
EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Parallel, Realistic and Controllable Terrain Synthesis

J. Gain1,2, B. Merry1,2 and P. Marais1 †

1 Computer Science Department, University of Cape Town
2 Centre for High Performance Computing, South Africa

(a) (b) (c)

Figure 1: Source heightfield exemplars (a) contribute to a synthesized terrain that can be controlled using: (b) a brush interface
for painting terrain characteristics, and (c) point and curve constraints to shape landforms.

Abstract
The challenge in terrain synthesis for virtual environments is to provide a combination of precise user control over
landscape form, with interactive response and visually realistic results.
We present a system that builds on parallel pixel-based texture synthesis to enable interactive creation of an
output terrain from a database of heightfield exemplars. We also provide modelers with control over height and
surrounding slope by means of constraint points and curves; a paint-by-numbers interface for specifying the local
character of terrain; coherence controls that allow localization of changes to the synthesized terrain; and copy-
paste functionality to directly transplant terrain regions.
Together these contributions provide a level of realism that, based on user experiments, is indistinguishable from
real source terrains; user control sufficient for precise placement of a variety of landforms, such as cliffs, ravines
and mesas; and synthesis times of 165ms for a 10242 terrain grid.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Texture

1. Introduction

Virtual terrain is an important component in the representa-
tion of natural environments for computer games, film, sim-
ulation and training. In some applications, such as flight sim-
ulators, it can even be a dominant element.

From an artist’s perspective, the process of creating digi-

† jgain@cs.uct.ac.za, bmerry@gmail.com, patrick@cs.uct.ac.za

tal terrain should ideally provide: (1) selective control, that
ranges from the general (overall terrain character) to the spe-
cific (local placement of features such as ravines, cliffs, and
ridges); (2) interactivity, with immediate feedback of design
changes to support fine tuning; (3) realistic results, that are
visually consistent with real landscapes.

So, how do existing approaches measure up to these
goals? There are currently three broad strategies for ter-
rain generation (ranked by increasing realism and attendant

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.12545



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

computation cost): procedural noise, erosion simulation, and
texture synthesis. Noise-based heightfields [Man83, Lew87,
LLC∗10] can be generated in real time from a small set of
seed values, demonstrating considerable database amplifi-
cation. They are also effective in capturing self-similarity
across different scales and can be locally adapted to cre-
ate terrain heterogeneity. On the downside, they do not ade-
quately represent drainage and weathering, with the excep-
tion of work [GGG∗13] that explicitly models river networks
using principles derived from hydrology.

Another way to improve realism is by a simulation of hy-
draulic and thermal erosion [MKM89], a process that can be
made interactive by a combination of localized updates and
graphics hardware [NWD05,KBKv09,VBHS11]. Of neces-
sity, however, these simulations simplify the complex phys-
ical processes involved, with a resulting loss of fine detail.
For instance, these approaches cannot support the rapid in-
teractive creation from scratch of continent-sized terrains,
such as appear in Figure 12, where the erosion detail is fine
relative to the scale.

More realistic terrains are generated by texture synthe-
sis [ZSTR07, BSS07, WSG07], since this enables the use
of real-world exemplars, such as the digital elevation mod-
els available through the U.S. Geological Survey [GOG∗02].
Unfortunately, this realism currently comes at the expense of
user control and interactivity, allowing only limited feature
placement and requiring several minutes per synthesis.

Our focus is on bringing interactivity and user control
to texture-based terrain synthesis. To achieve interactivity,
we build on existing parallel pixel-based texture synthesis
[LH05,LH06,HRRG08]. A parallel patch-based approach is
less suitable because it would be roughly an order of magni-
tude slower [LL12].

We adapt synthesis (§4) to source more features by match-
ing on relative rather than absolute height and by incor-
porating larger exemplars into GPU memory. To achieve
user control, we introduce a variety of constraints (see Fig-
ure 1) specified through a mix of sketching, painting and
widget interface elements (§3). Geometric constraints (§5.1)
allow the user to shape the terrain by placing points and
curves, with additional controls for height, slope and the
envelope of surrounding influence. Type constraints (§5.2)
are used to tag exemplar regions that share a common char-
acter (canyons, flat lands, coastline, hills, and so on), and
this can then be transferred to the terrain under synthesis in
a paint-by-numbers fashion. Finally, coherence constraints
(§5.3) address the problem of local changes spreading glob-
ally by adding a per-pixel coherence term to the synthesis
process that weights synthesis towards retaining existing val-
ues. This also enables copy-paste functionality, in which de-
marcated regions are interactively transplanted to a new lo-
cation and elevation and then frozen by enforcing the maxi-
mum coherence.

Our key technical contributions are thus:

1. A hybrid interface for interactively specifying terrain
constraints that makes use of sketching, painting and ma-
nipulator widgets.

2. Extensions to parallel texture synthesis to enable far
larger exemplars and relative rather than absolute height
matching, which are necessary to support terrain synthe-
sis.

3. A set of novel mechanisms built into the synthesis match-
ing process that satisfy point, curve, coherence and copy-
paste constraints without degrading terrain fidelity.

The resulting system evinces (§6): high fidelity, based on
a forced-choice user experiment in which we compared syn-
thesized against real elevation data; control, which enables
the placement of landforms at both a coarse and fine levels;
and interactivity, with synthesis times on the order of 68ms
for a 5122 patch and 165ms for a 10242 patch.

