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Figure 1: Our diffusion-based terrain authoring framework empowers users to iteratively combine terrain stylization with feature sketching.

Here, an artist first sketches a simple ridge and forked drainage network, then makes their style selection (outlined in red) before adding

further details.

Abstract

Generating heightfield terrains is a necessary precursor to the depiction of computer-generated natural scenes in a variety

of applications. Authoring such terrains is made challenging by the need for interactive feedback, effective user control, and

perceptually realistic output encompassing a range of landforms. We address these challenges by developing a terrain-authoring

framework underpinned by an adaptation of diffusion models for conditional image synthesis, trained on real-world elevation

data. This framework supports automated cleaning of the training set; authoring control through style selection and feature

sketches; the ability to import and freely edit pre-existing terrains, and resolution amplification up to the limits of the source

data. Our framework improves on previous machine-learning approaches by: expanding landform variety beyond mountainous

terrain to encompass cliffs, canyons, and plains; providing a better balance between terseness and specificity in user control,

and improving the fidelity of global terrain structure and perceptual realism. This is demonstrated through drainage simulations

and a user study testing the perceived realism for different classes of terrain. The full source code, blender add-on, and pre-

trained models are available.

1. Introduction

The need for authoring tools that enable digital artists to create con-
vincing heightfield terrains suited to a particular aesthetic or func-
tional rôle is widespread in computer graphics applications, such
as film, games, training, and simulation. Using scanned real-world
terrain often does not suffice, since landforms may be missing or
not arranged acceptably. Once authored, a bare heightfield is typi-
cally layered with surface detail to depict earth, rock, grass, plants,
trees, rivers, and bodies of water, representing a complete natural
scene.

The effective authoring of synthetic terrain is a notoriously dif-
ficult problem to solve for many reasons. First, achieving percep-
tual realism is a challenge due to the complexity of the underlying

physical processes that interact to shape terrain. For example, shift-
ing tectonic plates, gradual erosive forces, and even natural disas-
ters contribute to terrain formation. Second, the sheer variety of
formative processes gives rise to a correspondingly wide range of
distinctive landforms, from plains to mountains and every style in-
between. Third, authoring tools should afford a balance between
design economy and precision so that artists can achieve envisaged
results (precision) as tersely and rapidly as possible (economy). Fi-
nally, allied to this is the need for a computationally efficient real-
time or interactive generation process to enable cycles of iterative
design. Ideally, a terrain authoring framework should produce per-
ceptual realism, landform diversity, both economical and precise
authoring, and interactive response.
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To address this, terrain authoring has historically been built
on a foundation of procedural, simulation, or example-based
techniques [GGP∗19]. Recently, these have been complemented
by generative machine learning, where deep neural networks
— including Convolutional Neural Networks (CNNs) [ACA18,
KSR20] and Conditional Generative Adversarial Networks
(CGANs) [GAMA20, ZLZ∗22, ZLB∗19, ZCZ∗20, NJSR22] — are
tasked with learning the complex patterns and mutual dependen-
cies between terrain features, given abundant real-life data, and
conditioned on user inputs, such as user sketches or style selec-
tion. Unfortunately, these strategies suffer from repetition and grid-
ding artifacts with sparse inputs [GAMA20], tend to tackle only
specific sub-tasks (e.g., super-resolution) rather than providing an
overarching authoring framework, and also, with a few excep-
tions [LLXT22], focus primarily on mountainous regions, ignoring
plains, cliffs, and canyons.

