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Figure 1: Four frames of an animation produced by our system. The building is procedurally generated and ready to undergo physical
animation. It collapses here after being struck by large blocks (seen in far left).

Abstract

While the field of procedural content generation is growing, there
has been somewhat less work on developing procedural methods
to animate these models. We present a technique for generating
procedural models of trees and buildings via formal grammars (L-
Systems and wall grammars) that are ready to be animated using
physical simulation. The grammars and their interpretations are
augmented to provide direct control over the physical animation,
by, for example, specifying object mass and the joint stiffness. Ex-
ample animations produced by our system include trees swaying
in a gentle wind or being rocked by a gale, and buildings collaps-
ing, imploding or exploding. In user testing, we had test subjects
(n = 20) compare our animations with video of trees and buildings
undergoing similar effects, as well as with animations in games that
they have played. Results show that our animations appear physi-
cally accurate with a few minor instances of unrealistic behaviour.
Users considered the animations to be more realistic than those used
in current video games.

Keywords: Procedural Generation, Physics, Dynamic Animation,
L-Systems, Wall Grammars, Descriptive Grammars, Shape Gram-
mars

1 Introduction

The procedural generation of content — that is, the production of
models, textures, animation, and so on, by algorithmic means — is
of increasing importance to many industries, from CGI and com-
puter games to reverse engineering and urban planning [Watson
et al. 2008].

An important aspect of procedural content generation is the anima-
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tion of this content: models are often required to show behaviour
appropriate to their type (e.g., people should walk; trees should
sway in the wind), while this behaviour should be modified by the
physical properties of the model (e.g., people have differing strides
depending on, say, their height; plants may be woody or herba-
ceous, affecting their flexibility).

We present a simple method for automatically augmenting mod-
els produced by formal grammar methods so that they can be ani-
mated using physical dynamics. Unlike other animation methods,
such as skinning, dynamics has little reliance on an artist to pro-
duce an appropriate animation sequence, making it suitable for in-
clusion in automatic content production. We demonstrate how to
do this for two broad categories of formal grammars: those typi-
cally used for producing plants (exemplified here with an L-System
method, which is a class of grammar that operates directly on sym-
bols as opposed to shape or geometric objects; this is called a de-
scriptive grammar) and those typically used for producing build-
ings (implemented here using wall grammars, which operates di-
rectly on walls rather than symbols, and is in essence a type of
shape grammar). These two techniques are chosen because they
exemplify much of the procedural model generation work in the
current literature: the generation of floral ecosystems (such as in
the work of Prusinkiewicz, e.g., [Prusinkiewicz and Lindenmayer
1990; Deussen et al. 1998; Mvech and Prusinkiewicz 1996]) and
urban landscapes (such as the work of Müller and Wonka, e.g.,
[Parish and Müller 2001; Wonka et al. 2003]), both of which rely
strongly on formal grammars. While we focus on real-time1 ap-
plications, the methods presented here are easily applied to offline
rendering, as well as to procedural methods not based on formal
grammars.

Grammars come in two types, those described as descriptive —
which operate on symbols, and hence have a separate interpretation
step to create geometry from those symbols — and shape gram-
mars, which operate directly on shape / geometry, and have no in-
terpretation step. There is, unfortunately, no straightforward way
to unify how physical components are added to the two grammar
families, and so we provide solutions for both.

We extend the L-System formalism with symbols for controlling
properties of a physics simulation (such as an object’s mass, or the
constraints on a joint). No limitations are placed on the geometric
output. For each geometric object undergoing simulation, the inter-

1We define real-time animation as having frame rates in excess of 30
frames per second.
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pretation of the L-System symbols also includes output meant for
the physics simulation. As the simulation modifies these objects,
their movement is mapped onto the corresponding geometry.

For shape grammars, we show how the geometry can be subdivided
to produce the material components (brick, wood, etc.) constituting
the object. By keeping track of the surrounding geometric context
as the geometry is subdivided we can also include material compo-
nents, such as bricks, which may overlap the various larger shapes
used to create the bulk of the model. Again, this process should be
applicable to other methods, such as split grammars.

The output of these grammars are models that are ready to be an-
imated using a dynamics engine. This can be used to trivially
produce animations of trees gently swaying, blowing violently, or
merely sagging under gravity. Buildings can easily be made to col-
lapse, or to react to external forces such as a wrecking ball, explo-
sives, vehicular accident, and so on.

