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Fig. 1. Given a regional terrain type and a rough elevation control map as input, our method automatically generates a synthetic graph of connected peaks
and saddles, which is, in turn, used to procedurally generate a detailed heightfield obeying the orometric properties of the prescribed terrain type.

Mountainous digital terrains are an important element of many virtual
environments and find application in games, film, simulation and training.
Unfortunately, while existing synthesis methods produce locally plausible
results they often fail to respect global structure. This is exacerbated by a
dearth of automated metrics for assessing terrain properties at a macro level.

We address these issues by building on techniques from orometry, a
field that involves the measurement of mountains and other relief features.
First, we construct a sparse metric computed on the peaks and saddles of a
mountain range and show that, when used for classification, this is capable
of robustly distinguishing between different mountain ranges. Second, we
present a synthesis method that takes a coarse elevation map as input and
builds a graph of peaks and saddles respecting a given orometric distribution.
This is then expanded into a fully continuous elevation function by deriving a
consistent river network and shaping the valley slopes. In terms of authoring,
users provide various control maps and are also able to edit, reposition,
insert and remove terrain features all while retaining the characteristics of a
selected mountain range.

The result is a terrain analysis and synthesis method that considers and
incorporates orometric properties, and is, on the basis of our perceptual
study, more visually plausible than existing terrain generation methods.
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1 INTRODUCTION
Mountains and ridges are a visually salient feature in many large-
scale digital terrains, and thus serve as a backdrop or key scene
element in a range of computer graphics applications. Depending
as they do on a variety of geomorphological effects, such as plate
tectonics, glaciation, and erosion, it is no surprise that mountain
ranges exhibit different characteristics, ranging from the promi-
nent peaks of the Rockies and Swiss Alps to the gentler and more
uniform structure of the Appalachians and Scottish Highlands. In
particular, relative peak prominence crucially affects the vista from
different vantage points on a mountainscape, and is one of the defin-
ing characteristics. It is current practice to assess such aspects of
digital terrains through visual inspection. Ideally, this should consist
of a perceptual study involving dozens of participants with either
informal or formal expertise, such as hikers or geomorphologists.
Unfortunately, this tends to be both time consuming and expensive,
and is generally only applied as a summative rather than forma-
tive evaluation. The outcome is that few terrain synthesis methods
adequately capture the global properties of mountainous regions.

Fortunately, it is exactly these aspects, namely the statistical inter-
relationship and relative prominence of peaks and saddles in relief
areas, that is the focus of orometry, a subfield of geomorphology
dealing with the measurement of mountains. In this paper, we di-
rectly apply orometry to improve the realism of virtual terrains.
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We begin by compiling an orometric descriptor that considers the
distribution of prominence and isolation of peaks, the ridges and sad-
dles connecting them, and the relative orientation of these features.
When used for classification this descriptor is able to accurately
discriminate between mountain ranges from different geographic re-
gions. Next, we provide an algorithm for the orometric synthesis of
terrains by applying the metric directly as an optimization criterion
in the construction of a Divide Tree, which represents the sparse
placement and interconnection of peaks and saddles. Taking care
to respect the orometric constraints, a dual graph is then derived
for the placement of river valleys, followed by the introduction of
fractal-based detail and an erosion post-process.
The main technical contributions outlined in this paper include:

1) A set of orometric properties that can be derived from an eleva-
tion map and then used for accurate mountain range classification.
2) A synthesis method that, given such a set of pre-computed oro-
metric properties, is capable of generating a matching terrain by
first constructing a Divide Tree to represent the local connectivity
of peaks and saddles, and then populating the map with detail on
the basis of a dual river graph and procedural upsampling. 3) The
incorporation of a range of authoring mechanisms, which allow
both global control (through mountain type and coarse elevation
paint maps) and local control (by editing the Divide Tree and terrain
features) while retaining an orometric correspondence.
In summary, we present a novel application of orometry to the

analysis, classification and synthesis of digital terrains in computer
graphics. Our model is the first to capture the vast diversity of
mountainous terrain types evident in the world’s geography, rang-
ing from rolling hills in geologically stable mountains to smooth
Saharan dunes to the delineated peaks of younger mountain ranges.
This work not only benefits the entertainment industry, where our
synthesis method could be used to generate and combine differ-
ent terrain classes, but also serves as a first step in analyzing the
characteristics of synthetic and real terrains.

2 RELATED WORK
Our approach is to analyse existing real-world source terrains, ex-
tract a compact but rich characterization, and synthesize new target
terrains matching these source characteristics. Here, we focus on
existing terrain generators that either perform synthesis based on
a previous analysis, or only require a sparse set of input features.
For a more complete coverage of terrain modeling techniques, the
reader is referred to the review by Galin et al. [2019].

2.1 Generation from analyzed data
For decades, researchers have sought to generate terrains by repli-
cating their visual appearance. Nevertheless, among these, only a
few are based on a through-line of analysis, characterization and
synthesis from real terrain data sources.

A fundamental property observed in real terrains is their fractal
self-similarity [Kelley et al. 1988; Mandelbrot 1982; Musgrave et al.
1989; Prusinkiewicz and Hammel 1993]. However, by nature, ter-
rains are not mono-fractal and so efforts have been made to adapt
fractal dimension with respect to elevation, leading to multi-fractal
properties [Mandelbrot 1982]. In this vein, Parberry proposed a

characterization of terrains according to a histogram of heights [Par-
berry 2014] and gradients [Parberry 2015], which are then fed into
a modified noise generator to produce histogram-matching terrains.
Most recent example-based terrain methods rely on an implicit

rather than explicit analysis of terrains. For instance, adaptations
of texture synthesis [Gain et al. 2015; Zhou et al. 2007] cut and
rejoin terrains at a patch or pixel level, and the analysis involves ap-
propriate matching of user-supplied constraints and joins between
seams. Sparse modeling [Argudo et al. 2017; Guérin et al. 2016] also
analyzes terrains, but in this case it is in the service of building a
reusable dictionary of localised feature patches.

Similar to our approach, the analysis of topological and geomet-
rical features of street networks has proved to be successful for the
classification between different cities and their procedural genera-
tion [AlHalawani et al. 2014]. Such graph properties are orthogonal
to our proposed orometric descriptors, however, which are com-
puted from the elevation of the graph nodes instead.

2.2 Generation from sparse features
There are a number of existing methods capable of synthesizing
terrains from a relatively sparse set of vector-based constraints.
Procedural methods are particularly suited to this approach. A

common thread is to allow user authoring through a sketching
interface that gives rise to sparse curve constraints submitted to a
subdivision process [Belhadj 2007], deformed wavelet noise [Gain
et al. 2009], or diffusion [Hnaidi et al. 2010]. Genevaux et al. [2015]
introduce a more generic model for representing complex terrains
as a hierarchy of primitives combined with blending operators. This
representation has been used in a context similar to ours, where the
terrain was generated from its river network [Génevaux et al. 2013].
Erosion simulations are generally much less suited to satisfying

vector constraints. Nevertheless, we do end up adapting erosion
algorithms so as not to break existing constraints on orometry.

