
 Design and Use of Static Scaffolding Techniques to
Support Java Programming on a Mobile Phone
Chao Mbogo

Department of Computer Science
Kenya Methodist University

Nairobi, Kenya
chaombogho@gmail.com

Edwin Blake
Department of Computer Science

University of Cape Town
Cape Town, South Africa

edwin@cs.uct.ac.za

Hussein Suleman
Department of Computer Science

University of Cape Town
Cape Town, South Africa

hussein@cs.uct.ac.za

ABSTRACT

Most learners in resource-constrained environments own mobile
phones that they could use to learn programming while outside the
classroom. However, limitations of mobile phones, such as small
screens and small keypads, impede their use as typical
programming environments. This study proposed that
programming environments on mobile phones could include
scaffolding techniques specifically designed for mobile phones,
and designed based on learners’ needs. Scaffolding should be
designed with some essential techniques that are mandatory for
learners to use. Hence, one type of scaffolding technique that was
designed to support programming on the mobile phone is static
scaffolding that does not fade. Experiments were conducted with
64 learners of programming from three universities in Kenya and
South Africa in order to investigate how they used the designed
static scaffolding techniques to construct Java programs on a
mobile phone. The results show that programming on mobile
phones can be supported by providing scaffolding techniques that
never fade, in order to address the limitations of mobile phones and
to meet learners’ needs.

Keywords
Mobile phone; Java; Programming; Static Scaffolding.

1. INTRODUCTION
The learning difficulties encountered in computer programming
[23], especially by novice learners, indicate that some
programming skills are beyond the novice learners’ efforts.
Scaffolding refers to support provided so that learners can engage
in activities that would otherwise be beyond their unassisted efforts
[24]. In order to contribute towards tackling learning difficulties in
programming, novice learners can be supported to learn
programming while they are outside the classroom. This makes any
such support additional to the learner’s classroom learning, and not
a replacement.

Support to learners outside the classroom can be provided using
PC-based applications. However, in many developing countries,
people are much more likely to use computers at school or at work
than to own them at home. For example, a survey conducted in
Ghana and Kenya to investigate the ownership of information and
communication technologies at home showed that only 10% of
respondents in Ghana and 5% in Kenya have a computer at home
[2]. The limited access to PCs outside the classroom aggravates the
learning difficulties in the subject.

The ubiquity of mobile devices provides an opportunity to use
them as a resource to support learning of programming beyond the

classroom. Mobile devices include laptops, tablets and mobile
phones. Of these, mobile phones are the most widely used mobile
devices among learners in developing countries [11]. Therefore, the
mobile phone was selected as the resource that can be used for
construction of programs outside the classroom. However,
limitations of mobile phones, such as a small screen size and a small
keypad, impede their use as typical programming environments. To
deal with these limitations, and for handheld devices to become
effective learning tools, the unique design challenges inherent in
such a system must be understood [14]. In addition to addressing
limitations of mobile phones, the challenges faced by learners of
programming should be considered. This is because addressing
these challenges maximizes the potential of meeting learners’
needs. Consequently, this study proposed that programming
environments on mobile phones could include scaffolding
techniques that are specifically designed for mobile phones, and
designed based on learners’ needs.

One design recommendation is that scaffolding should be
designed with some essential character that provides mandatory
scaffolding to support learners [18]. For example, essential
scaffolding was implemented in the design of a PC-based
environment that provided a process wheel, which is a process map
that visually described the space of possible science inquiry
activities that learners could select from [17]. The design of such
scaffolding that does not fade was encouraged because such
scaffolds help to focus learners’ attention and also ensure that a
consistent, basic level of support is provided for every learner [20].
In this study, such scaffolds that do not fade are termed as static
scaffolding.

Static scaffolding was designed as one of three types of
scaffolding techniques to support Java programming on a mobile
phone. The other two are: (i) automatic scaffolding that is
automatically provided but fades with time or can be cancelled by
the user; (ii) user-enabled scaffolding that is not automatically
provided and the learner has to initiate its use. This paper focuses
on static scaffolding. To implement the scaffolding techniques, an
Android prototype was developed that supports the construction of
Java programs on a mobile phone [15]. Android was selected as the
platform of implementation because it is open source. Java was
selected as the language for construction of programs because it
was the common language taught across the institutions that
participated in the study.