An important aspect of our work concerns user testing: we have
presented our animated models to users (n = 20) and allowed them
to compare the models’ behaviour to videos of actual trees and col-
lapsing buildings. We also asked the users to rate the realism of
our animations in relation to games. The results show that the users
find the animations realistic, although some unrealistic elements re-
main (such as there being a lack of dust clouds when a building col-
lapses), most of this appears to be easily correctable. The users also
find our animations to be an improvement on those seen in current
games. Apart from this, we report on some aspects of our perfor-
mance testing to see how close to real-time performance we have
come. We did not make use of hardware accelerated physics sim-
ulation and relied solely on a software implementation. This does
mean that our obtained performance is less than what we wanted,
and we did not manage to meet our real-time needs.

The paper begins by covering some background in physics simu-
lation (§ 2.1) and grammar-based procedural methods for flora and
building generation (§ 2.2). Section 3 presents the implementation
details related to augmenting these formal systems to manage the
physics simulation. Next, we cover the experimental methods used
for the testing (§ 4), and present and discuss the obtained results
(§ 5). Finally, we conclude (§ 6).

2 Background

2.1 Physical Dynamics

Computer simulated physics is widely applied in films, games and
virtual environments, and has been an area of intense ongoing re-
search for decades, beginning with simple rigid-body animations
of objects obeying Newtonian mechanics [Badler 1982; Girard and
Maciejewski 1985; Wilhelms 1987]. While the broad principles of
motion dynamics have been well understood for some time there is
ongoing work in adapting them to specific circumstances, such as
liquids [Wang et al. 2009], cloth [Kaldor et al. 2008], hair [Selle
et al. 2008], and deformable bodies [Nesme et al. 2009], where
requirements for visual realism differ. A further challenge lies in
attempting to make such simulations real-time, which allows im-
provement in the realism, and hence immersion, of interactive me-
dia.

In this paper, we focus specifically on jointed rigid bodies because
these forms of simulation are relatively mature, as evidenced by the
availability of a number of stable physics engines 2 3 4, and capable

2Bullet Physics: http://www.bulletphysics.com/
3PhysX: http://developer.nvidia.com/object/physx.html
4Dynamics Engine: http://www.ode.org/

of supporting both tree and building dynamics. For the interested
reader, Boeing and Bräunl [2007] and Seugling and Rölin [2006]
provide comparisons of existing physics engines.

In jointed rigid-body dynamics a number of rigid segments (bones)
can be connected with rotational constraints (joints) to form a hi-
erarchy (or skeleton). Physical dynamics can then be applied to
the skeleton so that it moves in a believable fashion under various
forces, such as gravity and wind [Faloutsos et al. 2001; Popovic
2000]. A typical example of this is the ’rag-doll’ physics found
in video games (e.g., Unreal Tournament 2003), where characters
‘realistically’ fall, roll and collide with their environment.

2.2 Grammar-based Procedural Methods

Grammar-based procedural methods consist of a set of substitution
rules that operate on an initial string of symbols to produce a fi-
nal string. This string is then interpreted in some way to produce
the wanted output. L-Systems (Lindenmayer System) are an early
example of a grammar-based modelling and simulation system, de-
veloped in 1968 by Aristid Lindenmayer as a method for simulating
the growth of simple multi-cellular organisms [Lindenmayer 1968].
Since then they have been employed in a wide range of applica-
tions, such as the modelling of cities and road networks [Parish and
Müller 2001], plants, trees and ecosystems [Prusinkiewicz and Lin-
denmayer 1990].

To interpret the symbols of an L-System as a tree, Prusinkiewicz
proposed an approach similar to the turtle graphics used in LOGO
[Abelson and diSessa 1982; Prusinkiewicz 1986; Prusinkiewicz
1987]: the generated strings become instructions to a plotter pen
(the eponymous turtle in turtle graphics) drawing the basic skeleton
of the tree. Extensions [Prusinkiewicz and Lindenmayer 1990] up-
date this process to produce geometric models rather than merely
line drawings.

The basic L-System formalism has been expanded to produce open
L-Systems [Mvech and Prusinkiewicz 1996], differential L-Systems
[Prusinkiewicz et al. 1993] and so on, allowing L-Systems to query
the model as it is being produced, to query the environment in
which the model is being produced, and to understand continuous
changes in the model for animations of growth. This range of sub-
types means L-Systems have a correspondingly wide range of uses,
as can be seen in their extensive usage in procedural generation,
such as by Deussen et al. [1998] and Parish and Müller [2001].