2. Related Work

In the area of texture synthesis, landscapes are often used
as illustrative examples [HJO∗01, LH05, HRRG08]. Mostly,
this is with the intention of demonstrating generality rather
than a particular adaptation to terrain. In contrast, Zhou et
al. [ZSTR07] provide terrain-specific synthesis by consider-
ing curvilinear features such as ridges and valleys as part of
a patch-based approach. They choose patches from a single
exemplar based on rough feature placement and then employ
image warping to further align features, and graph-cut seams
and poisson merging to hide patch boundaries. User control
is by means of a 2D sketch map, which enables in-plane
placement of features but no specification of height. Tasse et
al. [TGM12] improve on this with a GPU implementation,
better patch blending using Shephard Interpolation of the
gradient field along seams and deformation to match height
profiles. Texturing-inspired methods have also been used to
add detail to low-resolution heightfields [BSS07] and patch
holes in digital elevation models (DEMs) [WSG07]. While
these methods are highly realistic they are far from interac-
tive, requiring several minutes per synthesis. Furthermore,
patch-based approaches often apply a post-hoc deformation
after synthesis in order to match curvilinear constraints. This
alters the direction of river courses and the slope of moun-
tains in a fashion insensitive to the underlying geomorphol-
ogy. For instance, when slope changes the character as well
as inclination of erosion patterns may change significantly.
In contrast, such constraints are built directly into the syn-
thesis process in our system.

Much of the recent work on interactive terrain model-
ing has focused on sketching interfaces to procedural noise-
based heightfield generation. Typically, the user sketches
a characteristic curve, and an interpolating terrain is gen-
erated. These methods differ in the nature of the con-
straint curves: straight base lines [WI04]; 2 1

2 D silhouette,
shadow and footprint features [GMS09]; curves with side
profiles [RME09]; and with attached control points to con-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

106



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

Widget Icons

Tilt

Swivel

Raise/Lower

Area of Effect(a) (b)

(c) (d)

Translate

Figure 2: Four types of constraint widgets provide different forms of control over height, gradient, area of influence and region
copying: (a) free-standing, (b) curve-located, (c) junction-located, (d) centroid-located.

trol elevation, orthogonal slope and noise [HGA∗10]. They
also display a variety of interpolation schemes, from multi-
resolution deformation of wavelet noise to multigrid diffu-
sion, even avoiding smooth interpolation altogether in order
to support overlaying vector elements with distinct bound-
aries, such as rivers and roads [BN08]. The first person
sketching interface of Tasse et al [TEC∗14] is notable in that
it builds on existing terrain data rather than noise. A user is
able to draw complex silhouettes from a chosen viewpoint
and ridge lines on the source terrain are raised or lowered
to conform through diffusion-based warping. This has the
advantage of building on real-world data but suffers from
the same issues as patch-based texture synthesis in applying
post-hoc deformation.

There are, of course, other options for terrain design be-
sides sketching. De Carpentier and Bidarra [dCB09] employ
a collection of circular brushes to paint different forms of
procedural noise onto a heightfield, an approach with an-
tecedents in early procedural noise control [PV95]. Over-
coming the 2 1

2 D restrictions of heightfields, Peytavie et
al. [PGGM09] enable 3D structures, such as overhangs,
arches and caves, by hybridizing implicit convolution sur-
faces and a grid of layered material stacks. Naturally, a
sculpting interface metaphor is more appropriate in this
instance and the system incorporates carving and accre-
tion tools by using implicit blending. In general, these ap-
proaches are strong in user control and interactive feedback
but fail to produce truly realistic terrains, since they rely on
noise-based methods incapable of reliably modeling com-
plex drainage patterns.

Our general approach is to provide local controls for tex-
ture synthesis specialized to terrain editing. The notion of
local constraints on texture synthesis is, of course, not new.
For instance, Lefebvre and Hoppe [LH05] provide drag-
and-drop constraints, which locally suppress coordinate jit-
ter within a circular region to enable feature placement. Our
coherence constraints are a more general route to a sim-
ilar goal. Likewise, Ashikhmin’s [Ash01] interface allows
users to paint from a color palette, with textures formed to
match the overall image coloring. In a heightfield context,
this would equate to setting regions of constant elevation,
which is less useful than being able to paint terrain charac-
ter.

3. Interface

From a user perspective, our system provides controls for
modifying both the shape and character of a terrain, ulti-
mately passing point, curve, type and copy-paste constraints
to the synthesis process. These work best in concert, with
users locally modifying the underlying landforms with geo-
metric (point and curve) constraints as well as painting on
type constraints to match the intended overlying landscape
character. If required, terrain features can also be copied di-
rectly from source. In practice, users typically adopt a hierar-
chical approach: they begin with geometric constraints and,
if these do not provide the desired outcome, then additional
types constraints are painted in. Finally, if necessary an ex-
act feature is copy-pasted. In this way, a balance between
control and economy of expression is achieved.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

107



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

At an interface level we rely on a combination of sketch-
ing, painting, and 3D widgets depending on the context.
Point constraints have associated free-standing widgets (Fig-
ure 2(a)) with handles for height, slope direction, slope an-
gle, and radius of effect. For curve constraints, an initial
course is laid out by sketching onto the terrain, with al-
terations supported through oversketching. Curve attributes
are accessible through curve-located widgets (Figure 2(b))
placed by the user. These are aligned with the local tangent
direction and offer height control as well as left- and right-
facing handles for gradient and area of effect. In this way,
each side can be controlled separately [HGA∗10]. For exam-
ple, a cliff-top curve constraint would require a flat gradient
on one side and a steep downward gradient on the other. We
interpolate the widget values to derive attributes elsewhere
on the constraint curve, using Hermite curves.

Unlike previous systems, we chose not to drive the inter-
face entirely through sketching, because this does not handle
the number of constraint parameters and required accuracy
as gracefully as a hybrid approach. However, the underly-
ing curve constraint values can be set along the curve as
finely as required and so there is nothing to prevent inter-
face alternatives, such as the sketching of a height profile.
At curve intersections (including self-intersections) we au-
tomatically place junction-located widgets (Figure 2(c)). To
avoid confusion over sidedness and a potential proliferation
of handles, we limit these widgets to controlling only height.
Together these geometric constraints support shaping the ter-
rain both locally and globally.