Inspired by evidence of the effectiveness of Denoising Diffu-
sion Probabilistic Models (DDPMs) in conditional image gener-
ation [Luo22] with high sample diversity [DN21], we develop a
feature-rich terrain authoring framework that performs cascaded
applications of diffusion models. Our framework supports interac-
tive authoring through style selection and feature sketching (see
Figure 1), followed by a finalizing amplification step. Performance
is sufficient to enable near real-time updates (∼ 8Hz) during sketch-
ing, with additional iterative quality refinement taking place in the
background between strokes. To achieve this, we balance sample
quality and inference speed by trading off terrain resolution, num-
ber of sampling timesteps, and memory footprint. The resulting
synthesized terrains encompass a wide range of landforms and evi-
dence improved structural and perceptual realism. Specifically, we
found the results of diffusion to be structurally sound but some-
times missing in fine-scale detail so that users in our perceptual
study were able to differentiate between real and generated land-
scapes in certain cases, but not in others.

2. Related Work

Traditionally, digital terrain generation techniques, as surveyed by
Galin et al. [GGP∗19], have been partitioned into three categories:
procedural modeling, geomorphological simulation, and data-
driven synthesis. Procedural approaches algorithmically reverse-
engineer terrain based on characteristics of the final appearance us-
ing a collection of techniques that include constrained multiresolu-
tion noise, diffusion, and deformation. Simulation seeks to replicate
the physical processes of uplift and erosion involved in landscape
formation. However, our focus in this paper is on data-driven meth-
ods that exploit the extensive high-quality corpus of scanned real-
world terrain data and offer the prospect of effective user control,
interactive performance, and perceptual realism.

The earliest data-driven methods repurposed texture synthesis
for terrain generation by cutting, reassembling, and joining terrain
fragments at a patch or pixel level [LWZ∗06,ZSTR07]. Subsequent
research built on this foundation to improve: realism by altering
patch blending [TGM12] and fixing global drainage [SD21,SD22],
performance through GPU acceleration [TGM12, GMM15], and
authoring control by extending beyond ridge and valley sketch-
ing [GMM15]. Compared to machine learning, the upside is that

these methods can operate parsimoniously with as little as a sin-
gle source terrain, but the downside is that re-assembly is localized
and, despite some attempts at improvement [SD21], does not al-
ways respect global properties, such as realistic drainage patterns.

Sparse modeling [GDGP16, AAC∗17] represents another
example-based approach. It is underpinned by compressed sensing
theory and relies on a dictionary of reusable terrain patches, which
are sampled and blended at run-time to construct a terrain. How-
ever, these techniques suffer from the same limitations as texture
synthesis methods and lend themselves more to compression and
amplification than authoring [GGP∗19].

Inspired by the success of image-to-image translation [IZZE17],
Guérin et al. [GDG∗17] were the first to apply machine learning
to terrain authoring. They use a conditional generative adversarial
network trained on the pairing of real terrains and extracted ridge
and valley line maps to enable the interactive generation of plau-
sible terrain from user sketches. This approach is flexible enough
to support a range of authoring tools and tasks, including in-filling
missing areas of a DEM, user support for painting average eleva-
tions or water occupancy [VRGZS20], and upsampling with ero-
sion detail, but suffers from gridding and repetition artifacts when
the user inputs are not sufficiently detailed.

A standard CGAN or CNN pipeline generates a single outcome
even though two-dimensional user sketches are highly underdeter-
mined. In reality, the same sketched configuration of ridge and val-
ley lines could plausibly lead to various landforms, representing
different terrains types or styles. An obvious solution to this styl-
ization problem is to train separate synthesizers for each terrain
type, but this inherently limits the number of styles and is a bar to
transitional regions that mix styles. Better strategies involve mak-
ing the training and synthesis conditional on a multi-dimensional
style discriminator [ZLZ∗22] or selecting variations from a latent
space [NJSR22].

Depending on the details of the scanning campaign, Digital Ele-
vation Models (DEMs) of real-world terrain can have varying res-
olutions, from as fine as 1 to as coarse as 90 meters per pixel. As a
consequence, resolution amplification (otherwise known as upsam-
pling or super-resolution) is a common application area for ma-
chine learning that has seen various recent experiments in modify-
ing CGAN [ZCZ∗20, ZLB∗19] and CNN [KSR20, ACA18] archi-
tectures.