Additionally, Stiny and Gips [Stiny and Gips 1972] presented a
grammar-based approach in which the symbols are replaced with
geometric shapes. Rather than having an initial string of symbols,
the system has an initial shape, and rather than having a separate
interpretation step, each substitution directly affects the geometry
of the initial shape. While shape grammars have been heavily used
in architecture, in the computer graphics literature they have been
replaced with split grammars.

The split grammar [Wonka et al. 2003; Müller et al. 2006] is a shape
grammar that operates on geometry that is iteratively split, allowing
a base-shape to be refined into a building. For example, a cuboidal
block can be split vertically into floors, each floor can be further
split to form windows, doors and other building structures. A wide
variety of buildings and architecture can be constructed using this
approach [Wonka et al. 2003; Müller et al. 2006].

The wall grammar is a two-dimensional split grammar [Larive and
Gaildrat 2006] that operates solely on building façades (2D faces).
These façades are joined together with a roof to form a final 3D
building model. Similar to split grammars, wall grammars split
2D rectangles into individual floors, then divide these floors into
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Figure 2: An example of an L-System being used to create a simple tree over three iterations, along with the physics skeleton generated for
the final tree.

Constraint 1A: Maximum 
swing angle between 

segments.

Constraint 1B: Spring force 
that pushes the segment 

towards its rest angle.

Constraint 3: Limits on the 
minimum and maximum 

distance between segments.

Constraint 2: A limit 
preventing any twisting 

around the cylinder axis.

Figure 3: A diagram explaining the four constraints used in the joints between adjacent physics bones.

windows, doors, and so on, to create a single façade [Larive and
Gaildrat 2006].

Using a basic floor-plan, the wall grammar is able to create a wide
variety of building shapes and styles. Whilst not as varied as the
3D split grammar, it is far simpler to implement and, according to
Larive and Gaildrat [2006], simpler to use.

2.3 Related Work

There has been little research into extending procedural generation
grammars for physics, particularly with respect to buildings.

Sakaguchi and Ohya [1999] show how to animate models of trees
by dividing them into rigid segments and calculating their move-
ments with a highly realistic two phase simulation. The first phase
calculates the movement of individual branch segments, and the
second phase integrates these individual movements together into
the overall tree simulation. While this is similar to our work — we
also use a branch segment approach — Sakaguchi and Ohya gen-
erate their trees from captured image data rather than procedurally.
Further, they aim to produce a highly realistic physics model, and
real-time interaction is not a priority of their work. In spite of this,
parts of their research inform the simulation methods employed in
our system.

Wong and Datta [2004] demonstrate similar work for animating
plants. Their technique is intended to be usable in real-time and
follows a similar approach to Sakaguchi’s by dividing the plant into
rigid segments and placing constraints on the movement between
adjacent segments. Their research is aimed at animating low num-
bers of small, soft plants, and places a heavy emphasis on leaf an-
imation. In contrast, we are more interested in large numbers of

fully grown trees. Additionally, they use pre-created models with
randomised branch placement, as opposed to a grammar-based ap-
proach.

There has been work on animating the growth of models produced
using L-Systems, since L-Systems lend themselves well to this.
Substitution rules are inherently discrete, changing the string (and
hence its interpreted shape) in steps. Prusinkiewicz et al. [1993]
present a way of using differential equations to specify how the
model changes continuously between these steps. This differs from
our work in that we are animating the models after production;
Prusinkiewicz et al. [1993] are concerned with the animation (and
simulation) of the production itself.

While buildings are often destroyed in film, or even in games, we
have found no published work on how to procedurally generate
buildings to which external forces can trivially be applied and ani-
mated using physical simulation.

3 Implementation

We implemented tree and building generation using two separate
grammar-based systems: L-Systems for the trees, and wall gram-
mars for the buildings. Standard rules and interpretations of these
grammars (see below) were extended to provide control over the
model’s motion dynamics. The interpretation of the string produced
by the L-System generates not only the geometric model of the ob-
ject, but a separate skeleton suitable for use in the physics simula-
tion. The wall-grammar, since it operates directly on geometry, has
no modified interpretation, but merely additional physical proper-
ties belonging to the shapes themselves, and additional substitution
rules for breaking the shapes into their constituent components. All
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the physical simulation occurs after the creation of the final geo-
metric output. The physical simulation plays no part in the applica-
tion of the rewrite rules in each grammar, although if, say, open L-
Systems [Mvech and Prusinkiewicz 1996] were implemented, then
the physical simulation itself could guide plant development. While
we wrote our own grammar systems, the physical simulation was
executed using off-the-shelf software (namely PhysX).