Lastly, in some cases, example-basedmethods do offer sparse high-
level feature controls. Texture-based terrain synthesis [Gain et al.
2015; Zhou et al. 2007] enables a mixture of point, curve and style
features, and by using a Generative Adversarial Network, Guérin
et al. [2017] are able to generate terrain from simple sketches de-
tailing the crest lines and river network. The recent network Tile-
GAN [Frühstück et al. 2019] can synthesize very large terrains from
a rough guidance map by tiling a latent space field that produces
the final texture when run through the generator. However, training
requires thousands of tiles and can last up to a few weeks, making
it impractical for using it with several differentiated regions, each
requiring a specific intensive training phase. Zhou et al. [Zhou et al.
2018] learn global texture structure and patterns from a single image
exemplar and replicate them according to a guidance map. While
convincing on textures, this approach fails to respect the properties
of the exemplar terrain as demonstrated by our experiments.
A pertinent question is whether our orometrically-derived fea-

tures can be fed into any of these techniques, thereby enabling the
back-end of our synthesis algorithm to be replaced. Unfortunately,
because our constraints need to be strictly respected, only a sub-
set of techniques are suitable [Belhadj 2007; Gain et al. 2015, 2009;
Hnaidi et al. 2010]. Furthermore, unlike our generator, most of these
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Fig. 2. Synthesis overview: given a set of terrain elevation models and corresponding region labels, we perform an analysis of their orometric statistics, which
includes building a Divide Tree connecting peaks and saddles. These statistics are then used to generate a sparse vector representation of synthetic terrains
featuring consistent ridge T and river R networks, which are fed to noise- and erosion-based rasterization processes to create the final terrain. User-control is
incorporated through control maps (specifying peak density and average elevation) during synthesis, and formation parameters during rasterization.

alternatives require a complete set of constraints that include not
only peaks and saddles, but also a valley network.

To our knowledge, this work is the first to extract compact defin-
ing characteristics from a widely ranging real-world relief and use
this as a basis for generating new landscapes.

3 OVERVIEW
Our work is founded on the observation that mountainous regions
have highly characteristic peak distributions and branching ridge
patterns. On this basis, we analyze the orometric properties of real
terrains (Section 4), including the prominence, dominance, isolation,
and saddle orientation of their peaks, and use these properties to
train a Random Forest classifier that can reliably distinguish between
different terrain archetypes. Having demonstrated the utility of an
orometric analysis, the next step is to apply the derived statistics to
guide terrain synthesis (see Figure 2).
Our terrain synthesis process is organized into two main steps.

First, we generate a Divide Tree T (Section 5), which encodes the
layout of peaks, saddles, and ridges, and conforms to provided oro-
metric statistics. Second, we develop this into a fully-realized terrain
(Section 6) by forming a river network R from the dual graph of
T , then introducing additional samples on ridges and valley slopes,
and finally converting this via Delaunay triangulation into an eleva-
tion map to which multi-fractal noise and multi-resolution erosion
algorithms can be applied. Throughout this process the positions of
peaks and saddles (and thus the terrain orometry) are preserved.
In terms of authoring, the user chooses a particular mountain

class to mimic, but can also supply optional peak probability CP
and coarse elevation CH maps so as to influence the average density
and elevation of peaks over the prescribed domain. Furthermore,
they are able to place specific peaks and ridges, or even copy and
paste subparts of a previously authored or real-world Divide Tree.

4 OROMETRY
Orometry is central to our approach and provides a core set of statis-
tical tools for analyzing, classifying and synthesizing terrains. Here,
we first introduce fundamental orometric concepts and notation
used throughout the paper and then demonstrate that orometry
statistics are effective for mountain characterization in terms of
accurately distinguishing between different classes of relief.

4.1 Fundamental concepts
Orometry is a subfield of geography that concentrates on the mea-
surement of mountain and relief features. For our purposes it pro-
vides unambiguous definitions of topographical metrics for promi-
nence, dominance, relevance, and isolation, which relate peaks to
each other and the saddles between them. In addition a graph struc-
ture, known as the Divide Tree, enables the spatial encoding of peak
and saddle relationships. As a preliminary to defining these metrics,
let the function h : Ω → R denote the elevation of a point in a
domain Ω ⊂ R2. A peak at a location p ∈ Ω is a local maximum of
h, with the set of peaks being P(Ω).

P2

=

P1
P3

P4

S 12 K 2 S 23
S 34= K 1

π(P )1

i (P )1

i (P )2

Fig. 3. A diagrammatic representation of peaks P, along with their promi-
nence π (P), isolation i(P), and key saddles K . Saddles are also labelled as
Si j according to their adjacent peaks (Pi and Pj ) in the Divide Tree.

The most obvious measure for a peak Pi is its elevation h(Pi ),
but, on its own, this provides a poor characterization, since it fails
to incorporate any notion of relative importance, without which
highly-localised maxima arising from surface irregularities assume
the same stature as true peaks.

P j
Pi

min h (Γ )ij
*

Γij

Fig. 4. Two paths con-
necting peaks Pi and
Pj .

Richer andmore informative metrics
are therefore warranted [Helman 2005].
In particular, topographical prominence
π (Pi )measures how important or inde-
pendent a mountain is relative to other
peaks. Widely used in compiling sum-
mit lists, it is also useful for distinguish-
ing between principal and secondary
peaks [Fry 1987]. It is defined as the
shortest vertical distance that must be
descended from peak Pi before being

able to reascend towards any other higher peak Pj .
Let Γi j be a path between peaks Pi and Pj , and Γ∗i j be any one of

the paths that maximizes the minimum elevation along its course,
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by passing at its lowest elevation through a saddle (Figure 4). The
prominence of a peak Pi in a given domain D is then defined as:

π (Pi ) = h(Pi ) −max
D

(
min
D

(h(Γ∗i j ))
)

∀Pj , h(Pj ) > h(Pi )

An equivalent definition of prominence is the difference in elevation
between the peak Pi and the lowest possible contour encircling Pi
but no other higher peak. By definition, somewhere on this contour
there must always exist a saddle S, which is identified as the key-
saddle of the peak Pi and denoted as Ki (Figure 3). In the unlikely
case of multiple saddles occurring along the same contour, it is
possible to deterministically select one, with the remaining saddles
assigned to other peaks. Thus, for any given elevation map, there
always exists a unique bijective mapping between key saddles and
peaks [Helman 2005]. The prominence for the highest peak of a
continent or an island is equal to its elevation; its key saddle is
undefined but it can be considered anywhere at sea level.