The vast majority of these data-driven methods have used adap-
tations of texture synthesis, CNNs, or CGANs specialized for ter-
rain generation. However, in the space of image-to-image transla-
tion, of which user-guided terrain synthesis is a specific instance,
Denoising Diffusion Probabilistic Models (DDPMs, or simply, dif-
fusion models) have recently emerged as a highly-competitive al-
ternative [HJA20, YZS∗22] in terms of task versatility and percep-
tual image quality. The focus of this paper is thus on exploring the
applicability of this class of generative models to terrain synthe-
sis, while at the same time expanding the richness of the authoring
toolset.
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Figure 2: An overview of diffusion-based terrain authoring. During pre-processing and training, a database of real-world terrains is

constructed by filtering and downsampling. Then signatures, consisting of a feature sketch and style vector, are derived for these terrains (1)

and used to train an ensemble of diffusion models (2). During iterative authoring, the trained models are used to synthesize terrains based

on styles and sketches provided by an artist (3). Once the artist is satisfied, the terrain can be upsampled (4) to create a final high-resolution

version.

3. Overview

Our framework supports authoring in two complementary forms:
feature sketching and example-based stylization. At a high level,
feature sketching provides users with an intuitive way to specify
the type and placement of features on the landscape, while styl-
ization controls the overall appearance of the resulting terrain (us-
ing examples for guidance). As demonstrated in Figure 7, users are
provided with tools to sketch cliff, valley, and ridge lines at differ-
ent levels of prominence. This expands significantly on the typical
toolset offered by machine learning interfaces. Notably, blank areas
in the sketch are nevertheless populated with plausible features, but
this can be suppressed by painting with a flattening brush. Further-
more — in the interests of iterative refinement — users are offered
a palette of available styles, both before and after sketch input, to
control the overall terrain character.

By design, the combination of a style and detailed sketch map
provides a signature sufficient for terrain reconstruction, meaning
a user-provided terrain can be imported, matched, and then edited.
This idea is demonstrated in Figure 3, where localized changes can
be made to an existing terrain in a manner that balances realism and
user intent.

As is typical in machine learning this is realized by separating
the architecture into a pre-processing and training phase, and an
online generation phase (see Figure 2). Our data preparation (de-
scribed in section 4), centers around the training and utilization
of CNN-based classifiers to remove terrain that contains recording
errors or artificial features, followed by signature extraction and
model training.

In terms of models, our framework is built upon two different
types of diffusion-based terrain synthesizers (detailed in section 5).
First, our sketch-to-terrain model S generates terrain from a signa-
ture that combines a sketch and style vector. Second, our terrain-

upscaling models U1 and U2 enhance the small-scale details of ter-
rain in a realistic way, being able to increase terrain resolution from
153m per pixel to 19.1m per pixel and from 19.1m per pixel to
2.39m per pixel, respectively. Thus, in a similar fashion to Ho et

al. [HSC∗22], we cascade these diffusion models (i.e., using the
output of one as input to the next) to achieve high-resolution ter-
rain synthesis. As demonstrated in Figure 4, this results in a 64×

resolution increase, in a manner that preserves the global structure
of the output terrain.

Original Generated from extracted sketch

Edited sketch Final edited terrain

Figure 3: Inverse terrain modeling: a structural replica of a ter-

rain can be generated from the extracted signature and subse-

quently edited by the user to introduce or remove features.

4. Data Preparation

We obtained raw elevation and co-registered satellite data from
the United States Geological Survey (USGS). To select suitable
regions, we submitted a user-defined mask created by taking into
account elevation, gradient, and population-density maps of North
America. This approach ensures that the final dataset includes a di-
verse selection of landforms. The corresponding ∼ 6 million tiles
(stored individually as 256×256 float arrays) were downloaded at
the highest available resolution of ∼ 2.39 meters per pixel.

