs and also limitations of mobile phones such as small screen size
and small and soft keypad.

Current and future work consists of testing the application with learners
of programming in different African universities. The evaluation of the results
from the experiments seeks to understand two issues: which of the theoretically
derived scaffolding strategies are appropriate, and which are inappropriate, to
support construction of programs on a mobile device; and how learners use the
scaffolds as they construct programs on a mobile device.

Acknowledgement

This work is supported by the Hasso Plattner Institute, and the ICT for
Development laboratory at University of Cape Town.

References

Ackermann, E., 1996. Perspective-Taking and Object Construction. In Y..a.R.M.

Kafai, ed. In Constuctionism in Practice: Designing, Thinking, and Learning in a

Digital World. Mahwah, New Jersey: Lawrence Erlbaum Associates. pp.Part 1,

Chap.2.

Adipat, B. & Zhang, D., 2005. Interface Design for Mobile Applications. In

Proceedings of the Eleventh Americas Conference on Information Systems., 2005.

Apiola, M., Tedre, M. & Oroma, J.O., 2011. Improving Programming Education in

Tanzania: Teachers' and Students' Perceptions. In Proceedings 41st ASEE/IEEE

Frontiers in Education Conference., 2011.

Bentley, T., 2012. Learning Beyond the Classroom. Taylor & Francis.

Churchill, D. & Hedberg, J., 2008. Learning object design considerations for small-

screen handheld devices. Computers and Education , 50, pp.881-93.

Elias, T., 2011. Universal instructional design principles for mobile learning. The

International Review of Research in Open and Distance Learning , 12(2), pp.143-

56.

Guzdial, M. et al., 1998. upporting Programming and Learning-to-Program with an

Integrated CAD and Scaffolding Workbench. Interactive Learning Environments,

6(1-2), pp.143-79.

12

Hristova, M., Misra, A., Rutter, M. & Mercuri, R., 2003. Identifying and correcting

Java programming errors for introductory computer science students. In SIGCSE

'03 Proceedings of the 34th SIGCSE technical symposium on Computer science

education., 2003.

Jackson, S., Krajcik, J. & Soloway, E., 1998. The design of guided learner-

adaptable scaffolding in interactive learning environments. In CHI '98 Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. Los Angeles,

CA USA, 1998.

Jones, M. et al., 1999. Improving Web interaction on small displays. Computer

Networks, 31(11), pp.1129-37.

Kukulska-Hulme, A., 2005. Mobile usability and user experience. In A. Kukulska-

Hulme & J. Traxler, eds. Mobile Learning. Taylor & Francis. p.47.

Kukulska-Hulme, A., 2007. Mobile Usability in Educational Contexts: What have

we learnt? International Review of Research in Open and Distance Learning, 8(2).

Luchini, K. et al., 2002. Scaffolding in the small: designing educational supports

for concept mapping on handheld computers. In CHI'02 Extended Abstracts on

Human Factors in Computing Systems., 2002.

Luchini, K., Quintana, C. & Soloway, E., 2004. Design Guidelines for Learner-

Centered Handheld Tools. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI '04). New York, 2004.

Maleko, M., Hamilton, M. & D'Souza, D., 2012. Novices' perceptions and

experiences of a mobile social learning environment for learning of programming.

In ITiCSE '12 Proceedings of the 17th ACM annual conference on Innovation and

technology in computer science education., 2012.

Quintana, C. et al., 2009. A Scaffolding Design Framework for Software to

Support Science Inquiry. Journal of the Learning Sciences, 13(3), pp.337-86.

Sivasakthi, M. & Rajendran, R., 2011. Learning difficulties of ‘object-oriented

programming paradigm using Java’: students’ perspective. Indian Journal of

Science and Technology, 4(8), pp.983-85.

Sun-Microsystems, 1997. Code Conventions for the Java Programming Language.

[Online] Available at: http://www.oracle.com/technetwork/java/codeconventions-

150003.pdf [Accessed 19 November 2013].

Tillmann, N. et al., 2012. The Future of Teaching Programming is on Mobile

Devices. In ITiCSE’12 Proceedings of the 17th ACM annual conference on

Innovation and technology in computer science education. Haifa, Israel, 2012.

Vihavainen, A., Vikberg, T., Luukkainen, M. & Pärtel, M., 2013. Scaffolding

students' learning using test my code. In Proceedings of the 18th ACM conference

on Innovation and technology in computer science education., 2013.

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