Given two peaks of equivalent prominence, the one with a higher
prominence to elevation ratio will be perceptually more significant.
This ratio is called dominance:

δ (Pi ) = π (Pi )/h(Pi )

Jurgalski [2016] employs this metric as a way of distinguishing
between main peaks, sub-peaks, mountains, and massifs.

Next, we define the relative prominence π̃ and relative elevation
h̃ of a given peak Pi ∈ P, over a mountain domain D, as:

π̃ (Pi ) =
π (Pi )

max
Pk ∈D

π (Pk )
h̃(Pi ) =

h(Pi )

max
Pk ∈D

h(Pk )

Given this, the relevance ρ(Pi ) of a peak is the geometric mean of
the relative prominence π̃ and relative elevation h̃:

ρ(Pi ) =

√
π̃ (Pi ) h̃(Pi )

This means that the most relevant peaks are those, among the higher
ones, that are also more prominent.

It is important to note that relevance is more strongly influenced
by the choice of domain D, and hence which peaks contribute the
maximum prominence and elevation, than other metrics.
Finally, the isolation i(Pi ) of a peak is the minimum Euclidean

distance from Pi to any higher point on the terrain:

i(Pi ) = min
p∈D,h(p)>h(Pi )

∥p − Pi ∥

From a viewing perspective, the summits of isolated mountains offer
the best vantage points since no other peaks occlude the vista. The
summit of Everest is the only point on Earth surface with undefined
isolation.

Divide Tree. A Surface Network, or Morse-Smale topological rep-
resentation, captures the critical points and lines of an elevation
function h [Čomić et al. 2005]. This Surface Network can be seen
as the union of two dual graphs: the Ridge Network composed of
the peaks, saddles and ridges, and the River Network defined by the
pits, saddles, and channels [Werner 1988].
It is possible to prune the Ridge Network GR in two ways. First,

by removing the lowest saddle in each cycle and its incident ridges
we leave the nP peaks and their nP − 1 key-saddles. Recall that the
highest peak in a bounded region does not have a key saddle by

Fig. 5. Left: Surface Network of a DEM, composed of the Ridge (orange)
and River (blue) sub-networks. Right: the corresponding Divide Tree for the
Ridge Network.

ε = 30 m ε = 120 m

Fig. 6. Two Divide Trees computed on real terrain data at different promi-
nence thresholds showing peaks (orange) and saddles (green).

definition. This sub-graph, which retains the necessary information
for calculating peak prominences and related metrics, is the Divide
Tree T of the terrain [Helman 2005], so called because its ridge lines
act as separators between watershed regions (see Figure 5). Second,
we can include in T only the peaks above a given prominence
threshold ε , as illustrated in Figure 6. Note how the major ridge
structures are still present with large ε .

4.2 Terrain classification
In many instances, mountain ranges in different regions of the
world are visually distinct due to differences in their underlying ge-
omorphology, specifically their constituent rock strata and shaping
processes. Our hypothesis is that orometry is sufficient to charac-
terize such differences and we test this by training a Random Forest
classifier with paired orometric statistics and region labels, and then
examining its subsequent classification accuracy.
In our experiments we used a database of peaks and key sad-

dles [Kirmse and de Ferranti 2017] encompassing all the world’s
summits with prominence greater than 30m (7.8M peaks), or isola-
tion in excess of 1 km (24.7M peaks).

For our first experiment, we selected 50 regions with significant
relief representing a variety of mountainous landscapes, such as ma-
jor ranges (the Alps, Rockies, Himalayas, and Andes), islands (Japan,
New Zealand, and Iceland), deserts (Sahara, Gobi, and Nevada), and
glacial geography (Patagonia, Scandinavia, and Alaska).
In order to generate training and validation data each region

was sampled with disk domains D of radius R according to a blue
noise distribution constrained to ensure at least a 0.5R separation
between disk centers. Then, from the peaks within a given disk we
computed histograms of the orometric statistics outlined in Table 1.
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Fig. 7. An orometric histogram analysis of three selected 30 km disk regions,
center coordinates (latitude, longitude) are shown on the left side.

Table 1. Orometric features used in our classifier. For the dominance groups,
we follow the subdivision of unit interval described in [Jurgalski 2016].

Feature Metric Range #Bins

Dominance δ (Pi ) [0, 1] 20
Dominance groups δ (Pi ) [0, 1] Specific

Normalized elevation ĥ(Pi ) [0, 1] 20
Isolation direction ν (Pi ) [0, 360] 12
Isolation distance i(Pi )/R [0, 1] 20

Key saddle direction θ (Pi − Ki ) [0, 360] 12
Key saddle distance ∥Pi − Ki ∥/R [0, 1] 20

Prominence π (Pi ) [0, 2000] 20
Relative prominence π̃ [0, 1] 20

Relevance ρ(Pi ) [0, 1] 20

Figure 7 demonstrates that disparate regions have correspondingly
varied histograms. A feature array was then formed by simply con-
catenating the bins of these histograms and used to train a Random
Forest classifier. This was chosen in preference to a neural network
due to the relatively limited size of the training set.

For each region we selected up to 100 discs, and partitioned them
randomly on each run in an 80 : 20 split between training and vali-
dation. Classification accuracy was averaged over 100 runs. Finally,
the disk radius R was varied between 10 and 50 km in order to assess
its impact on accuracy.

Table 2 shows classification results for different radii taken both
overall and according to the contribution of individual features
(the corresponding confusion matrix appears in supplementary ma-
terial). Accuracy generally improves with increasing R, with the
highest mean accuracy of 75.3% obtained for R = 50 km. Two fac-
tors contribute to this limit on overall accuracy. First, because we
limit the extent of overlap between disks, fewer than 80 training
samples might be available in smaller regions. We found that R = 30
provided the best tradeoff between sampling density and accuracy.
Second, some of the regions, although geographically dispersed, are
actually visually and geomorphologically similar.

This is borne out by a second experiment, in which the classifier
is trained on a subset of 15 regions, with a disk radius of 30 km. The
overall mean accuracy in this case is 86%. The confusion matrix in
Figure 8 shows that the classifier can fail to distinguish between

Table 2. Accuracy of our orometric classifier for 50 regions, averaged over 100
runs and with sampling disk radius varying from 10 km to 50 km. Accuracy
is reported both overall and by individual classifier feature.