More details of the design and implementation of our system can
be found in Baxter [2009] and Crumley [2009].

Hereafter, we discuss first the creation of trees, and then buildings.

3.1 Tree Creation: the Descriptive Grammar Approach

We employ a fairly simple context-sensitive, parametric, stochas-
tic L-System [Prusinkiewicz and Lindenmayer 1990], although the
method described here should trivially apply to any other L-System.
Trees are generated in three stages: a string representing the tree is
generated using an L-System grammar; this string is interpreted to
produce the tree geometry; and the same string is interpreted again
to produce a skeleton for the physics simulation. This skeleton is
associated with the tree geometry.

The interpretation we use to produce the tree geometry is similar
to the turtle graphics approach proposed by Prusinkiewicz, an ex-
cellent overview of which can be found in the Algorithmic Beauty
of Plants [Prusinkiewicz and Lindenmayer 1990]. A simple visual
example of our algorithm generating a tree can be seen in Figure 2.

Importantly, the ‘turtle’ is given instructions defining branch den-
sity, thickness, texture, and so on. These parameters can be mod-
ified via symbols in the L-System and are used at later stages in
the tree creation process to enhance the range and diversity of the
output. We represent each branch with a textured cylinder.

The physics skeleton is created by defining a rigid physics ‘bone’
along each segment of the tree branch; these bones are connected
together with appropriate joints. This is similar to the approach
used by Sakaguchi and Ohya [1999], but has been significantly
modified for use with a physics engine. The bones define the shapes
used in the physics simulation, and the joints define the forces and
constraints that occur where two or more shapes join. We represent
the bones using capsules (3D ellipsoids). The constraints placed on
the joints are discussed further below, while the symbols controlling
the physical properties of the model are described in Table 1.

In practice, it is necessary to make a physics capsule slightly shorter
than the length of the branch. If it spans the full length, adjacent
capsules overlap, causing undesirable interactions between compo-
nents of the tree, and ultimately resulting in unwanted movement.
We recommend that the physics bones be between 80% and 95% of
the actual length of a branch segment. The visual representation of
the branch, on the other hand, should remain at the full length.

We create leaves as simple billboard textures, using alpha channels
to allow transparency. Two perpendicular billboards are attached to
each branch segment. While this is a simple method, the physical
simulation should easily support any leaf generation method, even
those that produce leaf geometry.

A physics bones is connected to those that occur both before and
after it in the branch. Since the final segment in a branch has no
successor, it is a terminating bone. Also, the first segment in a
branch connects to its parent branch (or the ground, in the case of
the main trunk).

There are four constraints in each joint between bones. These val-
ues are set by the user in accordance with the tree type being cre-
ated (e.g., a willow tree is more flexible than an oak), and can be

modified on a per-segment basis using specific L-System symbols.
Figure 3 provides an overview of the constraints, namely:

• A spherical joint designed to control the angle between two
adjacent segments. This prevents movement past a specific
limit (constraint 1A in Figure 3).

• A spring force that moves the segments back to their rest po-
sitions. The spring is important in giving the branches a sense
of flexibility and springiness (constraint 1B in Figure 3).

• A constraint that prevents the segments from twisting around
the axis running down the length of the cylinder / capsule,
since branches on real trees do not show such rotation (con-
straint 2 in Figure 3).

• A distance constraint enforcing a minimum and maximum
distance between the segments. This is added to prevent
strong forces from overcoming the spherical joint’s con-
straints and moving adjacent segments apart, which would
create a visible discontinuity (constraint 3 in Figure 3).

The twist and distance constraints can be given a spring value (to
better represent branches flexing), but the spherical joint is a simple
constraint used to control movement and cannot be given an associ-
ated spring value. Each joint has an optional breaking force which,
if exceeded, destroys the joint, allowing the tree to break apart.

The breaking forces and all other physics-related parameters are
adjustable on a per segment or global basis via symbols in the L-
System.