4.1. Preprocessing

Unfortunately, many of the downloaded tiles contain recording er-
rors, making them unusable for training. Failure to remove such
data would degrade output quality, with artifacts or sampling er-
rors replicated (or even magnified) in the synthesized terrains
[GGP∗19].

© 2023 Eurographics - The European Association
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Input 153m/ pixel Inferred 19.1m/ pixel

Inferred 2.39m/ pixelZoom of 19.1m/ pixel 

Figure 4: Super-resolution upsampling from a coarse resolution

of 153m per pixel to the limits of the original source data at 2.39m

per pixel.

Figure 5: Categories of excluded source data: [top] recording er-

rors - pixelation, patching, and line-artifacts; [bottom] artificial

elements - buildings, roads, and farmland.

We identify the following classes of derivative data (see Fig-
ure 5[top]): pixelated (blocky image), patched (checkerboard pat-
tern over the image), line-artifacts (stitch lines), and valid (no
recording errors). The process of detecting anomalies is simplified
by first converting each heightmap to the gradient domain, which
enables more accurate identification of local changes and inconsis-
tencies.

We first performed a combination of algorithmic and manual la-
beling of approximately 350 000 derivative images. More specif-
ically, we defined a list of simple heuristics to identify abnormal
changes in elevation, followed by a manual moderation process
to ensure edge-cases were correctly labeled. This initial batch was
then used to train a CNN classifier based on EfficientNetV2 [TL21]
to filter the remaining tiles. We also removed terrains containing
man-made structures (see Figure 5[bottom]), such as buildings,

roads, and farmland. To this end, an additional classifier was trained
on around 200 000 manually-labeled satellite images. Note that it is
specifically for this purpose that we downloaded registered satellite
data, which is not used in the remainder of the pipeline.

Filtering out artificial elements was performed iteratively, con-
tinually improving and expanding the training set until a satisfac-
tory validation accuracy was achieved. Once again, this was done
by manually reviewing subsets of the predictions made by the clas-
sifier. Only tiles free from artifacts and artificial structures were
included in the final dataset, resulting in 3.84 million usable tiles
(covering an area of 1.44 million km2).

As is typical in machine learning, GPU memory limitations im-
pose a cap on image size — 256× 256 pixels per image in our
case. To meet this requires a careful balance between terrain extent
(area) and resolution (detail). Accordingly, we chose a terrain ex-
tent of roughly 5× 5 km2 since this is large enough to encompass
significant features (such as mountains, river gorges, and canyons)
while also exhibiting feature diversity and is thus suitable for many
terrain applications. By concatenating source DEMs in an 8×8 grid
and downsampling to the desired 256×256 pixel resolution we ob-
tain a final extent of ≈ 4.9× 4.9 km2 and sampling resolution of
∼ 19.1m per pixel.

After concatenation and downsampling, we were left with ap-
proximately 200 000 terrain tiles. By applying combinations of ver-
tical and horizontal flips, and 90-degree rotations, we were able to
enlarge our dataset eightfold, for a total of 1 600 000 terrain images.

4.2. Signature Extraction

It is clearly infeasible to require hand-drawn feature sketches for
hundreds of thousands of terrains. Instead, we concentrate on al-
gorithmic derivation of feature sketches from heightmap sources,
with a specific focus on ridge and drainage networks, cliff lines,
and flat regions.

Drainage networks are detected by simulating water flow over a
terrain and identifying regions with high water accumulation. In-
dividual streams are labeled according to their Strahler order. This
is a numerical measure of branching complexity [Hor45, Str57]
that provides a way to rank the importance of rivers in a network.
We then invert the terrain and apply the same algorithm to detect
ridge lines. Cliff lines are extracted by applying Canny edge de-
tection [Can86] on the normalized heightmap and then selecting
lines that correspond to steep terrain (i.e., high average slope mag-
nitude). Lastly, we mark regions in the terrain as flat if they have a
low average slope magnitude.