10 km 20 km 30 km 40 km 50 km

All, mean acc. 31.5 48.2 61.7 71.0 75.3
All, median acc. 24.0 42.0 61.5 69.5 74.5

Dominance 13.4 20.6 27.7 34.4 38.9
Dominance groups 19.4 28.2 36.7 45.2 47.9

Normalized elevation 5.1 8.4 11.7 15.3 18.0
Isolation direction 5.8 12.0 18.6 25.4 30.1
Isolation distance 10.3 14.8 19.0 23.0 27.1

Key saddle direction 8.2 14.3 21.2 25.8 29.4
Key saddle distance 9.1 13.2 18.0 21.4 24.8

Prominence 7.4 12.8 19.9 27.9 33.1
Relative prominence 9.2 14.7 20.7 25.7 29.8

Relevance 8.1 13.9 19.0 23.9 28.2
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Fig. 8. Confusion matrix for 15 relief regions.

regions with similar underlying geomorphology such as the Alps,
New Zealand and the Canadian Rockies. Interestingly, different
sections of the same mountain range, such as the Rockies in Canada
or Colorado, are not necessarily confused. Even neighboring regions
with similar elevation ranges, like the Himalayas and Karakoram,
are also properly distinguished.

In conclusion, our experiments demonstrate that orometric statis-
tics are capable of effectively characterizing mountainous regions
and can therefore provide a basis for parametrizing the creation of
digital terrain belonging to visually distinct classes.
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5 DIVIDE TREE GENERATION
We seek to synthesize a terrain that respects the orometric properties
of a given terrain type. Rather than attempting to create an elevation
map directly, we work initially with a Divide Tree, a vector-based
intermediate structure that encapsulates the information required
for orometric analysis and matching.

Peak placement Ridge lines Saddle computation

730m

850m

690m

T SPi
Pj

k

Fig. 9. Divide Tree generation. Peaks are distributed according to the input
orometry and connected by ridges to form a graph. Finally, saddles are
inserted with their elevation set to fulfill the prominence and dominance
constraints of the terrain type.

We present an algorithm for creating a Divide Tree (Fig. 9) that
iteratively and successively places peaks, adds connecting ridges,
and adjusts the elevation of intermediate saddles, with the aim of
matching a given orometric distribution.

5.1 Peaks
The first step involves placing nP peaks across the target domain
D, by assigning an elevation h(Pi ) and position p ∈ D to each.
The number of peaks can either be derived from the terrain type
density or supplied by the user. The elevations of candidate peaks are
sampled from the elevation histogram, and assigned in decreasing
order. Individual peaks Pi , starting from the highest, are then placed
using dart throwing. The acceptance probability p(Pi ) for position
p depends on the context of previously positioned peaks as they
impact the isolation distance i(Pi ) and direction ν (Pi ), as well as
the user input maps for density CP and coarse elevation CH :

p(Pi ) = CP (p) · n(CH (p) − h(Pi )) · p(i(Pi )) · p(ν (Pi )),

where n(x) is a zero-centered normal distribution with a standard
deviation set to 1/20th of the range of CH that controls the probabil-
ity of divergence between the actual peak height and the elevation
map at p. The terms p(i(Pi )) and p(ν (Pi )) are probabilities derived
from the corresponding isolation distance and direction histograms
in the terrain type.

5.2 Ridge lines
In the second step, we introduce ridge lines that connect pairs of
nearby peaks. We note that Divide Trees sourced from real terrains
resemble sub-graphs of a Delaunay triangulation, since peaks (ver-
tices) are usually connected based on proximity by ridges (edges)
that do not intersect. Our analysis of several Divide Trees confirmed
this hypothesis: more than 95% of the peak to peak connections
– omitting the intermediate saddle – in T are edges in the corre-
sponding Delaunay triangulation of the peak positions. Further-
more, previous work in geology showed that the topology of a ridge

network often minimizes the total ridge length in fluvial-eroded
landscapes [Mark 1981]. Hence, we compute the triangulation of
the peak positions and derive a Divide Tree T as the minimum
spanning tree (MST) of this triangulation, with the following edge
weights:

ωi j =
∥Pi − Pj ∥

min
(
h(Pi ),h(Pj )

)ρ , (1)

This weight is proportional to the distance between peaks, in-
versely proportional to the lowest of the two peaks in the ridge,
and the exponent ρ controls the balance between short (low ρ) and
elevated (high ρ) ridges. This control allows us to deviate from
the distance-based MST of the peaks (ρ = 0) and capture different
types of landscapes. In practice, based on empirical observation (see
supplementary material for more detail), we set ρ = 0, 1, or 2.
Finally, along every ridge (i, j) ∈ T we create a saddle Si j be-

tween Pi and Pj by randomly splitting the segment and introducing
a small perturbation of its planar position.

5.3 Multi-pass placement
While this direct synthesis of peaks and ridges conforms to the
provided statistics, it fails to reproduce the hierarchical branching
structure of real Divide Trees. This is evident in Figure 6, where a
high prominence cutoff leads to a spine of primary ridges, while low-
ering the threshold adds intermediate peaks and secondary branch-
ing ridges. Furthermore, prominence tends to follow an inverse
exponential distribution (see Fig. 7).

π ≥ 340 m, 81 peaks π ≥ 170 m, 248 peaks π ≥ 80 m, 568 peaks

Fig. 10. Multi-pass creation of a divide tree. The background shows CP , set
to 1 for the first step, which takes into account the distance to the ridges of
the previous step.

On this basis, we adopt a multi-pass strategy for peak and ridge
placement (Figure 10). We assign peaks to prominence bins, such
that each subsequent less prominent bin holds twice the number of
peaks. Then, we successively place the peaks and ridges for each
bin. Already synthesized peaks are propagated to subsequent passes
as fixed constraints. We also diffuse the ridges into the probability
map CP so that peaks in subsequent less prominent bins are more
likely to be positioned near already synthesized ridges.

5.4 Saddle elevations
The mechanism for assigning elevations to individual saddles is
critical because it impacts the pairing between a peak and its key
saddle, and consequently the distribution of prominence and domi-
nance values, and all the dependent orometric statistics. Even if
peak-saddle pairings do not shift, altitude changes will still af-
fect these distributions. To approximate a target dominance dis-
tribution we need to lower saddles from their upper reference
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hmax(Si j ) = min(h(Pi ),h(Pj )) through an optimization process
(the same general procedure applies for prominence). We begin
by sampling the target dominance distribution to obtain nP dom-
inance values. Given a target dominance value δ̂j , we can assign
δ ′(Pi ) = δ̂j to peak i by modifying its key saddle Ki elevation:

h′(Ki ) = h(Ki ) − h(Pi ) · (δ̂j − δ (Pi ))

Therefore, we compute an nP × nP cost matrixMδ with entries:

Mδ (i, j) =
(h(Pi ) · (δ̂j − δ (Pi )))

2

∥Pa − Pb ∥

if 0 ≤ h′(Ki ) ≤ hmax(Ki ) and Mδ (i, j) = ∞, otherwise. Here, Pa
and Pb are the two peaks with ridges directly connected toKi in T

(i.e., Ki = Sab ). Recall that Pi may not be directly ridge-connected
to its key saddle Ki (as illustrated in Figure 3). This formulation of
Mδ (i, j) thus targets the dominance δ̂j while penalizing saddles that
are deep relative to their neighbouring peaks (Pa and Pb ).
Next, by applying optimal transport [Bonneel et al. 2011] on

the cost matrix Mδ , we find the optimal assignment of sampled
dominances to peaks and modify the elevation of their key saddles
accordingly. For assigning prominence the same procedure applies
except that the cost matrix is replaced by:

Mπ (i, j) =
(π̂j − π (Pi ))

2

∥Pa − Pb ∥

if 0 ≤ h′(Ki ) ≤ hmax(Ki ) and Mπ (i, j) = ∞ otherwise. Saddle
elevations are modified as follows:

h′(Ki ) = h(Ki ) − (π̂j − π (Pi ))

Unfortunately, the very act of adjusting saddle elevations can
shift the correspondence between peaks and their key saddles (as
shown in Figure 11), thereby discontinuously altering dominance
and prominence values and damaging the quality of the distribution
match. Rather than rely on a complex constrained optimization
solution, we instead apply optimal transport assignment iteratively,
alternating between dominance and prominence targets. In practice,
we found that this process converges after 3 − 4 iterations.
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900

K 1

Decreasing        elevation preserves key saddles, only π(    ) changes

K 1

P1
P2 P3K 2
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K 2K 1

P1 P2
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K 2
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700

400

800

400
200

600
700

800

600
100
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Decreasing        elevation reassigns key saddles, π(   ) and π(    ) changeS 23 P1 P2
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Fig. 11. The impact of adjusting saddle altitudes. The two cases (top left
and bottom left) have the same actual and target prominence distributions.
The goal is to match the actual (300, 100) and target (300, 700) by altering
saddle altitudes. Top right: Adjusting the right saddle downward by 600m
achieves the target distribution. Bottom right: The same elevation change
swaps the correspondence between peaks and key saddles and leads to a
more divergent distribution (800, 200).

6 TERRAIN GENERATION
The challenge lies in synthesizing a dense elevation map H from
a vector-based Divide Tree T , which conveys important but very
sparse information (about one sample per 2.5 km2). Our approach
is to generate data that is progressively richer and more dense,
by applying the following steps (Figure 12): 1) dual river network
computation, 2) sub-sampling and building a triangulated irreg-
ular network, 3) multi-scale constrained erosion. This process is
constrained by a need to respect the original orometry statistics.

River path generation Triangulation MNetworks refinement

R

T

T

R~

~
M

Fig. 12. Overview of the first stages of terrain generation. Given the sparse
vector data embedded in the Divide Tree T, a coarse path for the rivers is
first generated, then the river and ridge networks are further refined, and,
finally, the terrain is resampled with appropriate slope determination.

6.1 River network
The river network R can be viewed as the dual of the ridge network
represented by the input Divide Tree T . To construct it, we compute
a Voronoi diagram over the peaks and saddles of T and prune any
edge that would cross a ridge in T (Figure 12 left).
We can set the maximum elevation of a given river node by

using the altitude of the intersection of its incident pruned edge
with the ridge network. Then starting from source nodes, easily
identified as river nodes of degree 1, we traverse the river graph
propagating maximum elevation bounds and in the process building
an oriented drainage network. We then refine the river nodes by
propagating elevations from tributaries to outlets according to the
river slope [Génevaux et al. 2013].

6.2 Refinement and triangulation
The previously computed ridge and river networks are then aug-
mented with a denser sampling (Figure 12 middle). Given a user-
defined meshing distance λ (200m in our implementation), we refine
and perturb the geometry of the ridges and rivers to obtain revised
networks T̃ and R̃, respectively.

R

T
P

P

i

j

p q
r

Fig. 13. Computation of
a sample’s elevation.

In order to do so, we add interme-
diate points to ridge and river seg-
ments such that all edge distances are
smaller than λ. A random planar dis-
placement is performed on these inter-
mediate points, whereas their elevation
is linearly interpolated along the origi-
nal segment. A Poisson disk-sampling,
with prescribed radius λ, is then used to
populate the entire domain. The com-

puted elevation for these samples is derived from the elevations of
the closest ridge and river points (see Figure 13).
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Alps Norway

HimalayasAppalachians Sahara

Karakoram

Fig. 14. Our method successfully synthesizes different mountain range forms (the Alps, Fjords, Himalayas, Appalachians, and Karakoram) and can even
generate other relief, such as sand dunes (Sahara).

We rely on the power law described in May et al. [2013], which
approximates the valley width asw ∝ A0.4, whereA is the drainage
area of a point on the river. Let q and r denote the projections of p
onto the Divide Tree T and the river network R, respectively. If the
distance to the river network is below the valley width (d(p,R) < w)
then we set the elevation to that of the river h(r); otherwise, we
interpolate between the elevations of the ridge and the river:

h(p) = (1 − α)h(q) + α h(r) α =
d(p,T)

d(p,R) + d(p,T) −w

Finally, we generate a triangulated irregular network representation
M of the terrain, using a constrained Delaunay triangulation that
retains existing ridge and river segments.

6.3 Constrained multi-scale erosion
A fully-realized high resolution terrainH0 is created by augmenting
the triangulated terrain M with multi-fractal noise. The magnitude
of the fractal noise is set lower than the prominence threshold ε to
guarantee that the orometry of T is preserved.

As a last step, we perform constrained multi-scale hydraulic ero-
sion in order to introduce gentle sedimentary valleys and erosion
landforms, such as ravines and gullies. This is complicated by the
need to preserve the elevation of peaks and saddles, and more gen-
erally the orometry of T . Our approach is to interleave state-of-the
art hydraulic erosion steps [Cordonnier et al. 2017] with procedural
uplift. The latter compensates for any unwanted erosion in the
neighbourhood of peaks and saddles.
Let Ei denote the elevation of the terrain after an erosion step.

The compensating upliftU is defined by computing a distance field
d(p,T) centered on the peaks and saddles of the Divide Tree, and
applying a fall-off function:U = д ◦ (d(p,T)/R). Here, R represents
a user-defined radius of influence for the peaks and saddles and д is
a smooth compactly-supported polynomial of the distance д(r ) =

(1 − r2)3. Based on this, the elevation update step due to uplift is:

Hi+1 = Ei +U · ∆Hi ∆Hi = Ei −Hi

We applied constrained erosion at three different scales: 100m,
50m and 30m. Terrains showcased in Figure 14 (specifically the Alps,
Himalayas and Karakoram) illustrate the results of our approach
and visually demonstrate that the orometry is preserved.

7 RESULTS
We implemented our terrain analysis and generation algorithms in
Python, with the exception of the multi-resolution erosion, which
was coded in C++. Experiments were performed on a desktop com-
puter equipped with an Intel® Core i7, clocked at 4GHz with 16GB
of RAM, and an NVidia GTX 970 graphics card. The output of our
system was streamed to e-on Vue® software in order to produce the
photorealistic landscape renderings. The average time to generate a
90×90 km2 terrain at 30m precision (3000×3000 resolution) ranged
from 60 seconds for low peak densities (a Norwegian orometry with
around 1000 peaks) up to 190 seconds at the highest density (an
Appalachian orometry with more than 2800 peaks).