To specify terrain character, we utilize a simple type paint-
ing interface. Users can pick a terrain type (representing
semantically homogeneous terrain, such as canyons, moun-
tains, or swampland) from an exemplar and paint it onto ar-
eas of the synthesized terrain. Ultimately, types are simply
designated regions in the exemplars, so there is considerable
flexibility in their choice. A palette entry is also reserved for
locking down terrain changes, a useful function that prevents
areas overlaid with the coherence-locking type from shifting
during synthesis (as detailed in §5.3)

Copy-paste functionality represents the final core inter-
face component of our system. Here, the user outlines a
contiguous area by sketching (or oversketching) a loop on
the synthesized or exemplar terrain and then shifts this as
a whole to a new location and elevation using a centroid-
located widget (Figure 2(d)). This supports several opera-
tions: repositioning a section of the synthesized terrain in-
cluding raising or lowering its overall height; copying and
transplanting an exemplar region; or even pasting in an en-
tire exemplar, thus enabling the editing of existing terrains.

On the rendering side, our main difficulty lies in effec-
tively portraying scale for blocks of isolated terrain, where it
is easy to lose judgement of absolute height. Unfortunately,
our interface imposes some restrictions. Using hypsomet-
ric tints to color elevation bands would interfere with type-

coloring. We also found that fixing widget size to create a
familiar reference damages usability across different zoom
distances. In the end, we fell back on traditional contour and
grid lines along with radiance scaling [VPB∗10], a fast detail
enhancement technique that accentuates high curvature fea-
tures such as ridge lines and erosion patterns. An additional
cue is provided by shading red those regions with elevation
falling outside the maximum range of the input exemplars.

4. Synthesis Framework

Underpinning the interface for specifying geometric, type
and coherence constraints is a set of modifications to existing
parallel hierarchical texture synthesis [LH05] (see Figure 3).
There the general strategy is to pre-generate a coarse-to-fine
pyramid of exemplar data and then at run-time synthesize
an image in parallel using a sequence of upsampling, jit-
ter and correction phases. Upsampling moves synthesis to-
wards finer resolutions, jitter introduces coordinate variation
for the sake of visual interest and correction nudges coordi-
nates towards a better match with exemplar neighborhoods
using several passes. We also adopt the appearance space and
multiscale extensions of Lefebvre and Hoppe [LH06] and
Han et al. [HRRG08] to improve matching quality and sup-
port multiple terrain exemplars. Where we depart from these
approaches it is to better exploit current graphics hardware,
fit more terrain exemplars into graphics memory, and allow
flexibility in matching coordinates with different heights but
similar neighborhood shape.

Our first significant change is to replace the Gaussian
image stack, introduced by Lefebvre and Hoppe [LH05],
with a traditional image pyramid. Being able to capture
larger terrain features requires larger exemplars, and while
a stack supports greater detail at coarser levels, it requires
O(N logN) memory, compared to O(N) for a pyramid.
Lefebvre and Hoppe [LH05] note that using integral coor-
dinates to address pixels in coarse levels of the pyramid can
cause features to snap to this grid, but this can be circum-
vented by using real-valued coordinates and bilinear inter-
polation when sampling the images. We store all the exem-
plars for a given pyramid level in a single OpenCL image,
since the synthesis process needs very little modification to
handle such an atlas. Also, in the interests of compacting the
exemplar database, we drop the PCA approach to neighbor-
hood matching [LH05], while retaining the PCA required for
appearance space transformation.

As in Lefebvre and Hoppe [LH06], PCA reduction of
Gaussian-weighted 5× 5 neighborhoods defines an appear-
ance space exemplar pyramid. We use four modes, the first
of which is set to the weighted mean height. This gives
access to slightly smoothed heights without incurring ad-
ditional storage costs. The modes are quantized to 16 bits
each and stored in an OpenCL image. Quantization reduces
memory requirements, but more importantly, it reduces data
transfer, which is critical to performance, because neighbor-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

108



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

(a) (b)

Figure 3: A patch view of synthesis: (a) single exemplar with coordinates mapped to red (x-axis) and green (y-axis), (b) resulting
synthesis colored according to exemplar coordinates. This demonstrates the formation of small irregular patches from the input
as is typical of parallel texture synthesis.

hoods are sampled from non-coherent regions resulting in
frequent cache misses.

The exemplar database is labelled from coarsest to finest
level as EL,EL−1, . . . ,E0, where E0 is the original terrain in-
put and Ei+1 is Ei downsampled by a factor of two. We typ-
ically set L = 6. The corresponding appearance-space ver-
sions are denoted as AL,AL−1, . . . ,A0. During real-time syn-
thesis, a sequence of progressively finer synthesis images
SM ,SM−1, . . . ,S0 is generated whose coordinates index the
corresponding exemplar, except where M > L. Level M is
initialized with the coordinates at the center of the first ex-
emplar.

Our second major point of departure lies in how elevation
is incorporated into synthesis. Alongside synthesis coordi-
nates Si(p), we store a height offset V i(p) that is added to the
original exemplar when it is indexed. This allows exemplar
terrain to be raised or lowered to produce better matches, and
is similar to the transfer function in Han et al. [HRRG08].

Upsample and jitter Each pixel at p in level i is used to
initialize a 2×2 neighborhood in level i−1:

Si−1(2p± 1
2 ) = 2Si(p)± 1

2 + rH(2p± 1
2 ) (1)

V i−1(2p± 1
2 ) =V i(p) (2)

Here r provides user control over the amount of jitter (with a
default of r = 0.4), and H is a hash function that maps coor-
dinates to pseudo-random offsets in [−1,1]2. (Note that all
samples are located at half-integer coordinates, for consis-
tency with OpenCL image functions.)