The process of deriving a feature sketch is subject to several
pre- and post-processing steps. First, as suggested by Guérin et

al. [GDG∗17], we apply a light Gaussian blur prior to feature
extraction with the intention of making synthesis more robust to
imprecise sketches. After extraction, we randomly select features
to display weighted by their Strahler order and water accumula-
tion value so as to emulate sketches containing varying extent and
concentration of detail. Sketches are further enhanced by widen-
ing important ridge, drainage, and cliff lines in the scene (based
on Strahler order or steepness). We also perform minor post-
processing to fill in gaps, remove small artifacts, and smooth edges.

© 2023 Eurographics - The European Association
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Parameter Options Selected

M
od

el

ResNet blocks 2, 3, 4 3
Base dimension 32, 64, 128, 256 64
Channel multipliers [1, 2, 4, 4], [1, 2, 4, 8], [1, 2, 4, 4, 8, 8] [1, 2, 4, 8]
Dropout 0, 0.2 0
Attention head dimension 8, 16, 64 8
Noise scheduler DDPMScheduler, DDIMScheduler, PNDMScheduler DDIMScheduler

Noise beta schedule linear, cosine linear

T
ra

in
in

g

Learning rate 1e-3, 1e-4, 5e-5, 1e-5 1e-4
Learning rate scheduler None, ReduceLROnPlateau ReduceLROnPlateau

Optimiser Adam, AdamW AdamW
Batch size 1, 2, 4, 8, 16 8
Loss function L1, L2 L2

Table 1: Hyperparameter tuning, including options considered (column 2) and finally selected (column 3).

Finally, each sketch is stored as an RGBA image, with one feature
class per channel.

The other component of the terrain signature is a style vector,
which is based on histograms of slope and both normalized and
un-normalized elevation. Each histogram consists of 16 bins, with
appropriate bin ranges selected to enforce a uniform distribution
over the training set. These bin ranges are used consistently across
all subsequent training and inference. To compute a style vector for
an individual terrain, we compute the 3 histograms according to
these ranges and concatenate them to form a single 48-dimensional
vector.

Training data for the upsampling models are generated in a self-
supervised manner: downsampling the original terrain images by
a factor of 8 using nearest neighbor interpolation. The models are
then trained to predict terrains at the original resolution, given the
down-scaled images as input.

5. Diffusion-based Synthesis

Diffusion models draw inspiration from non-equilibrium thermo-
dynamics [SDWMG15], where the core idea is to systematically
destroy the structure in a data distribution by iteratively adding
noise to a sample and then learning to reverse this process. Af-
ter training, new samples can be generated by passing pure noise
through this learned denoising process.

We use a time-conditioned U-Net [RFB15, DN21], augmented
with cross-attention and skip-connections, as the backbone of our
architecture (denoted as fθ in Figure 6). It processes an image,
formed from the concatenation of noise and a feature sketch, by
progressively lowering the resolution, passing it through a bottle-
neck, and then upscaling this representation back to its original res-
olution. As is standard practice, the U-Net is trained with a denois-
ing objective to iteratively remove noise from an image [SHC∗21].

With regard to model hyperparameters, we carefully examine
the trade-off between sample quality and inference speed. For our
sketch-to-terrain model S, we focus on providing users with near-
immediate feedback during authoring without significantly impact-
ing the realism of the synthesized terrain. Early experimentation

Q 

K V

Sketch 𝒙𝒙 Target style

Denoising U-Net 𝑓𝑓𝜃𝜃Image 𝒚𝒚𝑡𝑡Noise 𝒚𝒚T Image 𝒚𝒚𝑡𝑡−1

Terrain 

Encoder 𝜏𝜏

Output 𝒚𝒚0

Cross attention

Q 

K V

Skip connection Concat

Denoising process

Figure 6: Our diffusion model architecture supports stylization

using a terrain encoder and cross-attention, and feature sketching

through concatenation with the input noise image. The denoising

process applies a U-Net to iteratively reduce noise and introduce

structure.

revealed that although smaller models lead to a decrease in fine
details, they are generally capable of producing terrains with a con-
sistent global structure. This is a reasonable compromise given the
availability of amplification techniques to account for the lost de-
tail [ZLB∗19, ZCZ∗20, ACA18, KSR20]. Details of the chosen hy-
perparameters and implementation of the method can be found in
Table 1 and in the official repository, respectively.