1.1 Designed Static Scaffolding Techniques
Static scaffolding techniques were designed using a theoretical
scaffolding framework [16] that provides two strategies to support
their design: (i) providing visual organizers in order to give access
to functionality; and (ii) constraining the space of activities by
using functional modes and by using ordered or unordered
decomposition.

Providing visual organizers in order to give access to
functionality was implemented by designing a program layout of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ITiCSE '16, July 09-13, 2016, Arequipa, Peru
© 2016 ACM. ISBN 978-1-4503-4231-5/16/07…$15.00
DOI: http://dx.doi.org/10.1145/2899415.2899456

mailto:chaombogho@gmail.com
mailto:edwin@cs.uct.ac.za
mailto:hussein@cs.uct.ac.za

the parts of a Java program. The order of the program layout was
guided by standard Java coding guidelines [9], where a Java source
file has the following ordering: beginning comments, package and
import statements, and class and interface declarations. Figure 1
shows the designed main interface with parts of a Java program.
This layout uses clickable buttons that provide: (i) collapsible and
expandable views such as in Figure 1, where the main class button
has been clicked to reveal some default code within the expanded
area; and (ii) access to create individual parts of the program by
clicking inside the expanded area. Such a collapsible and
expandable interface was recommended for small screens [3].

Constraining the space of activities by using functional modes
and decomposition was implemented by enabling construction of a
program one part at a time. In the main interface (Figure 1) the
learner clicks on the button that relates to the part they need to work
on. Figure 1 shows only the main class as enabled and can be
constructed at this stage. Until the learner correctly creates the main
class the other parts of the program remain disabled. Thereafter, the
learner is guided to create the header comments part then the main
method part and so on. The program layout is retained even when
learners progress to an advanced interface, where the order of
program creation is not restricted. Thus, the program layout is a
static scaffolding technique since it does not change or fade away
with time.

On clicking each program part on the main interface another
interface is opened with an editor that provides creation of only the
selected program part. For example, Figure 2 shows creation of
only the main method. The ability to work on one part of the
program at a time could assist in working with the small screen.
Because of the restriction of a small screen size, which remains
unchanged, this scaffold is static and does not fade. Further, Figure
2 shows how working on a program one part at a time could assist
in addressing the soft keypad on smartphones that takes up nearly
half the screen.

For a learner to have a mental image of how the different parts
of the program work together, learners should be able to inspect the
task they are working on in multiple ways. In this case, while
working on a program part (for example, while editing the main
method in Figure 2), a learner could swipe to the full program
interface and view the whole program at the state at which it was
last saved (Figure 3). This ability to move between a program part
and the whole promotes cognitive growth by keeping the learner
connected to the program parts, while at the same time being able
to appreciate existence of the whole problem [1].

To compile the program at any time, the learner presses the
button at the top right corner of Figure 1 and the full program is
sent to the ideone online compiler and debugging tool [8]. The
results and output are sent back to the mobile interface.

To evaluate the use of the static scaffolding techniques, an
empirical evaluation was conducted where 64 learners from three
universities in Kenya and South Africa attempted Java
programming tasks using the application. Data was collected using
computer logs and questionnaires.

 The contribution of this study is fourfold: (i) an illustration of
static scaffolding techniques that do not fade; (ii) how the static
scaffolding techniques support the construction of Java programs
on a mobile phone; (iii) feedback from learners on the use of static
scaffolding techniques; and (iv) implications of the study.

2. RELATED WORK
Studies on supporting the learning of programing stress the
importance of learning programming by doing, which is in line with
the constructivist theory. Learning programing by doing requires
access to computing resources such as PCs and laptops. Indeed,
several studies have offered scaffolded environments on PC
platforms targeting novice learners of programming, for example,
3D environments such as Alice [4], and teacher-learner assessment
environments such as Test My Code [22]. However, most learners
at institutions in parts of Africa are in resource-constrained
environments where they have limited access to such resources,
especially while they are outside the classroom. Even within the
institutions, some schools have a limited number of desktop
computers that could be shared among learners. For example, even
in a relatively well-resourced developing country like South Africa,
it is not uncommon for a school of 1,000 learners to have only one
computer room with 30 PCs [20]. In fact, poor infrastructure and
facilities is one of the major challenges faced by higher education
in Africa [25]. This study was motivated by the resource constraints
in a developing country’s context.