7.1 Validation
Here, we present several results and applications that highlight
key aspects of our synthesis algorithm. First, unlike prior work,
our method reproduces a wide variety of terrain archetypes when
provided with appropriate orometric distributions. Figure 14 shows
six examples of 90 × 90 km2 terrains with distinctive visual styles
(histograms of the corresponding orometric statistics appear in
Figure 7 and the supplementary material).

Our method converges towards the prescribed distributions. Ele-
vations are directly sampled from the input histogram, therefore the
discrepancy between distributions is very low if sampled density is
similar or larger than the original terrain. Isolation is mainly influ-
enced by the peaks positions from the dart throwing process, and
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Karakoram real picture Our method

Appalachians real picture Our method

Fig. 15. A side-by-side comparison between real photographs and generated
terrains obtained with our method using orometry from the corresponding
region. Karakoram picture by Guilhem Vellut.

the maximum histogram error on the generated terrains is about
8%. Prominence and dominance converged to a maximum error be-
tween 2 and 3%. For illustration, Figure 16 shows the effect when we
optimize on the same Divide Tree the height of the saddles towards
a uniformly distributed histogram of prominences instead of a real
distribution, resulting in a non-plausible terrain.

Alps distribution Uniform distribution

Fig. 16. Different prominence distributions on the same Divide Tree: real
(left), and a uniformly distributed (right).

We also tested the correspondence between the real and our
synthetic orometry by applying the region classifier (see Section 4.2).
In 100 runs of the classifier, our synthesized Sahara, Appalachians
and Karakoram are always classified correctly; our Himalayas have
a 1% confusion with the real Karakoram; our Norway is confused
11% of the time with the real Patagonia; and only our synthesized
Alps exhibit significant misclassification (78% confused with the
real Canadian Rockies). In the latter case, this mis-assignment also
occurred when we analyzed and classified real datasets (Figure 8),
likely because these classes are visually and orometrically similar.
In any event, there is a strong visual similarity as demonstrated

by Figures 1 and 15, where we compare real photographs with
digital terrains synthesized with matching regional orometry, and
Figure 17, where we compare with the real DEM used to compute
the distributions.

7.2 Control
One of the major strengths of our synthesis is the flexibility and
range of available authoring controls (as showcased in Figure 18).
At a broad level, peak placement is guided by a combination of
coarse elevation CH and density CP maps, which locally control

Karakoram

Appalachians

Himalayas

Alps

Norway

Sahara

Fig. 17. A side-by-side comparison between real SRTM maps (left) and our
synthesis (right) using the corresponding analysed orometry.

the average height of peaks and their probability of occurrence,
respectively. It is even possible to demarcate flat areas for seas,
lakes and valley floors by zeroing corresponding regions in CH and
CP . For more fine-grained control, the user can place specific peaks
before synthesis, and add, modify or erase features in the Divide Tree
after synthesis (see Figure 18). It is also possible to copy and paste
portions of a real Divide Tree and auto-complete the surroundings.
In Figure 19, we placed the real Divide Tree of Denali and its nearby
ridges manually, with the remainder of the 100 × 100 km2 terrain
synthesized automatically from Alaskan statistics.

In addition, multiple terrain types can coexist in a single terrain,
as illustrated in Figure 24. The user provided a type map CT seg-
menting the domain into separate terrain types, and during Divide
Tree construction this is probed to determine the appropriate orom-
etry for peak placement and saddle elevation optimization. The
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Predefined peaks Ridge lines editNew peak, saddle change

Fig. 18. Stages of an editing session. The left close-up shows the outcome of synthesis with orometry from the Pyrenees, coarse elevation and peak density
control maps (on the far left), and three predefined peaks (highlighted). In the middle, a new peak is inserted and a saddle is manually repositioned. Then, on
the right, an entire ridge is deleted to reshape the valleys. Please refer to the video for more details.

Divide Tree is fused together during ridge line Delaunay triangula-
tion, which is independent of CT . This combination of high-level
authoring and precise control is crucial in an artistic pipeline, and
is a weakness of many previous methods.

Generated terrain Close-up

Fig. 19. Stitching in a Divide Tree. A Divide Tree is extracted from around
Denali (highlighted) and inserted into the domain. Given this real tree
fragment, a user-drawn coarse elevationmap (inset), and orometric statistics
for Alaska, our synthesis seamlessly completes the rest of the terrain.

Finally, the histograms of each metric can be directly edited to
obtain a desired, possibly imaginary, terrain: the Rockies with peaks
that are twice as prominent or Saharan dunes ranging in height
from 4000m to 5000m, for example.

7.3 Comparison with other techniques
To our knowledge, our model is the first to capture such a wide
variety of landscapes. Most existing methods either focus on generic
Alpine terrains or specific landforms, such as canyons. In contrast,
our method spans the gamut from rolling Saharan dunes to serrated
Himalayan ranges. Our orometric encoding is also more compact
than other vector-based representations, with a 90 × 90 km2 terrain
typically consisting of 1200-2000 peaks and an equal number of
saddles. For comparison, Genevaux et al. [2013] and Cordonnier et
al. [2016] use 10 − 160 k samples for similarly-sized terrains.
Other approaches that target large spatial scales either do not

reproduce truly coherent global structure (e.g., procedural noise and
texture synthesis) or suffer from limitations in achievable variety
(e.g., tectonic uplift and fluvial erosion). Furthermore, our method
scales with the number of peaks rather than the size or resolution of
the terrain. Given a Divide Tree, we can later generate a heightfield
at any desired output resolution.
We compared our work to the adversarial expansion network

proposed in [Zhou et al. 2018]. This method learns from a single
exemplar map and uses a guidance image similar to our approach
(Figure 21).We trained the network using the authors’ provided code

and hyper-parameters with a 90× 90 km2 crop from the SRTM 3 arc-
second of the Alps. Visually, the produced elevation map contains
repetitions and grid artifacts. Analytically, the number of peaks is 7
times too large, the Earth Mover’s Distance of the distributions with
respect to the input is between 20 and 50% higher than our synthesis,
and the elevations histogram is 20 times larger. Consequently, the
terrain is always misclassified.

T1 Real DEM T2 Real Divide Tree

T3 Our synthesis T4 Erosion simulation

T5 Gradient-constrained noise T6 Multifractal ridge noise

Fig. 20. Comparison between our method, real data and other terrain syn-
thesis approaches as shown in the user study.