Current value of all physics parameters are stored, along with
the turtle’s position and orientation, on the branching stack (cf.
[Prusinkiewicz and Lindenmayer 1990]), allowing these parameters
to be saved and recalled. In addition to symbols setting the values
of physical parameters, some symbols specify a factor to multiply
a parameter by after each segment has been created. This allows
for the creation of realistic tree parameters, for example, applying a
factor of 0.9 to the density of a branch, gives that branch a gradual
reduction in mass along its length.

For example, the symbol string:

Density(5) DensityRate(0.5) F(10) F(10) F(10)

will create three segments of length 10, with density 5, 2.5, and
1.25 respectively.

While physics engines vary in the features they provide, any rea-
sonably functional engine should support the constraints used here.

The final result of this algorithm is a geometric representation of a
tree, as well as a connected underlying physics skeleton that can be
used to dynamically simulate and animate the tree. The results of
our algorithm can be seen in Figures 4 and 5.

It is also worth noting that our skeleton creation algorithm should
operate on any tree generation method in which the trees’ structure
is explicitly defined. It is not limited solely to L-Systems or other
descriptive grammars.

3.2 Building Creation: the Shape Grammar Approach

Larive and Gaildrat’s [2006] wall grammar generates a façade sub-
divided into many large panels. Each panel represents a portion of
the façade’s surface, such as a wall, door, window and so on. While
this is sufficient for creating a façade, this façade is unsuitable for a
dynamics simulation as it would: a) break up into large rectangular
sections instead of into its constituent material, such as bricks, and
b) even if the blocks were split further into smaller bricks and other
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Figure 4: Four frames taken from an animation of palm trees experiencing a strong gust of wind.

Figure 5: Three frames taken from a simulation of several trees being knocked over by a super-strength wind.

components, they would have no connecting ‘mortar’ or other in-
ternal structure to give the model rigidity and stability. These two
concerns are addressed by our extensions, explained below.

Splitting the panels is simply a matter of deciding how to divide
them into smaller blocks. We assign types (such as ‘wall’, ‘win-
dow’, ‘door’) to each panel. This type contains data such as surface
texture and material density. How the panels are then split depends
on their type (see Figure 6).

For instance, we chose to model buildings made up of brick walls.
An important property that needs to be taken into account for brick
walls is that bricks are placed in layers, with each layer offset from
the layer above and below (see Figure 7). Bricks are joined to ad-
jacent bricks with mortar, which breaks after a certain separating
force is applied. That force is linearly proportional to the surface
area of the overlapping regions5. Walls made of wooden boards
can be treated in a similar manner (as ‘longer‘ bricks with differ-
ent mass). Wood should also fracture and splinter to create realistic
breakage animations. While we did not implement this, it should
be clear that the wooden boards themselves can be split in much
the same way that panels are split into bricks.

One problem with forming panels out of brick is that the bricks may
extend outside the boundary of a particular shape / panel and into a
neighbouring panel. If the neighbouring panel is of the same type,
then this overlap should occur, as the two panels should appear con-
tinuous. For neighbouring panels of different type, the bricks are
cut off at the edges to prevent such an overlap.

Once the panels have been subdivided into their component mate-
rials, the material needs to be connected to one another. Without
some form of connecting ‘mortar’ holding — for instance — the
bricks together, the building would simply collapse.

We do this by determining which of the material components

5Our building models do not account for long-term stress and fractures,
only short-term, violent breakage.
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them.
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Set 1 Set 2

Figure 7: Both the above panels are tiled with a brick layout, with
some overlap. Red block are tiles from the left panel, blue from
the right. Since both panels are brick layouts, the brick are permit-
ted to overlap. The bricks on the right edge of the red blocks are
connected with the bricks on the left edge of the blue blocks.

(bricks) are touching each other; these bricks are connected using
joints that hold two bricks rigidly together until a strong enough
linear or rotational force is applied, at which point the joint breaks.

The linear and rotational constraints are similar to those used in the
tree simulation (see Figure 3):

• The joints are kept rigid, allowing no angular variation be-
tween the bricks (cf. constraint 1A in Figure 3).

• Brick are allowed sufficient force so as to return to their cor-
rect positions relative to each other each frame. If this force
exceeds a maximum breaking force, the joint is broken (cf.
constraint 1B in Figure 3).

• A rotational limit stops the bricks from twisting. If the bricks
do twist, an opposing rotational force is applied to correct
their positions. The joint breaks if it exceeds a maximum
breaking force (cf. constraint 2 in Figure 3).

• A distance limit constraint attempts to correct any changes
in the distance between the bricks by applying an opposing
force. If this opposing force exceeds a maximum breaking
force, the joint breaks (cf. constraint 3 in Figure 3).