The ubiquity and availability of mobile phones provides an
opportunity to use them to support learning of programming
outside the classroom. A study conducted in Kenya showed that
most of the respondents studying for university degrees or higher
own mobile phones [7]. However, mobile phones pose some
limitations. The key limitation of handheld technology for the
delivery of learning objects is the small screen that is available [3].

Figure 1. Main interface showing
program overview with only the main

class parts activated

Figure 2. Editor interface
showing construction of only the

main method

Figure 3. Full program as was last
saved

One recommendation for designing scaffolds is by using
activity decomposition that develops separate workspaces for each
component task [13] to package contents in small program parts
[5]. Such design recommendations were considered while
designing the static scaffolding techniques discussed in this paper.

There are existing mobile programming environments that can
be used by novice learners. Some, such as SAND IDE, can be used
to create standard programs. However, mobile programming
environments such as SAND IDE mostly mimic PC IDEs and do
not address the limitations of mobile phones. A study by Microsoft
enables development of applications using a new language -
TouchDevelop - on the TouchDevelop programming environment
where much of the code is created by tapping through menus [19].
TouchDevelop is a specialized language that was designed for a
visual programming environment that creates mobile applications.
In contrast, this study does not develop a specialized language.
Further, it was not the aim of this study to support the creation of
mobile applications, but to support the creation of standard
programs that would typically be created in an introduction to
programming class.

3. STUDY METHODOLOGY
3.1 Participants and Experiments
Table 1 shows the distribution of 64 learners of programming from
one university in South Africa (University of Western Cape
(UWC)) and two universities in Kenya (Jomo Kenyatta University
of Agriculture and Technology (JKUAT) and Kenya Methodist
University (KeMU)) who participated in two experiments.
Participation in the experiments was voluntary. Experiment one
was conducted with a group of learners different from the ones in
Experiment two. Despite the geographical and background
differences between South Africa and Kenya, all learners were
taking an introductory course in programming using Java. The
learners who took part in this study used desktop IDEs in their
classroom learning. However, during the experiments they only
used the mobile programming interface.

Each group of learners from each university took part in 2-hour
experiment sessions. Each experiment session involved an
introduction to the purpose of the research with learners signing
consent forms, learners tackling the programming tasks, and
completion of a post-experiment questionnaire. Learners who did
not own Android phones were issued with such phones with the
application pre-installed. The phones issued were the Samsung
Galaxy Pocket S5300 phones that run Android version 2.3. The
Samsung Galaxy Pocket has a display size of 2.8 inches.

3.2 Programming Tasks
The teachers were asked for a set of Java exercises relating to
introductory topics that they had already taught in the course. Three
sets of programming tasks were used during the two experiments:
one set of questions for UWC in Experiment one; one set of
questions for JKUAT in Experiment one; and one consolidated set
of exercises for both KeMU and JKUAT in Experiment two. In the
first Experiment, the exercises were obtained from the different
teachers of the courses in their respective institutions. In the second
Experiment, the teachers from both KeMU and JKUAT had taught
similar topics in introduction to Java programming. Therefore, the
exercises from the respective teachers were combined into one set.
At the time of conducting the two experiments, all the teachers had
covered the topics of Java syntax, input-output, loops, methods, and
classes. The programming tasks attempted by learners in
Experiment one are shown in Figure 4. The programming tasks
attempted by learners in Experiment two are shown in Figure 5.