The sketch-to-terrain cGAN proposed by [Guérin et al. 2017]
offers a more guided terrain synthesis approach, as we can feed
the network with the Divide Tree as the input sketch and properly
encode the elevation of peaks and saddles. We trained this network
using several DEM and their corresponding Divide Tree, cropped
from SRTM-3 of the Alps. We used our synthesized Divide Tree as
input to create a full elevation map, thus replacing our terrain syn-
thesis pipeline (Section 6). While the overall structure of the Divide
Tree is respected, the output terrain contains twice as many peaks,
i.e. the network is creating new elements affecting the orometric
distributions. In contrast, our generation algorithm guarantees that
these properties are respected.
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[Zhou et al. 2018] [Guérin et al. 2017] Our synthesis

Fig. 21. Comparison between our method and deep learning approaches.

7.4 Perceptual study
As a summative evaluation we conducted a perceptual study to test
the perceived realism of our method in comparison with 5 other ap-
proaches. The treatments were mountainous terrains obtained from:
(T1) a real SRTM-derived DEM from the Alps at 1 arc-second reso-
lution; (T2) our terrain generator (Section 6) with the Divide Tree
of the real Alps DEM as input; (T3) our full pipeline (Sections 4–6)
with orometry derived from the real DEM; (T4) simulation of uplift
and hydraulic erosion [Cordonnier et al. 2016]; (T5) Perlin noise
constrained to a distribution of gradients from the real DEM [Par-
berry 2015]; and (T6) multi-fractal ridged noise [Galin et al. 2019].
All terrains had the same extent: 90×90 km at a sampling resolution
of 30m. Our goal was to have participants evaluate the structural
realism of the terrains, so we rendered them from an aerial per-
spective (Figure 20). Regarding the choice of parameters, T3 used a
very coarse elevation map smoothed from a real DEM and uniform
probability map. T4 was provided by the authors of [Cordonnier
et al. 2016] in their results. T5 uses a gradients distribution analyzed
from Southern Utah and was computed using the code and default
parameters provided by the author. T6 is a standard sum of ridge
fractal noise [Galin et al. 2019].
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Fig. 22. Results of a forced-choice perceptual study comparing 6 terrain
approaches and showing posterior beta distributions, mean values (dashed
line) and the 95% credible intervals.

The study was designed as a two-alternative forced choice (2-
AFC) task in which subjects were presented with 15 pairs of images
in a randomized order and, for each pair, instructed to select the
one they regarded as more realistic. The experiment was deployed
on a website and posted in a mountaineering forum, and 65 subjects
participated. We then performed a Bayesian analysis with the proba-
bility of a particular treatment being chosen modeled as a Bernoulli

random variable with probability θ and uniform beta prior. Figure 22
shows the posterior distributions for θ . Two extrema are immedi-
ately identifiable, corresponding to Parberry’s constrained Perlin
noise (T5) and the real SRTM DEM (T1). Among the fully synthetic
terrains (T3–T6), none of their 95% credible intervals for θ overlap
with that of the real DEM (T1) and only our method (T3) overlaps
with the heightfield generated from the real Divide Tree (T2). We
believe these results indicate that orometric distributions play an
important role in the overall perception of terrain.

7.5 Limitations

Pi

S j

Different reliefs

Pi
S j

Fig. 23. Differently shaped
mountains with the same
local Divide Tree.

Although the Divide Tree is a pow-
erful, sparse, and compact data struc-
ture for analyzing and generating ter-
rains, it only provides coarse infor-
mation about the local relief. Certain
important structural details are dis-
carded, such as slope profiles (see Fig-
ure 23) and the subsidiary ridge net-
work where peak prominences fall
below the analysis threshold.
Depending on how local terrain

features are realised there are many
possible terrains that match a given

Divide Tree. We make the assumption that rivers follow the me-
dial axis between ridges, and that ridges themselves drop roughly
linearly from peak to saddle. There is room to improve visual re-
alism by extending our analysis and synthesis to incorporate local
characteristics, such as ridge and valley profiles.
Furthermore, there remains a gap between real and synthesized

Divide Trees as is evident from the perceptual disparity between
the real T (T2) and synthesized T (T3) in our perceptual study (see
Figure 22). Our peak and saddle statistics do not explicitly encode
aspects of tree topology such as the degree of vertices and branching
depth. It would therefore be worth exploring deeper metrics on
real Divide Trees and how these might correlate with orometric
measurements and thus inform our synthesis.

8 CONCLUSION
We introduce for the first time the formalism of orometry to the
field of computer graphics. Orometry involves measuringmountains
and the spatial arrangement of peaks using several metrics, such as
prominence, relevance and isolation. These metrics are effective in
the automatic classification of mountainous terrains from around
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Fig. 24. A terrain generated by combining four different classes from the Sahara, Appalachians, Alps and Peruvian Andes.

the world. Derived from this notion of orometry is the Divide Tree
construct, which is a graphical network representation of the posi-
tion and relationship between peak and saddle points on a terrain.
This graph turns out to be a concise yet powerful representation of
terrain. We introduce a method to synthesize new Divide Trees that
satisfy orometric measures and a matching process to automatically
generate the associated terrain. Our method also supports a combi-
nation of general and specific authoring tools. The end result is a
versatile terrain generation method that is able to produce a broad
range of terrain types, from gentle hills to sharp ridges and peaks.
One possible avenue for future work is to incorporate different

mountain shapes and valley profiles. In this regard, it might be pos-
sible to adapt existing continuous DEM steepness metrics [Earl and
Metzler 2015]. Another idea would be to build a dictionary of Divide
Tree fragments and then synthesize new terrains by stitching Divide
Trees together and applying our terrain generation algorithm.

ACKNOWLEDGMENTS
This work is part of the project PAPAYA funded by the Fonds National
pour la Société Numérique and the project HDWANR-16-CE33-0001,
supported by Agence Nationale de la Recherche. We would like to
credit E-on software for providing Vue for rendering our terrain
models.

REFERENCES
Sawsan AlHalawani, Yong-Liang Yang, Peter Wonka, and Niloy J. Mitra. 2014. What

Makes London Work Like London? Computer Graphics Forum 33, 5 (2014), 157–165.
Oscar Argudo, Carlos Andujar, Antonio Chica, Eric Guérin, Julie Digne, Adrien Peytavie,

and Eric Galin. 2017. Coherent multi-layer landscape synthesis. The Visual Computer
33, 6 (2017), 1005–1015.

Farès Belhadj. 2007. Terrain modeling: a constrained fractal model. In Proceedings of
the International Conference on Computer Graphics, Virtual Reality, Visualisation and
Interaction in Africa. ACM, Grahamstown, South Africa, 197–204.

Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. 2011.
Displacement Interpolation Using Lagrangian Mass Transport. ACM Transactions
on Graphics 30, 6 (Dec. 2011), 158:1–158:12.

Lidija Čomić, Leila De Floriani, and Laura Papaleo. 2005. Morse-Smale Decompositions
for Modeling Terrain Knowledge. In Spatial Information Theory, Anthony G. Cohn
and David M. Mark (Eds.). Springer, Berlin, Heidelberg, 426–444.