Correction For synthesis at level L and below, coordinates
are repeatedly altered to make neighborhoods in the synthe-
sized result better match neighborhoods in the exemplar. We
use two passes of correction, each split into four subpasses,
as in Lefebvre and Hoppe [LH05].

At a given synthesis image position p, a number of po-
tential replacements are considered for the exemplar coordi-

nates Si(p):

Q =
{

Ci
j(S

i(p+∆)−∆)
∣∣ 1≤ j≤ 2,∆∈ {−1,0,1}2}, (3)

where C is a pre-computed lookup table of similar neigh-
borhoods. For each candidate q ∈ Q with height offset h, we
gather the exemplar neighborhood NE consisting of the four
diagonal neighbors in appearance space, and also gather a
synthesis neighborhood NS, defined by

NE(q,h) =
{

Ai(q+δ)+ha
∣∣ δ ∈ {−1,1}2} (4)

gi(u,v) = Ai(Si(u+ v)− v)+V i(u+ v)a (5)

NS =

{
1
3 ∑

M∈M
gi(p+δ,Mδ)

∣∣∣ δ ∈ {−1,1}2

}
, (6)

where M = {
(

0 0
0 0
)
,
(

1 0
0 0
)
,
(

0 0
0 1
)
} and a = (1 0 0 0)T . The

score for a candidate q is then computed as:

min
h∈R

(κ‖NS−NE(q,h)‖2), (7)

where κ = 1 if j = 1 (in the definition of q) and 2 otherwise.
This weighting term has been shown to favor patch forma-
tion [LH05]. The optimal q and h become the new values of
Si(p) and V i(p).

In common with previous work, a lookup table of simi-
lar neighborhoods is used to accelerate synthesis. For each
pixel Ai(p), we precompute the k = 2 most similar 5× 5
neighborhoods in the exemplars at the same pyramid level,
denoted by Ci

j(p), with 1 ≤ j ≤ k. There is the additional
restriction that Ci

j(p) cannot be on the edge of an exem-
plar, to avoid some out-of-bounds accesses that would oth-
erwise occur during synthesis. Best matches are found using
PatchMatch [BSFG09], executed on the CPU with multiple
threads.

5. Control

5.1. Geometric Constraints

Point and curve constraints are the primary mechanism for
shaping terrain in our system, and, as such, must satisfy

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

109



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

several requirements: constraint height and gradient should
be interpolated, locally modifying the surrounding terrain
within a prescribed region of influence, while avoiding ex-
aggerated or unnatural effects.

To achieve this, we take a multi-resolution approach, with
constraints enforced ever more locally as we move from
coarser to finer synthesis. For point constraints, a pixel-
specific target height ht is determined from the specified
height and gradient of the constraint.

It might seem sufficient to linearly blend the height of the
pixel’s best correction candidate hc with the target ht , and
adjust the height offset accordingly. Unfortunately, the re-
sults tend to be either too flat-topped or too peaked and no
single blending weight works in all instances.

Instead, we use a non-linear blending function, such that
the final height is hc +φd(ht −hc), where

t(d) = sd, b(d) = −λ

3t(d)2 , c(d) = b(d)t(d)3 +λt(d) (8)

φd(x) =


λx+ c(d) if x <−t(d)
λx− c(d) if x > t(d)
−b(d)x3 otherwise,

(9)

with d being the distance between the current pixel and the
constraint site. This is a C1-continuous curve with slope 0
at x = 0 and slope λ at x = ±t(d), with default values of
s = 0.5 and λ = 0.5, as shown in Figure 4. Informally, pix-
els for which the error in height is small are nudged only
very slightly, while those with a large error receive a more
disproportionate adjustment. The tolerance on this error de-
pends on distance, so that pixels farther from the constraint
site can vary over a larger height range than those nearby.
Also, the area of effect is modulated on a multiresolution ba-
sis, to progressively localize the constraint at finer synthesis
levels using min(radius,4×2i).

−2 −1 0 1 2
−1

0

1

ht − hc

φ
d
(h

t
−
h
c
)

d = 1

d = 2

d = 3

Figure 4: Graph of φd for several values of d. The markers
correspond to x =±t(d).

Applying these corrections across all synthesis levels
tends to locally overconstrain curves, making their place-
ment visually intrusive. This is solved by disabling geomet-
ric constraints on the finest two levels of synthesis, which

fortuitously is also where they would be most computation-
ally expensive.

This approach serves to attach a synthesized pixel to a
point constraint (encompassing a ground-plane location, el-
evation, gradient vector, and radius of effect). To generalize
from point to curve constraints, we create a curve parametri-
sation of constraint properties (location, elevation, left and
right area of effect, and left and right gradient) using Her-
mite interpolation of the curve- and junction-located widget
handles (§3). A pixel within the curve’s envelope of effect
is attached to the nearest point on the curve C(t) and the
properties at parameter t are fed to the same process as be-
fore (Equations 8, 9). The assigned properties also depend
on whether the pixel falls to the left or right of the curve
constraint. To cap the curve we simply use angular Hermite
interpolation of the left and right properties at the endpoints.

Closest-point queries are accelerated using a distance field
that is recomputed only when the horizontal shape of the
curve changes, such as after a sketching operation.

(a) (b)

Figure 5: Boundary discontinuities due to varying area of
effect along a constraint curve: (a) original area of ef-
fect boundary with C0 discontinuities and (b) mitigated by
isocurve smoothing.

There is, alas, one complication: while a distance field
is C0-continuous in the distance values themselves, this is
not the case for the t parameter values of the closest points,
which exhibit C0-discontinuities. This can cause uninten-
tionally irregular boundaries that are difficult for a user to
anticipate or control. A classic example occurs along the me-
dial axis of an arc where the parametrisation jumps from one
endpoint to the other. More generally, wherever the area of
effect is greater than the radius of curvature, we can expect
such a discontinuity on the concave side of the curve (as ev-
idenced in Figure 5(a)). This is resolved by an isocurve ex-
traction followed by smoothing the area of effect envelope,
which is then used to update the area of effect boundary and
hence the overall extent of the deformation (Figure 5(b)). We
do not otherwise need to modify the distance field because
the constraint satisfaction and synthesis matching process is

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

110



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

robust to discontinuities, particularly when they occur fur-
ther away from the curve.