Table 1. Distribution of learners in two experiments

Experiment Institution Number of
learners

One UWC 14
JKUAT 13

Two KeMU 13
JKUAT 24

Programming Task for UWC group in Experiment One

1. Write a program that calculates the total cost of an item that
is R159.72 and incurs a VAT of 14%.
2. Write a program that uses a for-loop to calculate the sum of
the numbers from 1 to 50 and displays the sum and average.
3. Write a program that uses a method name() to print out your
name.
4. Write a program that uses the Scanner input to ask for the
user’s name and age, and prints

“Hello “ + name “ your age is “+ age;
5. Write a program that uses a method input() to ask for height
and width of a rectangle, and calculates and display the area
using height x width.
6. Write a program that determines if a number that is input by
a user is odd or even.
Programming Task for JKUAT group in Experiment One

1. Write a program that outputs ‘Scaffolding at JKUAT’.
2. Write a program that computes the sum and average of the
number 1-20.
3. Write a program that captures and displays the ages of two
students.
4. Write a program that uses a method to capture two integers
and outputs their sum.
5. Write a program that initialises default values of name and
age in a constructor and outputs these in a main class.

Figure 4. Programming tasks attempted by learners in
Experiment one at UWC and JKUAT

1. Write a program that initialises x to 10 and prints out its
double value. Save this program as XValue.java
2. Using a for-loop print the first 10 natural numbers. Save this
program as Natural.java
3. Write a program that accepts input from the user and displays
this as

“Your input is “ + input. Save this program as Natural.java
4. Write a program that uses a method input() to capture and
display the names of two students. Save this program as
MethSt.java
5. Write a program that creates two classes. The second class
contains the constructor below. Access this constructor from the
main class

Output() { System.out.println (“Constructor called”); }
6. Write a program that uses a for-loop within a method avg() to
calculate the sum of the numbers 20-100 and displays the sum.
Call this method from the main method.

Figure 5. Programming tasks attempted by learners in
Experiment two

3.3 Data Collection
Google Analytics was used to collect logs of the learners’
interaction with the application. At the end of the experiments the
learners filled an online questionnaire that consisted of two parts:
(i) demography; and (ii) reflections and perceptions on scaffolding
techniques.

4. Evaluation
The CIAO model [10] and the micro and meso levels of the M3
evaluation framework [21] have outlined that while evaluating
educational technology one should consider data about learners’
interaction with the software and learners’ attitudes and outcomes.
Thus, in order to investigate the use of static scaffolding techniques,
three criteria were considered: (i) task success; (ii) the use of the
static scaffolding techniques to construct programs; and (iii)
qualitative feedback from the learners.

4.1 Task Success
Each program was examined for the extent to which it was
completed. A complete program is one that met all three criteria: (i)
had all the required program parts completed; (ii) successfully
compiled after completion of the required parts; and (iii) produced
the required output. Four metrics measured task success: (i) which
tasks were attempted; (ii) which tasks were not attempted; (iii)
which tasks were incomplete; and (iv) which tasks were completed.
Incomplete tasks are tasks that failed to meet at least one of the
criteria for completeness. Attempted tasks are the combination of
incomplete and completed tasks. Some tasks were not attempted.

4.2 Use of Static Scaffolding Techniques
Three metrics measured the use of static scaffolding techniques: (i)
use of static scaffolding techniques in incomplete and complete
programs; (ii) progression of use of static scaffolding techniques
from one task to the next; and (iii) learners’ characteristics while
using the static scaffolding techniques.

4.3 Qualitative Feedback
Qualitative feedback was collected using self-reported data by
learners reflectively indicating their perceptions on the use of static
scaffolding to support construction of programs on a mobile phone.

5. Results and Discussion
This section presents results and discussion on the use of static
scaffolding techniques, some characteristics displayed by learners
while using the static scaffolding techniques, and representative
learners’ feedback. In the graphs, UWC-1 means the first
experiment at UWC, KeMU-2 means the second experiment at
KeMU, and so on.

5.1 Use of Static Scaffolding Techniques
Static scaffolding was provided using two techniques: (i) a program
overview that also offered restricted program creation in the basic
main interface; and (ii) editing of a program one part at a time while
able to view the full program. Figure 6 shows a comparison of the
use of static scaffolding techniques in complete and incomplete
programs across the four experiment sessions in the first and second
experiments. The average use per learner refers to the average
number of times that each learner accesses the interfaces that
provide each of the two static scaffolding techniques. Figure 6
shows that there was variation in use of the static scaffolding across
the experiments. For example, in the first experiments at UWC and
JKUAT, learners who completed programs edited the program
parts more than the learners who did not complete programs.
Whereas in the second experiment at KeMU, learners who did not
complete programs edited the program parts more than the learners
who completed programs. This variation in use could be because
learners had to interact with the static scaffolds to construct the
programs, whether or not they completed the programs
successfully. In all the cases learners spent more time on average
on the program overview than on editing the parts of a program.
This could be because the program overview interface is the entry

point to all the program parts and a learner had to go back to this
interface in order to access each program part. Conversely, the
editing interface involved working on just one program part a time.