Guillaume Cordonnier, Jean Braun, Marie-Paule Cani, Bedrich Benes, Eric Galin, Adrien
Peytavie, and Eric Guérin. 2016. Large Scale Terrain Generation from Tectonic Uplift
and Fluvial Erosion. Computer Graphics Forum 35, 2 (2016), 165–175.

Guillaume Cordonnier, Eric Galin, James Gain, Bedrich Benes, Eric Guérin, Adrien
Peytavie, and Marie-Paule Cani. 2017. Authoring Landscapes by Combining Ecosys-
tem and Terrain Erosion Simulation. ACM Transactions on Graphics 36, 4 (2017),
134:1–134:12.

Edward Earl and David Metzler. 2015. Cloud-Capped Towers: Capturing Terrain
Characteristics Using Topographic Functionals. Quaestiones Geographicae 34, 4
(December 2015), 7–23.

Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. 2019. TileGAN: Synthesis of
Large-Scale Non-Homogeneous Textures. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH) 38, 4 (2019), 58:1–58:11.

Steve Fry. 1987. Defining and sizing-up mountains. Summit, Jan.-Feb. (1987), 16–21,32.
James Gain, Bruce Merry, and Patrick Marais. 2015. Parallel, Realistic and Controllable

Terrain Synthesis. Computer Graphics Forum 34, 2 (2015), 105–116.
James E. Gain, Patrick Marais, and Wolfgang Strasser. 2009. Terrain sketching. In

Proceedings of the Symposium on Interactive 3D Graphics and Games. ACM, Boston,
USA, 31–38.

Eric Galin, Eric Guérin, Adrien Peytavie, Guillaume Cordonnier, Marie-Paule Cani,
Bedrich Benes, and James Gain. 2019. A Review of Digital Terrain Modeling. Com-
puter Graphics Forum (proceedings of Eurographics 2019 STAR) 38, 2 (2019), 553–577.

Jean-David Génevaux, Éric Galin, Eric Guérin, Adrien Peytavie, and Bedrich Benes.
2013. Terrain Generation Using Procedural Models Based on Hydrology. ACM
Transactions on Graphics. 32, 4 (2013), 143:1–143:13.

Jean-David Génevaux, Éric Galin, Adrien Peytavie, Éric Guérin, Cyril Briquet, François
Grosbellet, and Bedrich Benes. 2015. Terrain Modeling from Feature Primitives.
Computer Graphics Forum 34, 6 (2015), 198–210.

Eric Guérin, Julie Digne, Eric Galin, and Adrien Peytavie. 2016. Sparse representation
of terrains for procedural modeling. Computer Graphics Forum (Proceedings of
Eurographics) 35, 2 (2016), 177–187.

Éric Guérin, Julie Digne, Éric Galin, Adrien Peytavie, Christian Wolf, Bedrich Benes,
and Benoît Martinez. 2017. Interactive Example-based Terrain Authoring with
Conditional Generative Adversarial Networks. ACM Transactions on Graphics 36, 6
(2017), 228:1–228:13.

Adam Helman. 2005. The Finest Peaks. Prominence and Other Mountain Measures.
Trafford Publishing.

Houssam Hnaidi, Éric Guérin, Samir Akkouche, Adrien Peytavie, and Éric Galin. 2010.
Feature based terrain generation using diffusion equation. Computer Graphics Forum
29, 7 (2010), 2179–2186.

Eberhard Jurgalski. 2016. Das erweiterte Prominenzkonzept. Ein mathematisches Ein-
teilungssystem für alle Berge und Gebirge, weltweit anwendbar vom Hochgebirge
bis zu Heimathügeln. Mitteilungen der Fränkischen Geographischen Gesellschaft
61/62 (2016), 105–110.

Alex D. Kelley, Michael C. Malin, and Gregory M. Nielson. 1988. Terrain simulation
using a model of stream erosion. Computer Graphics 22, 4 (1988), 263–268.

Andrew Kirmse and Jonathan de Ferranti. 2017. Calculating the prominence and
isolation of every mountain in the world. Progress in Physical Geography: Earth and
Environment 41, 6 (2017), 788–802.

Benoit B. Mandelbrot. 1982. The Fractal Geometry of Nature. W. H. Freeman & Co Ltd.
David M. Mark. 1981. Topology of ridge patterns: Possible physical interpretation of

the “minimum spanning tree” postulate. Geology 9, 8 (08 1981), 370–372.
Christine May, Josh Roering, L Eaton, and Burnett Kelly. 2013. Controls on valley width

in mountainous landscapes: The role of landsliding and implications for salmonid
habitat. Geology 41 (03 2013), 503–506.

Forest Kenton Musgrave, Craig E. Kolb, and Robert S. Mace. 1989. The synthesis and
rendering of eroded fractal terrains. Computer Graphics 23, 3 (1989), 41–50.

Ian Parberry. 2014. Designer Worlds: Procedural Generation of Infinite Terrain from
Real-World Elevation Data. Journal of Computer Graphics Techniques 3, 1 (2014),
74–85.

Ian Parberry. 2015. Modeling Real-World Terrain with Exponentially Distributed Noise.
Journal of Computer Graphics Techniques 4, 2 (2015), 1–9.

Przemyslaw Prusinkiewicz and Marc Hammel. 1993. A fractal model of mountains
with rivers. In Proceedings of Graphics Interface. Canadian Information Processing
Society, Toronto, Canada, 174–180.

Christian Werner. 1988. Formal Analysis of Ridge and Channel Patterns in Maturely
Eroded Terrain. Annals of the Association of American Geographers 78, 2 (1988),
253–270.

Howard Zhou, Jie Sun, Greg Turk, and James M. Rehg. 2007. Terrain Synthesis from
Digital Elevation Models. Transactions on Visualization and Computer Graphics 13,
4 (2007), 834–848.

Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
2018. Non-stationary Texture Synthesis byAdversarial Expansion. ACMTransactions
on Graphics (Proceedings of SIGGRAPH) 37, 4 (2018).

ACM Trans. Graph., Vol. 38, No. 6, Article 199. Publication date: November 2019.


	Abstract
	1 Introduction
	2 Related work
	2.1 Generation from analyzed data
	2.2 Generation from sparse features

	3 Overview
	4 Orometry
	4.1 Fundamental concepts
	4.2 Terrain classification

	5 Divide Tree generation
	5.1 Peaks
	5.2 Ridge lines
	5.3 Multi-pass placement
	5.4 Saddle elevations

	6 Terrain generation
	6.1 River network
	6.2 Refinement and triangulation
	6.3  Constrained multi-scale erosion 

	7 Results
	7.1 Validation
	7.2 Control
	7.3 Comparison with other techniques
	7.4 Perceptual study
	7.5 Limitations

	8 Conclusion
	Acknowledgments
	References