A single constraint (point or curve) is applied to each pixel
within its region of influence, but the influences of different
constraints may well intersect. To accommodate such situ-
ations we combine overlapping constraints by blending the
values of ht and a, and recomputing t and c, using Equation
(8). In the blend, these values are weighted proportionately
to the inverse of the distance to the corresponding constraint.
For each pixel, we maintain the sums ∑biai, ∑bihi

t and ∑bi,
where i runs over the constraints and bi is the blend weight
of the ith constraint. This has the advantage that a constraint
can be modified by subtracting it, altering its properties, and
then adding it back into the sums, without having to reeval-
uate all the overlapping contributors.

5.2. Type Constraints

Figure 6: A 3×3 quilt of type constraints.

The goal of type constraints is to allow users to specify
the regional characteristics of the landscape by painting a
type tag (represented by a unique color in the interface) onto
the terrain and then ensuring that the synthesis draws from
exemplar coordinates with the same tagging (see Figure 6).

On the database side, all pixels p in the base exemplars
are tagged with a terrain type T 0(p). A coarser level i in
the type pyramid T i(p) is derived by selecting the most fre-
quently occurring type in the corresponding 2i× 2i region
of T 0. This coarsening takes place during database genera-
tion on the CPU. We briefly experimented with a machine
learning approach to tagging the exemplars but this was not
as effective as we had hoped, so instead the exemplars are
entirely hand painted.

On the synthesis side, instead of a single type, each syn-
thesis pixel p in the pyramid has a set of target terrain types
Ri(p). The constraint is satisfied if T i(Si(p))∈ Ri(p), that is,
the type of the selected exemplar coordinate appears in the
target set. This asymmetric matching enables unconstrained
pixels that are allowed to take on any type.

The user paints R0, as a single type per pixel, directly

onto the terrain. Where no constraint is painted, we default
to R0(p) = T , the set containing all terrain types present in
the database. For i > 0, Ri(p) is computed as the union of the
corresponding 2× 2 target sets at level i− 1. However, any
sets equal to T are excluded from this union, since otherwise
narrow bands of constraints tend to be washed out at coarser
levels. These calculations are performed on the GPU, updat-
ing a region locally at each level as the user modifies R0.

During correction passes, candidates that fail to meet the
constraints are rejected out of hand. We initially experi-
mented with heavily penalizing such candidates instead, but
found that with rare types, the constraint might never be sat-
isfied because none of the candidates were suitable. If all
possible matches are rejected, a seeding approach is applied
to guarantee the constraint: for each type in Ri(p), nine new
candidates are picked at random (based on a hash of the syn-
thesis coordinates) and evaluated as per Equation 7. For effi-
ciency, we randomly preselect and store a list of coordinates
for each terrain type.

Finally, as with geometric constraints, we found that the
overall appearance was improved by disabling type con-
straints when synthesizing the finest two levels.

5.3. Coherence

Ω1

′

2

′

Figure 8: Copy and paste operations. [top] Regions
(Ω1,Ω2) copied from exemplar sources and [bottom] pasted
into a synthesized terrain (Ω′1,Ω

′
2).

Modifying constraints in real time introduces an addi-
tional complication: small changes do not necessarily ex-
hibit either temporal coherence or spatial locality, and can
cause unexpected popping artifacts. This is exacerbated by
multi-resolution synthesis, where a small change in the input
constraints can propagate from the coarser levels and have a
large and abrupt impact on the final terrain.

To address this we explicitly incorporate change con-
trol in the form of a per-pixel coherence weighting term,

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

111



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

(a) (b) (c)

Figure 7: Impact of coherence: (a) an initial terrain with no geometric constraints, (b) a point constraint causes small shifts
even outside the area of effect (shown in a lighter shade), but this can be fixed (c) by applying coherence and locking constraints
(the latter shaded in blue).

W i(p) ∈ [0,1], where values close to zero enforce stasis and
values close to one freely allow adaptation. This is imple-
mented by recording the result of each correction pass. Then,
in the subsequent frame this result is presented as an ex-
tra matching candidate, with its cost multiplied by W i(p).
Weights towards zero thus bias the synthesis towards repeat-
ing the previous result, except where this would provide an
unacceptably poor match.

To guarantee that resynthesis with the same constraints
yields a repeatable outcome, it is not sufficient to record just
the final corrected pixel for each level. The results for all
sub-passes are needed, since otherwise the matches can di-
verge during earlier sub-passes, causing oscillation even for
unchanged constraints.

In practice, we use three different weight values in W 0:
unweighted W 0(p) = 1 inside the area of influence of ma-
nipulated constraints to encourage free alteration to meet
the constraints; coherent W 0(p) = 0.25 over the remainder
of the terrain to preserve locality and reduce popping; and
locked down W 0(p) = 0 in regions that the user has painted
over with a ‘freezing’ brush. To derive W i(p), for i > 0, we
choose a zero (frozen) value if any pixel of the associated
2× 2 block at level i− 1 is zero; otherwise we simply se-
lect the most frequently occurring weight. This ensures that
region freezing is properly dominant.

Region-based copying (see Figure 8) builds on this coher-
ence architecture. To copy a region from an exemplar or the
synthesized terrain we create a mask for the source region in
question (Ω) and store the relevant coordinate values Si(Ω)
for all levels and sub-passes, using the same dilation proce-
dure as for coherence freezing. These coordinates are then
written to the target region (Ω′) and the weight values in the
target are locked to prevent changes W 0(Ω′) = 0. This en-
ables not only translation from source to target but also, by
adding a consistent offset to the base heights V i(Ω′) + δ,
raising or lowering of the pasted region. Since the area
around the target is unweighted the pasted region blends well
with the surrounding synthesis.