Additional analysis was conducted on the use of static
scaffolding across the different tasks. The results from the second
experiment at JKUAT are used to illustrate this because it is the
group where the most number of tasks were attempted and
completed (Table 2 shows the number of learners who attempted
and completed each task at JKUAT in the second experiment).
Figure 7 shows the progression of use of static scaffolding from the
first program to the sixth program. Learners used the static
scaffolding nearly two times less in the second program than in the
first; meaning that learners spent less time both on the main
interface and working on the program parts in the second program
than in the first. The reduced use of the static scaffolding in the
second program could be due to learners having familiarized
themselves with the interface. Figure 7 also indicates that the static
scaffolding was mostly used in the first program than in subsequent
programs for both incomplete and complete programs. Some of the
programs that were completed in the fourth task were constructed
at the advanced interface. This explains the increased use of static
scaffolding since learners encountered this interface for the first
time. Further, all the tasks that were completed in the sixth program
were completed within the advanced interface. These tasks required
the construction of a method in addition to the main class, header
and main method. This explains the increased use of static scaffolds
at the sixth program. These results indicate that, indeed, learners
were able to attempt and complete programming tasks using the
static scaffolding techniques, which had to be used for all programs.

5.2 Learners’ characteristics while using
static scaffolding techniques
Further comparison of the use of static scaffolding with the use of
automatic scaffolding (such as instructions and prompts for
examples) and user-initiated scaffolding (such as hints on program
parts) revealed that learners found static scaffolding alone
sufficient to construct programs. Three examples will be used to
illustrate this.
 While creating a program part for the first time, some learners
repeatedly went back to the editor on the same program part, before
proceeding to the next one. For example, 7 learners in the first
experiment at UWC exhibited this characteristic. In contrast, there
were learners who initially worked on each program part just once
or made at most two attempts before proceeding to the next
program part. The common characteristic among such learners is
that they mostly used only the static scaffolding techniques with
partial use of some of the provided automatic scaffolding and very
little use of the user-enabled scaffolding. This is evidence that the
static scaffolding techniques are sufficient to support construction
of programs on a mobile phone, even when the learners do not use
scaffolding that they can choose (user-enabled) or that which fades.

Table 2. Number of learners who attempted and

completed tasks at JKUAT in the second Experiment
 Attempted Completed
Task 1 24 18
Task 2 19 17
Task 3 20 12
Task 4 12 7
Task 5 6 3
Task 6 5 3

Figure 6. Comparison of use of static scaffolding techniques between incomplete and complete programs at UWC, KeMU and

JKUAT in Experiments one and two

Figure 7. Progression of use of static scaffolding techniques in incomplete and complete programs at JKUAT Experiment two

 Another illustration is when a learner was working on a
program, where a suggestion to view a related example was
provided (an option that a learner could accept or reject). These
were automatic scaffolds. It was observed that several learners
opted not to view these examples. For example, of the 24 learners
in the second experiment at JKUAT, 18 rejected the use of one
scaffolding technique or another, with 11 learners rejecting a
suggestion to view an example. This suggests that learners may not
have required extra support such as viewing of examples, but found
it sufficient to use only the static scaffolding to create programs.
 Further evidence that static scaffolding supports construction
of programs on a mobile phone was observed by how learners
edited programs after they encountered run-time errors. After
learners encountered run-time errors, they were able to go directly
to the part of the program that contained the erroneous code by
easily accessing it through the program layout at the main interface.