As illustrated in Figure 6, the feature sketch, x, is concatenated
with the noisy image, yt , at each timestep t. Aligning the sketch
with the noisy terrain enables direct and localized manipulation
of terrain features. In contrast, example-based stylization serves
as a means of controlling the global aesthetic of the terrain, with
synthesized terrains containing similar landform characteristics to
those present in the provided examples. This is achieved by form-
ing a single 48-element style vector based on histograms of slope
and elevation (both normalized and un-normalized). This process
(denoted as τ) ensures that deviations from the norm are accentu-
ated in the generated styles. These style vectors are then passed to
the intermediate layers of the U-Net, which utilize a cross-attention
mechanism [VSP∗17].

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Final renderFlat areasIntroducing cliffsAdding ridgesInitial drainage

Figure 7: As part of an authoring sequence an artist sketches drainage (green), ridges (red), cliffs (blue), and a flat area (outlined in white)

to produce a landscape reminiscent of the Yosemite National Park.

For consistency, we use the same architecture for upscaling as
the sketch-to-terrain model, with the only exception being the type
of input image (i.e., low-resolution terrain instead of a feature
sketch). We also provide additional guidance through exemplar ter-
rains and their corresponding style vectors, allowing the synthe-
sized terrains to include characteristic features of specific landform
classes (e.g., sharp ridge lines). Since upscaling is only performed
as a post-processing step, users may select a larger number of sam-
pling timesteps (250−1000) to achieve higher quality, without the
need for interactive feedback.

5.1. Model and Training Hyperparameters

In terms of tuning, early tests demonstrated that although per-
formance improves with larger models (base dimensions, channel
multipliers, and ResNet blocks), this comes at the cost of substan-
tially longer training and sampling times (or even out-of-memory
errors). Given our focus on interactive authoring, it is important
to select model parameters that balance quality and performance.
Accordingly, we tested the parameter options listed in Table 1, by
training each model for 72 hours on a machine with an Nvidia®

A100 GPU (20GB). We split our dataset into training (90%), vali-
dation (5%), and testing (5%) subsets.

In terms of optimal parameters, in keeping with Saharia et al.

[SHC∗21,SCC∗22], we did not observe any benefits from dropout,
likely because regularisation is not needed due to the volume of
source data.

We use a batch size of 8 as the largest value that does not result
in out-of-memory errors. We also find that a learning rate of 1e-4
with a ReduceLROnPlateau scheduler and an L2 loss produces
the best FID outcomes.

As observed by Chen et al. [Che23], the appropriate noise sched-
uler is task-specific, and depends on model size, image size and
dataset statistics. We find that a linear (1e-6, 1e-2) DDIMSched-
uler [SME20] provides the best results in our case.

6. Results

With the exception of visualization software, our entire frame-
work is coded in Python. The diffusion models are implemented
using Hugging Face’s diffusers library (with PyTorch back-
end) [vPPL∗22] due to the memory optimizations and additional
inference parameters it provides. Our authoring interface uses
Blender’s® Python API, enabling seamless integration with exist-
ing artist workflows. The hypsometric terrain views were rendered

in Mitsuba 0.6, while photorealistic landscape images were ren-
dered with Vue®.

Training was conducted on a workstation equipped with a par-
titioned Nvidia® A100 GPU (20GB), while evaluation and testing
were performed on a desktop computer equipped with an Intel®

Core™ i9-10980XE CPU @ 3.00GHz and NVidia® RTX 3090
(24GB).