6. Results and Discussion

The performance of our system was tested on a 3.2 GHz
quad-core Intel Xeon, with 6 GB RAM, and an NVIDIA
GTX 680 with 2 GB; the results appear in Figure 9. Of the
three resolutions tested, the system performs interactively
for 5122 and 10242 with synthesis times averaging 63ms and
151ms, respectively. However, for curve constraints, creat-
ing the distance field during initial embedding and isocurve
extraction during area of effect changes introduce additional
overheads. The relatively high rendering costs are a result
of preparing the terrain for radiance scaling, but this render-
ing mode could easily be dropped during active constraint
manipulation.

In terms of memory usage, the database requires 32 bytes
per pixel at the base level, which equates to 42 2

3 bytes per
pixel for the entire pyramid. In contrast, a 7 level image stack
would require 7×32= 224 bytes. Synthesis is more memory
intensive at 84 bytes per pixel, with the increase mostly due
to the extra constraint storage. Further reduction is certainly
possible by, for instance, using a single byte each for types
and weights.

As an indication, our test hardware can load a 19-element
exemplar database (each with 10242 base resolution) while
synthesizing a 20482 terrain. For the same amount of mem-
ory, an image stack would only be able to fit 3 exemplars.

The allowable control and range of achievable landscapes
are demonstrated in Figures 11–14. While most of the ter-
rains in this paper are at a heightfield resolution of 10242

and a scale of 10m per pixel, Figure 12 shows continental-
scale results (20482 resolution at 0.5km per pixel) and Fig-
ure 14 demonstrates higher resolution at a fine scale (40962

resolution at 10m per pixel).

One use-case is to broadly replicate existing landforms
(Figure 11), which might require key alterations or for which
there is no scanned data. However, more exaggerated fantas-
tical terrains are also achievable (Figure 13), as are a wide
variety of landforms (Figure 1).

In order to test terrain realism, we conducted a user ex-
periment. This was designed as a two-alternative forced

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

112



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

ty
pe

po
in

t
cu

rv
e

cu
rv

e
(e

m
be

dd
in

g)
cu

rv
e

(in
flu

en
ce

)

0

50

100

150
Ti

m
e

(m
s)

5122

ty
pe

po
in

t
cu

rv
e

cu
rv

e
(e

m
be

dd
in

g)
cu

rv
e

(in
flu

en
ce

)

0

200

400

600

10242

ty
pe

po
in

t
cu

rv
e

cu
rv

e
(e

m
be

dd
in

g)
cu

rv
e

(in
flu

en
ce

)

0

1,000

2,000

3,000

20482

Synthesis

Rendering

Constraint
Compilation

Figure 9: Computation cost for synthesis at three resolutions (5122, 10242 and 20482) for different constraint forms. Embedding
curves and changing their area of influence have additional overheads and are graphed separately.

Synthetic Real

B
es
t

W
or
st

Figure 10: Best- and worst-performing real and synthetic
terrains from the user experiments. Each terrain was chosen
as more realistic (clockwise from top left): 84%, 80%, 4%,
and 0% of the time, respectively.

choice (2-AFC) task [CW11], in which subjects were pre-
sented with a sequence of 60 pairs of terrain images, one
real (sourced from the U.S. Geological Survey) and one syn-
thetic, and asked to select which they considered more real-
istic.

The synthetic terrains were created by two expert users
with our system using a database of 19 exemplars. They
spent less than a day at the task, averaging about 20 min-
utes per terrain and employing only geometric and type con-
straints: no copy-pasting was used at all. All terrains were
then rendered with the same settings from two viewpoints:
overlooking and close-up. We independently permuted the
order of both the real and synthetic images, as well as the op-
tion (‘A’ or ‘B’) under which each appeared. The experiment

was run with 25 subjects, most of whom had a background
in computer science but no tertiary training in geology or
geography. For illustration, Figure 10 shows the best- and
worst-scoring real and synthetic terrains.

If users are truly unable to tell the difference then we can
expect the results to obey the same Bernoulli distribution as
a sequence of coin flips. Surprisingly, in 54.6% of cases sub-
jects chose the synthetic terrain over the real, and the coin-
flip hypothesis can be rejected with a binomial test signifi-
cance of p = 0.0002. Based on a post-experiment question-
naire, we tentatively attribute this paradoxical result to sub-
jects misidentifying prominent features (such as sharp ridges
and river bends) as unrealistic, while in the synthetic case the
designers likely subconsciously avoided such cases.

Of the six subjects who identified more than half correctly,
one subject, with extensive mountaineering and map making
experience, chose the real option 78% of the time. Anecdo-
tally, it would thus seem likely that subject experts would
perform far better at identification, but this would need to be
tested.

As part of a process of user-centered design, we con-
ducted a separate informal usability study with three com-
puter animators — an approach adopted in some other work
on sketch-based interfaces and terrain modeling [WI04,
GMS09, TEC∗14]. In fact, it was in response to the artists’
request for mechanisms to move and lock down sections of
the landscape that we prioritised development of our coher-
ence controls (§5.3).