In placing joints, the trivial implementation of an O(N2) algorithm
to determine which of the N bricks are adjacent to each other per-
forms poorly for large buildings. Instead, we keep track of which
bricks are neighbours when subdividing the panels, thereby avoid-
ing this quadratic cost.

In the special case of bricks lying on the edge of the panel (see Fig-
ure 7), we can use information about the panel layout to overlay as
necessary the edge bricks of neighbouring panels. Similarly, we can
locate the edge bricks of a whole façade during content generation,
allowing the edge bricks of neighbouring façades to also overlap.

As the original wall grammar technique does not create any addi-
tional structure for its generated buildings beyond a roof, we in-
clude an additional step in the process to add a number of inter-
nal floors. Most façades are created by splitting a large 2D rectan-
gle into floors. Unfortunately, since the wall grammar only creates
façades, there is little data within the generation process that can be
used to create further internal structure, such as individual rooms.
This means that each level of the building is simply one large room.

3.3 Level of Detail Schemes

We added a number of physics optimisations into our implementa-
tion to improve its performance. These consisted of graphics op-
timisations adapted for use in real-time physics simulation. Addi-
tionally, the physics engine we used (Nvidia PhysX6, but without
hardware acceleration, since that was not available on our develop-
ment OS) provides some optimisations, the major one of which is
automatic object ‘sleeping’ (stopping the simulation of objects that
have been stationary for some time until some external force acts
upon them).

Our additional physics optimisation methods include:

• Frustum culling: objects lying outside a slightly widened ver-
sion of the camera’s view frustum are not simulated. The frus-
tum is slightly widened to prevent objects spanning the edge
of the screen from being affected. This is based on frustum
visibility culling [Assarsson and Moller 2000].

• Distance threshold culling: any object beyond a certain range
is not simulated. Because the object is some distance away,
the viewer does not notice the lack of simulation. This is
equivalent to billboarding [Behrendt et al. 2005] in a graphics
context.

Both of these optimisations can cause obvious inconsistencies with
what the user expects (e.g., stationary distant objects, falling enti-
ties not moving when unobserved, etc.), so their usage should be
restricted to situations where these problems are unlikely to be no-
ticed.

It should be noted that the chosen distance thresholds can have a
large impact on both performance and visual quality, and therefore
need to be set with care. We chose the threshold values heuristi-
cally during development, by examining a range of distances and
selecting one which we felt provided an acceptable trade-off be-
tween quality and performance.

There remains significant scope for using other level-of-detail
schemes, many of which would likely significantly improve per-
formance.

4 Experimental Methods

Our work is intended to answer two main questions, namely, “how
realistic and convincing are the results?” and, “How does the sys-
tem perform, and does it achieve real-time frame rates?”

We examine these questions using three experiments:

• User testing to determine how realistic the animations seem
in relation to video of real-world trees and buildings.

• Visual heuristic validation, in which we, the authors, deter-
mine how realistic the content is in comparison to reality.

• Performance tests to determine how computationally costly
our techniques are.

4.1 User Testing

Our user testing consisted of a study in which we allowed our sub-
jects (n = 20; all university students) to compare videos of real-
world trees and buildings with videos of our animations.

We recorded videos drawn from across the range of possible sim-
ulations our system can produce. These were presented to each

6http://developer.nvidia.com/object/physx.html
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Figure 8: A building undergoing demolition in the physics simulator.

user (we use the word interchangeably here with subject) along-
side videos of similar, real-world events (for example, our system
running a simulation of a building being demolished and a real-life
video of a building being demolished). The subjects where then
asked to rate the realism of our system’s simulation in comparison
to the real-world video (“On a scale of 1 to 7, how realistic did the
events in the simulation video seem to you, compared to the events
in the real life videos?”). Each subject was also asked to compare
the simulation against the dynamics shown in current video games
(“On a scale of 1 to 7, how realistic would you consider the video
in terms of what you would expect in a video game?”). Note that
this was not a direct comparison, but rather done from the subject’s
memory of games they had played. Six of our subjects reported
having spent little time playing games in the last few years, and this
is taken into account in our results presented below.