6.1. Hydrological Validation

Hydrological consistency is an important criterion for determining
not only the geological but also the perceptual realism of a synthetic
terrain [RKv∗22]. One form of evaluation is to compute and visual-
ize the drainage of a terrain. The upstream drainage area a of point
p is the amount of water that flows through p, and is proportional
to the area of the surface where every downstream route passes
through p. Figure 8 provides a visual comparison of the drainage
of our method against reference procedural, image-based synthe-
sis and erosion simulations, obtained from the online repository of
Galin et al. [GGP∗19].

[Zhou2007] [Stava2008]

[Guérin2016][Tasse2014] [Guérin2017]

�𝑏𝑏 = 106 �𝑏𝑏 = 3,5

�𝑏𝑏 = 5,9 �𝑏𝑏 = 14,8 �𝑏𝑏 = 4,18

Ours

�𝑏𝑏 = 0,61

Ridged noise

�𝑏𝑏 = 125,9

[Gain2015] [Cordonnier2018]

�𝑏𝑏 = 27,2 �𝑏𝑏 = 0,45

Figure 8: A comparison of drainage areas for different synthetic

terrains: our method produces fewer endorheic pits and greater hy-

drological consistency (as measured by average breaching volume

b̄) than previous data-driven approaches. Instances of procedural

(ridged noise) and simulation [CCB∗18] outputs are included for

a basis of comparison. A lower breaching volume, b̄, is better.

As an additional measure, we compute the average breaching
volume b̄ for each case. This is defined as the volume of material
removed by the minimal breaching required to ensure free drainage

© 2023 Eurographics - The European Association
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off the terrain [BLM14] divided by terrain area. Values reported
in Figure 8 demonstrate that our method outperforms comparator
techniques and is on par with erosion simulation. A notable excep-
tion is a method described by Scott and Dodgson [SD21], which
specifically performs a complete post-processing multi-resolution
breaching to improve the realism of image-based synthesis meth-
ods: in that case, the resulting average breaching volume is 0.

6.2. Balancing Quality and Performance

As illustrated in Figures 15 and 16, our sketch-to-terrain model is
capable of generating high-fidelity terrains faithful to user inputs in
the form of feature sketches and style selections. This is comple-
mented by upscaling models that introduce high-frequency detail
that is cognizant of the low-frequency source (see Figure 9). We
also see significant improvement over the current state-of-the-art
when generating terrain from sparse input sketches. In these cases,
our results show plausible and consistent structures and are free of
the artifacts typical of other methods (see Figures 16 and 17).

Next, we consider the necessary trade-off between response rate
and output quality. One strength of diffusion models is that they
rely on an iterative generation process involving a sequence of sam-
pling timesteps during which output quality improves at a diminish-
ing rate [DN21]. Since the time required for an individual timestep
remains relatively constant (at around 40Hz in our case) this al-
lows a time limit to be imposed on synthesis, so long as the user is
willing to accept the consequent quality level. Conversely, a qual-
ity threshold can be set with the generation time determined during
execution.

To explore this dynamic, we compared terrain quality as a
function of the number of timesteps using the following standard
image distance metrics: Learned Perceptual Image Patch Simi-
larity (LPIPS) [ZIE∗18], and Fréchet Inception Distance (FID)
[HRU∗17]. Despite a clear decline in quality when using fewer
timesteps (as shown in Figure 10, particularly at less than 25
timesteps), we, nevertheless, find that the global structure of the
terrain is well-maintained (see Figure 12).