During the usability study, users were given a short intro-
duction and left to experiment with the system for up to an
hour. Each user was then allowed 45 minutes to model an
exaggerated fantastical landscape (see Figure 13). The users
all settled on a common workflow: painting types over broad
swathes, then applying curve constraints to shape the land-
scape, followed by detailed edits using a combination of lo-
calised type, curve and point constraints. In general, their
use of curve constraints significantly outweighed point con-
straints.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

113



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

Our system is not without limitations. It is impossible to
reliably reproduce a distinctive curvilinear feature if it is ori-
ented significantly at odds with entries in the database, such
as a canyon type-painted east to west when source examples
run only north to south: having sufficient space to incorpo-
rate features in a range of orientations is one reason we fo-
cus on careful memory reduction. There is no explicit con-
sideration of geomorphology, which may lead to unrealistic
global drainage patterns. For instance, a curvilinear feature,
such as a canyon, may appear as a short isolated segment, al-
beit plausibly tailing off into side canyons and ravines using
matches from the exemplars. The responsibility for detecting
and correcting such situations is placed on the user. Finally,
modeling finely inscribed detail in nearly flat areas, such as
a shoreline with a small step in elevation, is time consuming
and frustrating. This is because height and gradient changes
in such cases are too local and too fine to be effectively spec-
ified by geometric constraints.

7. Conclusions

In summary, we specialize existing parallel pixel-based tex-
ture synthesis for terrain generation so as to support greater
feature variety and more flexible matching by reducing the
memory footprint of exemplars in the database and adding
a height offset term. We also offer user control through a
system of point, curve, type and coherence constraints that
combine to enable the local placement of characteristic land-
forms. The resulting system is interactive, requiring an aver-
age of 165ms when updating a 10242 terrain, and visually
realistic, in the sense that non-experts are unable to distin-
guish between real and synthesized terrains.

There are several avenues for future work. Supporting
curvilinear features (such as rivers, ravines, and ridge lines)
in different orientations by placing rotated versions of an ex-
emplar into the database is rather memory inefficient. One
way of overcoming this would be to build rotation into the
matching process, by attaching a rotation term to synthesis
coordinates.

We envisage improving the portrayal of surface detail in
nearly flat areas by layering a flow field over exemplars to
indicate the directionality of features and having users gen-
erate directionality constraints during painting. Another pos-
sibility would be to incorporate the image hybrid improve-
ments of Risser et al. [RHDG10]. They improve the seman-
tic fidelity of parallel texture synthesis using a multiscale
descriptor and structure-preserving jitter applied in the ap-
pearance domain. This has the additional advantage of po-
tentially improving overall terrain synthesis speeds.

Our early experiments with automatically classifying
types using machine learning trained on a small set of hand-
painted samples and the terrain’s noise characteristics were
promising enough to warrant further investigation.

Acknowledgements

Funding for this research was provided in part by the Na-
tional Research Foundation and the Council for Scientific
and Industrial Research, South Africa. DEM exemplar data
is courtesy of the U.S. Geological Survey. Some computa-
tions were performed using facilities provided by the Uni-
versity of Cape Town’s ICTS High Performance Computing
team. Finally, we would like to thank Simon Anderson, Jo-
hanny Anderson and Kwegyir Lwabona for assistance with
the images and valuable usability feedback.

References
[Ash01] ASHIKHMIN M.: Synthesizing natural textures. In Pro-

ceedings of the 2001 symposium on Interactive 3D graphics
(2001), ACM, pp. 217–226. 3

[BN08] BRUNETON E., NEYRET F.: Real-time rendering and
editing of vector-based terrains. Computer Graphics Forum 27,
2 (2008), 311–320. 3

[BSFG09] BARNES C., SHECHTMAN E., FINKELSTEIN A.,
GOLDMAN D. B.: Patchmatch: A randomized correspondence
algorithm for structural image editing. In ACM SIGGRAPH 2009
Papers (New York, NY, USA, 2009), SIGGRAPH ’09, ACM,
pp. 24:1–24:11. 5

[BSS07] BROSZ J., SAMAVATI F., SOUSA M.: Terrain synthe-
sis by-example. In Advances in Computer Graphics and Com-
puter Vision, Braz J., Ranchordas A., Araújo H., Jorge J., (Eds.),
vol. 4 of Communications in Computer and Information Science.
Springer Berlin Heidelberg, 2007, pp. 58–77. 2

[CW11] CUNNINGHAM D., WALLRAVEN C.: Experimental De-
sign: From User Studies to Psychophysics, 1st ed. A. K. Peters,
Ltd., Natick, MA, USA, 2011. 9

[dCB09] DE CARPENTIER G. J. P., BIDARRA R.: Interactive
GPU-based procedural heightfield brushes. In Proceedings of the
4th International Conference on Foundations of Digital Games
(New York, NY, USA, 2009), FDG ’09, ACM, pp. 55–62. 3

[GGG∗13] GÉNEVAUX J.-D., GALIN E., GUÉRIN E., PEY-
TAVIE A., BENEŠ B.: Terrain generation using procedural mod-
els based on hydrology. ACM Trans. Graph. 32, 4 (July 2013),
143:1–143:13. 2

[GMS09] GAIN J., MARAIS P., STRASSER W.: Terrain sketch-
ing. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games (New York, NY, USA, 2009), I3D ’09,
ACM, pp. 31–38. 2, 9

[GOG∗02] GESCH D., OIMOEN M., GREENLEE S., NELSON
C., STEUCK M., TYLER D.: The national elevation dataset.
Photogrammetric Engineering and Remote Sensing 68, 1 (2002),
5–11. 2

[HGA∗10] HNAIDI H., GUÉRIN E., AKKOUCHE S., PEYTAVIE
A., GALIN E.: Feature based terrain generation using diffusion
equation. Computer Graphics Forum 29, 7 (2010), 2179–2186.
3, 4

[HJO∗01] HERTZMANN A., JACOBS C. E., OLIVER N., CUR-
LESS B., SALESIN D. H.: Image analogies. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 2001), SIGGRAPH ’01,
ACM, pp. 327–340. 2

[HRRG08] HAN C., RISSER E., RAMAMOORTHI R., GRIN-
SPUN E.: Multiscale texture synthesis. ACM Trans. Graph. 27, 3
(Aug. 2008), 51:1–51:8. 2, 4, 5

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

114



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

(a) (b) (c)

Figure 11: Replicating the structure of existing terrain: (a) a section of the Grand Canyon, (b) broadly recreated in our system,
and (c) the geometric and type constraints applied. In total three distinct types, 27 curve constraints and two point constraints
were used in a modeling session lasting approximately 2 hours. (Note: no copy-paste functionality was used).