5.3 Learners’ feedback on the use of static
scaffolding techniques
Learners found the two static scaffolding techniques useful as
evidenced by the representative verbatim feedback: ‘The
application divides the program or code into sections then one can
then track and write the code properly by following the sections.’
‘The sections are well laid out.’ ‘The separate segments of program
are useful.’ ‘How the codes are divided into chunks making the

application easier to use.’ ‘The chunks made it easier to construct
the program.’

The learners’ representative positive feedback further indicates
their usefulness in supporting programming on a mobile phone.

6. Conclusion
This study has presented two static scaffolding techniques: (i) a
program layout at the main interface; and (ii) editing of a program
one part at a time while able to view the full program. The results
show that the program layout and constructing a program one part
at a time enabled effective support and guidance towards correct
creation of programs. Further, learners’ verbatim feedback indicate
that they found these static scaffolding techniques useful.

Desktop IDEs provide complex environments where a large
amount of information is exposed to the learner at the same time,
because this is possible on such large screens. This also means that
it is possible to provide support to the learner all in one place
without the learner having to leave the screen. However, providing
all the functionality in one place does not work well on small
screens. One technique that was used in this study to address the
small screen is the static scaffolding technique of completing a
program one part at a time. This way, the learner is able to focus on
only the small part and correctly create it, hence learn it, before
learning the next small part. This study has given an indication that
the benefits of a static scaffolding technique such as completing a
program one part at a time may not have been achieved if such as
scaffolding technique was optional.

0 2 4 6 8 10 12 14 16 18

completed
incomplete
completed

incomplete
completed

incomplete
completed

incomplete

U
W

C
-1

JK
U

A
T-

1
K

eM U
-2

JK
U

A
T-

2
Average use per learner

editing program one part at a time program overview

0 2 4 6 8 10 12 14 16 18 20

completed

completed

completed

completed

completed

completed

Ta
sk 1

Ta
sk 2

Ta
sk 3

Ta
sk 4

Ta
sk 5

Ta
sk 6

Average use per learner

editing program one part at a time program overview

One of the main criticisms of the constructivist approach is that
learners are expected to construct new knowledge with minimal
guidance [12]. This criticism was discussed by Guzdial [6], where
he posed the question: how then should programming be taught
considering that the emphasis has been to learn programming by
constructing programs? This study provides one possible answer.

The static scaffolding techniques designed in this study provide
strong guides by ensuring that there is always support available that
address the limitations of mobile phones and learners’ needs. Thus,
one possible answer to Guzdial’s question is: learning
programming on such small devices can be supported by providing
some static scaffolding techniques that are always present. In
addition, in resource-constrained environments where it may not be
possible to easily acquire new desktops for learners that they could
use outside the classroom, the solution could be to use the devices
that the learners already have and design applications that consider
both the limitations of the available devices and learners’ needs.
This study has shown that this is possible.

Future work from this study will include several aspects: (i) use
of the scaffolding techniques to attempt more complex and larger
programs than the ones presented in this paper, such as programs
with multiple methods, controlled loops, or inheritance; (ii) the
limitations of the interface encountered when tackling more
complex and larger programs and if and how these might influence
the design of additional scaffolding techniques; (iii) a comparative
study with a desktop programming environment (with and without
scaffolding); (iv) a study involving pre-test and post-test analysis
in order to test if learners gained programming skills; and (v) a
longitudinal study where learners use the static scaffolding over an
extended period of time.

7. Acknowledgements
We thank the learners, teachers and institutions that participated in
this study. We thank the Kenya Education Network (KENET) and
Kenya Methodist University for travel grants to attend the
conference.

REFERENCES
[1] Ackermann, E.K. 1996. Perspective-Taking and object

Construction. Constuctionism in Practice: Designing,
Thinking, and Learning in a Digital World. 25–37.

[2] Bowen, H. and Goldstein, P. 2010. Radio , Mobile Phones
Stand Out in Africa ’ s Media Communication Landscape.

[3] Churchill, D. and Hedberg, J. 2008. Learning object design
considerations for small-screen handheld devices. Computers
& Education. 50, 3 (Apr. 2008), 881–893.

[4] Dann, W.P. et al. 2011. Learning to Program with Alice.
(Mar. 2011).

[5] Elias, T. 2011. Universal instructional design principles for
mobile learning. The International Review of Research in
Open and Distributed Learning.