The ratings of these videos were carried out using a Likert scale
of 1 to 7, with 1 indicating that the simulations were, “Totally un-
realistic,” and 7 indicating that the simulations were, “Completely
realistic.” After evaluating the videos the users were finally asked
to give their overall impression on the realism of the animations on
a scale of 1 to 10 (again, 1 being a complete lack of realism, 10 be-
ing full realism), and were also asked whether the animations were
an improvement over those seen in current games, again on a scale
of 1 (“Current games are more realistic”) to 10 (“Massive improve-
ment”), with 5 being a baseline of no change. Each subject was
given space to fill in a qualitative assessment of the animations.

The interaction between the test’s administrator and the subjects
was scripted, and the order in which the videos were shown was
randomised. It was emphasised to subjects that they should focus
on the movement and dynamics of the trees and buildings, not the
visual appearance of the models. This was due to concerns that
users might otherwise blur the line between appearance and move-
ment, and critique the visual appearance rather than the physics.

We showed videos of our animations instead of allowing direct in-
teraction with our system for two reasons: firstly, our system could
not run large numbers of trees or complex buildings at a frame rate
that was acceptable for real-time interaction (see § 4.3 and § 5.3);
secondly, it better controls the users’ experiences to ensure the va-
lidity of our results, removing any variance from the users interac-

tion with the environment.

4.2 Visual Heuristic Validation

In this evaluation we aimed to analyse our generated content with a
focus on discovering notably unrealistic elements.

This evaluation was conducted by the authors rather than by test
subjects, and was qualitative in manner.

Ideally, we would have carried out an automated analysis based on
the laws of physics, but that was not an option due to time con-
straints. This testing was heuristic in nature, and we searched for
elements that stood out as being noticeably realistic or unrealistic.

4.3 Performance Testing

Our implementation, developed in C++, uses OGRE7 for rendering
and PhysX for dynamics simulation. OGRE and PhysX are both
software packages that have been used (to greater or lesser extents)
in the commercial games industry.

Performance was tested by running the simulation on scenes con-
taining either a single building (and many bricks) or a number of
randomly generated trees. Each successive scene increased the
number of trees or bricks, in a range of 50 to 250 trees (in steps
of 50) and 2000 to 15196 bricks.

Note that the number of polygons per tree varied due to the random
nature of stochastic L-Systems. On average there are roughly 350
polygons, with a minimum of approximately 100 and a maximum
of approximately 750. The number of polygons in a building is
always proportional to the number of bricks in the building, there
being six rectangles per brick.

Each scene was repeated five times. We recorded and averaged the
observed frame rate and the time taken per update of the graphics
and physics pipelines. Our software was run on an Intel i7 950
3.03GHz CPU (four hyperthreaded cores) with 6GB RAM and a
Nvidia GeForce 295.

7http://www.ogre3d.org/
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Figure 9: Graphed results of the performance testing of our system. The y-axis shows the number of frames per second, the x-axis the
number of trees / bricks in the scene.

Testing was performed with all the previously discussed optimisa-
tions and level-of-detail schemes enabled.

5 Results and Discussion

5.1 User Testing

All the averaged user scores comparing the different simulations to
real-life, except for one, were over 5 (with 5 meaning, “Realistic,
but with a noticeable amount of unrealistic elements”). The scores
were slightly higher when comparing our simulations to video
games, but when removing users who did not often play games
there was no significant difference between the results (p > 0.05
for each question). Again the average scores (across all users) were,
barring one simulation, above 5. When all the data from the indi-
vidual simulations / video comparisons were grouped, the average
score obtained when comparing our animations to real-life videos
was 5.26 (standard deviation is s = 1.34). The overall average
compared to current video games was 5.81 and s = 1.15 (a score
of 6 means, “Realistic, with some elements that were unrealistic”).
There is a significant difference between these composite scores,
even when taking into account the users with little recent gaming
experience (observed p = 0.0002, t = −3.78, df = 267.93).

These results show that the while there still remain unrealistic el-
ements to our animations, users considered our animations better
than the dynamics of trees and buildings used in video games today.

These findings were also confirmed by the users’ responses in the
overall evaluation questions: no score was lower than 5. The aver-
age score compared to reality was 7.6, with s = 1.19. For the com-
parisons to current video games the average was 7.61 and s = 1.69.
Considering the questions asked to obtain these scores (§ 4.1), it
makes little sense to statistically compare them for difference.