Figure 12: Large-scale landmasses, synthesised from exemplars of the west coast of North America at a resolution of 20482 and
sampling of 0.5km per pixel (hence approximately 1,000km across) and rendered using hypsometric tints. Each was created in
less than half an hour by an experienced user, primarily employing type painting.

[KBKv09] KRIŠTOF P., BENEŠ B., KŘIVÁNEK J., ŠT’AVA O.:
Hydraulic erosion using smoothed particle hydrodynamics. Com-
puter Graphics Forum 28, 2 (2009), 219–228. 2

[Lew87] LEWIS J. P.: Generalized stochastic subdivision. ACM
Trans. Graph. 6, 3 (July 1987), 167–190. 2

[LH05] LEFEBVRE S., HOPPE H.: Parallel controllable texture
synthesis. ACM Trans. Graph. 24, 3 (July 2005), 777–786. 2, 3,
4, 5

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture
synthesis. In ACM SIGGRAPH 2006 Papers (New York, NY,
USA, 2006), SIGGRAPH ’06, ACM, pp. 541–548. 2, 4

[LL12] LASRAM A., LEFEBVRE S.: Parallel patch-based tex-
ture synthesis. In Proceedings of the Fourth ACM SIGGRAPH /
Eurographics Conference on High-Performance Graphics (Aire-
la-Ville, Switzerland, Switzerland, 2012), EGGH-HPG’12, Eu-
rographics Association, pp. 115–124. 2

[LLC∗10] LAGAE A., LEFEBVRE S., COOK R., DEROSE T.,
DRETTAKIS G., EBERT D., LEWIS J., PERLIN K., ZWICKER
M.: A survey of procedural noise functions. Computer Graphics
Forum 29, 8 (2010), 2579–2600. 2

[Man83] MANDELBROT B. B.: The fractal geometry of nature.
Macmillan, 1983. 2

[MKM89] MUSGRAVE F. K., KOLB C. E., MACE R. S.: The
synthesis and rendering of eroded fractal terrains. In Proceedings
of the 16th Annual Conference on Computer Graphics and Inter-
active Techniques (New York, NY, USA, 1989), SIGGRAPH ’89,
ACM, pp. 41–50. 2

[NWD05] NEIDHOLD B., WACKER M., DEUSSEN O.: Interac-
tive physically based fluid and erosion simulation. NPH 5 (2005),
25–32. 2

[PGGM09] PEYTAVIE A., GALIN E., GROSJEAN J., MERILLOU
S.: Arches: a framework for modeling complex terrains. Com-
puter Graphics Forum 28, 2 (2009), 457–467. 3

[PV95] PERLIN K., VELHO L.: Live paint: Painting with pro-
cedural multiscale textures. In Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1995), SIGGRAPH ’95, ACM, pp. 153–
160. 3

[RHDG10] RISSER E., HAN C., DAHYOT R., GRINSPUN E.:
Synthesizing structured image hybrids. ACM Transactions on
Graphics (TOG) 29, 4 (2010), 85. 10

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

115



J. Gain, B. Merry & P. Marais / Parallel, Realistic and Controllable Terrain Synthesis

Figure 13: Fantastical landscapes at a resolution of 10242 and sampling of 10m per pixel: [top] each modeled in under 45
minutes by artists working with our system, and then rendered externally using Terragen software [bottom].

(b)(a)

Figure 14: A large, detailed landscape with 40962 resolution and sampling of 10m per pixel: (a) without and (b) with geometric
and type constraints displayed.

[RME09] RUSNELL B., MOULD D., ERAMIAN M.: Feature-rich
distance-based terrain synthesis. The Visual Computer 25, 5-7
(2009), 573–579. 2

[TEC∗14] TASSE F. P., EMILIEN A., CANI M.-P., HAHMANN
S., BERNHARDT A.: First person sketch-based terrain edit-
ing. In Proceedings of the 2014 Graphics Interface Conference
(Toronto, Ont., Canada, 2014), GI ’14, Canadian Information
Processing Society, pp. 217–224. 3, 9

[TGM12] TASSE F.-P., GAIN J., MARAIS P.: Enhanced texture-
based terrain synthesis on graphics hardware. Computer Graph-
ics Forum 31, 6 (2012), 1959–1972. 2

[VBHS11] VANEK J., BENES B., HEROUT A., STAVA O.:
Large-scale physics-based terrain editing using adaptive tiles on
the GPU. Computer Graphics and Applications, IEEE 31, 6 (Nov
2011), 35–44. 2

[VPB∗10] VERGNE R., PACANOWSKI R., BARLA P., GRANIER
X., SCHLICK C.: Radiance scaling for versatile surface enhance-
ment. In Proceedings of the 2010 ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games (New York, NY, USA,
2010), I3D ’10, ACM, pp. 143–150. 4

[WI04] WATANABE N., IGARASHI T.: A sketching interface for
terrain modeling. In ACM SIGGRAPH 2004 Posters (New York,
NY, USA, 2004), SIGGRAPH ’04, ACM, p. 73. 2, 9

[WSG07] WECKER L., SAMAVATI F., GAVRILOVA M.: Con-
textual void patching for digital elevation models. The Visual
Computer 23, 9-11 (2007), 881–890. 2

[ZSTR07] ZHOU H., SUN J., TURK G., REHG J.: Terrain syn-
thesis from digital elevation models. IEEE Transactions on Vi-
sualization and Computer Graphics 13, 4 (July 2007), 834–848.
2

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

116