[6] Guzdial, M. 2015. What’s the best way to teach computer
science to beginners? Communications of the ACM. 58, 2
(Jan. 2015), 12–13.

[7] Hannah, B. 2010. Information at the Grassroots: Analyzing
the media use and communication habits of Kenyans to
support effective development.

[8] Ideone TM API: 2010. .
[9] Java Code Conventions: 1997.

http://www.oracle.com/technetwork/java/codeconventions-
150003.pdf. Accessed: 2015-01-19.

[10] Jones et al. 1999. Contexts for evaluating educational
software. Interacting with Computers. 11, 5 (May 1999), 499–

516.
[11] Kafyulilo, A. 2012. Access, use and perceptions of teachers

and students towards mobile phones as a tool for teaching and
learning in Tanzania. Education and Information
Technologies. 19, 1 (Jul. 2012), 115–127.

[12] Kirschner, P.A. et al. 2006. Why Minimal Guidance During
Instruction Does Not Work: An Analysis of the Failure of
Constructivist, Discovery, Problem-Based, Experiential, and
Inquiry-Based Teaching. Educational Psychologist. 41, 2
(Jun. 2006), 75–86.

[13] Luchini, K. et al. 2004. Design guidelines for learner-
centered handheld tools. Proceedings of the 2004 conference
on Human factors in computing systems - CHI ’04 (New
York, New York, USA, Apr. 2004), 135–142.

[14] Luchini, K. et al. 2002. Supporting learning in context:
extending learner-centered design to the development of
handheld educational software. Proceedings. IEEE
International Workshop on Wireless and Mobile Technologies
in Education (2002), 107–111.

[15] Mbogo, C. et al. 2013. A mobile scaffolding application to
support novice learners of computer programming.
Proceedings of the Sixth International Conference on
Information and Communications Technologies and
Development Notes - ICTD ’13 - volume 2 (Cape Town, Dec.
2013), 84–87.

[16] Mbogo, C. et al. 2014. Initial Evaluation of a Mobile
Scaffolding Application that seeks to Support Novice
Learners of Programming. To appear in Proceeding of Mobile
Learning 2014 Conference (Madrid, Spain, 2014).

[17] Quintana, C. et al. 2002. A Case Study to Distill Structural
Scaffolding Guidelines for Scaffolded Software
Environments. Proceedings of the SIGCHI conference on
Human factors in computing systems Changing our world,
changing ourselves - CHI ’02 (New York, New York, USA,
Apr. 2002), 81.

[18] Quintana, C. et al. 2002. Scaffolding Design Guidelines for
Learner-Centered Software Environments. (Mar. 2002).

[19] Tillmann, N. et al. 2011. TouchDevelop. Proceedings of the
10th SIGPLAN symposium on New ideas, new paradigms, and
reflections on programming and software - ONWARD ’11
(New York, New York, USA, Oct. 2011), 49.

[20] Traxler, J. and Vosloo, S. 2014. Introduction: The prospects
for mobile learning. PROSPECTS. 44, 1 (Apr. 2014), 13–28.

[21] Vavoula, G. and Sharples, M. 2009. Meeting the Challenges
in Evaluating Mobile Learning: A 3-level Evaluation
Framework. International Journal of Mobile and Blended
Learning. 1, 2 (2009), 54–75.

[22] Vihavainen, A. et al. 2013. Scaffolding students’ learning
using test my code. Proceedings of the 18th ACM conference
on Innovation and technology in computer science education -
ITiCSE ’13 (Canterbury, England, Jul. 2013), 117.

[23] Watson, C. and Li, F.W.B. 2014. Failure rates in
introductory programming revisited. Proceedings of the 2014
conference on Innovation & technology in computer science
education - ITiCSE ’14 (New York, New York, USA, Jun.
2014), 39–44.

[24] Wood, D. et al. 1976. The Role of Tutoring in Problem
Solving. Journal of Child Psychology and Psychiatry. 17, 2
(Apr. 1976), 89–100.

[25] Yizengaw, T. 2008. Challenges of Higher Education in
Africa and Lessons of Experience for the Africa-US Higher
Education Collaboration Initiative.