On the qualitative side, the test subjects noticed several unrealistic
elements in our simulations, but none were considered significant
enough to drastically lower the scores. The most commonly de-
scribed problems with the buildings were that the walls appeared
rubbery; there was no dust clouds when buildings were destroyed;
and, occasionally, the bricks would float in the air in defiance of
gravity. The problems with the trees included violent motions in

some of the branches inconsistent with the forces applied to the
tree; the leaves of the trees not exhibiting fine-grained behaviour;
and the trees not being rigid enough compared to real-world trees.

It should be emphasised that the qualitative feedback included many
positive comments, and many complimentary remarks concerning
how realistic the trees and buildings were. This, combined with
the high scores in the quantitative section, indicate that the negative
feedback was not sufficient to detract from the system’s realism.

In general the test subjects were very positive concerning the real-
ism of the models, and felt that our system was a clear improvement
over the dynamics seen in current video games. Their feedback did
highlight several unrealistic elements, but none of these problems
are critical; they are either quirks of the physics engine used in our
implementation, or they could be fixed with some tweaking and en-
hancement of the generative process. For example, trees which are
too springy and not sufficiently rigid can easily be remedied by in-
creasing the rigidity of the branch joints (constraint 1B in Figure 3).
None of the reported issues were due to problems with the funda-
mental concepts of the algorithm.

5.2 Visual Heuristic Validation

During this evaluation we identified several unrealistic elements in
the behaviour of the generated trees and buildings. Many of these
overlapped with the problems reported by the participants in the
user testing. However, in our evaluation we noticed a number of
problems that the test subjects had not picked up on.

The most significant of these included the larger buildings collaps-
ing on their own due to a lack of internal structure providing sup-
port; a slight wobble in the buildings due to a compounded effect
of unavoidable, minute bends in the joints (also related to the lack
of internal structure); light tree branches occasionally remaining in
a state of perpetual motion; and branch segments visibly separating
under very high forces.

Most of these problem areas occur only in specific circumstances,
and can be fixed by tweaking the procedural generation method in
question, or the parameters of the physics simulation. For example,
the reported wild thrashing motion of some branches was caused by
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branch segments overlapping; our solution is to decrease the length
of the segments so that this cannot occur.

In general, our content appears realistic, with only a few areas
where the behaviour or visual appearance is noticeably unrealistic.

5.3 Performance Testing

We classify performance by frame rate (frames-per-second / FPS)
into three categories. They are: real-time (greater than 30 FPS),
interactive (10 to 30 FPS), and non-interactive (less than 10 FPS).

As shown in Figure 9, even simple buildings could not be animated
in real-time. The smallest case produced a frame rate just above 15
FPS. The remaining test cases all produced non-interactive frame
rates. The reason that the number of bricks do not increase in linear
steps is due to their number being dependant on the geometry of
building, and not directly controllable.

We also did not achieve real-time frame rates for the tree anima-
tions. In the smallest case we achieved a result of 27.75 FPS, which
is close to 30 FPS. As the number of trees increased, the frame rate
dropped off, with the largest two test cases producing results that
are just under interactive frame rates.

We do note that our performance testing did not make use of GPU
hardware acceleration for the physics simulation. In practice this
acceleration can produce a significant speed-up in performance
(typically at least 5–10 times). Hence, it is possible that such hard-
ware acceleration would allow our system to produce real-time re-
sults for scenes more complex than is currently possible.

6 Conclusion

Procedural content generation is likely to only increase in impor-
tance as the need for larger scenes — with greater real-life fidelity
— grows. To this end we have shown how to algorithmically pro-
duce models that are ready to be animated using physical simu-
lation. Importantly, aspects of the simulation (e.g., specific mass;
joint constraints) are easily specified in the grammar itself. Further,
a group of users (n = 20) found the produced animations to be
both realistic — although with some unrealistic elements, most of
which appear easy enough to solve — and an improvement on the
physics seen in current games.

This work can be readily extended: there exists a wealth of level-of-
detail methods that could be implemented to increase frame rates,
including using approximate calculations for distant objects, dy-
namically aggregating collections of objects into a single object for
the purposes of simulation, and so on. Performing the physics com-
putation on the GPU would also offer a considerable speedup. Fur-
ther, the technique of extending the grammars with physical inter-
pretations can be readily applied to procedural models other than
that of plants and buildings, such as landscapes (water erosion) and
interacting mechanical objects.
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Symbol Description
Width Controls branch width.
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Table 1: A table of the of symbols we added to our L-System that are used to control the physics simulation parameters of the branch
segments. There is scope here for adding additional symbols to control other aspects of the simulation.
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