Furthermore, we compared our results to the current state-
of-the-art deep learning model for sketch-to-terrain synthesis
[GDG∗17] on the basis of LPIPS and FID scores (see Fig-
ure 10). Their implementation uses conditional Generative Adver-
sarial Networks (cGANs) for image-to-image translation, based on
the Pix2Pix [IZZE17] architecture. As evidenced by the signifi-
cantly lower FID scores for t ≥ 15, our model more closely matches
the underlying distribution of real terrains. Similarly, our model
produces better LPIPS scores for t ≥ 25, which is indicative of a
perceptual image similarity closer to the target terrains.

Our framework supports two modes of fixed-duration operation:
real-time response during active sketching (5 timesteps in 0.125s
at a rate of 8Hz), and interactive updates once the pen is lifted (up
to 250 timesteps in 6.25s). In fact, diffusion iterations can continue
in the background during unrelated activities, such as viewing, tool
selection, and parameter setting so that the terrain is progressively
refined.

6.3. Perceptual Study

We tested the perceived realism of terrains obtained from
our framework, the real ground truth data and a cGAN
model [GDG∗17] with an internet-administered user study (n = 41
participants). The comparator cGAN model was trained on exactly
the same dataset as the diffusion model using the code from the
original paper [GDG∗17].

The experiment design employed a 2AFC (two-alternative
forced choice) protocol in which participants were required to
choose on each trial between two landscapes drawn from real,
diffusion-synthesized and CGAN-synthesized sets. Their selection
was based on the question: “Which terrain looks more realistic (left
or right)?”, with the order of presentation (left or right) random-
ized. The number of pairings of treatments (Real vs. cGAN, Real
vs. Ours, and Ours vs. cGAN) was also balanced. The landscapes
were fixed at a 256×256 resolution and rendered with a hypsomet-
ric texture from an oblique angle and rotated to left and right about
the vertical axis over a period of 10 seconds to aid depth discrimi-
nation.

To address the known differences in perception between land-
scape styles and their constituent landforms [SD22, RKv∗22] we
partitioned the trials into four distinct categories: cliffs, hills, moun-
tains, and flatland (which nevertheless contained some detail, such
as coastlines and river courses). In order to avoid selection bias, we
first performed k-means clustering on the style vector of the input
dataset to group terrains by category (with k = 4). Then for each
treatment and category, we randomly selected a set of 10 signa-
tures based on the style distance from the centroid of the cluster,
with 5 above and 5 below the median distance to provide diversity.
The original terrain was retained for the real treatment, while the
corresponding signature was used to generate terrain in the case of
the diffusion and cGAN models. We avoided performing resolu-
tion amplification so as to ensure parity between real and generated
data. The extent of terrains was kept constant at 5× 5km2 across
all trials.

Each participant was presented with 26 trials (3 treatment par-
ings with 2 repetitions for each of the 4 landscape categories and
2 additional repeated control pairs). The duplicate controls were
chosen at random, with a participant’s data excluded due to in-
consistency if both controls differed from their original selections.
We introduced further randomization by drawing each category-
treatment sample without repetition from a pool of 10, meaning that
the experiment dataset contained 120 terrains (10 pool elements×3
treatments ×4 categories).

A demographic questionnaire was completed by each participant
beforehand to determine familiarity with real landscapes (regular-
ity of experiencing natural landscapes) and gaming (regularity of
playing games depicting outdoor environments).

We obtained participants via convenience sampling with the ma-
jority being students and academics. After exclusion due to incon-
sistency, we analyzed data from n = 41 participants of whom 37%
hiked and 54% gamed either weekly or monthly (see Table 2). We
then undertook a Bayesian statistical analysis partitioned by cate-
gory with the probability of treatment t (real, ours, or cGAN) mod-
eled as a Bernoulli random variable with associated probability θt .
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Figure 9: Cascaded application of our upscaling models U1 (153→ 19.1 m/pixel) and U2 (19.1→ 2.39 m/pixel), allowing for 64× super-

resolution.
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Figure 10: A graph of FID and LPIPS quality error metrics as a

function of the number of timesteps. We indicate the current state-

of-the-art deep-learning approach with dashed horizontal lines.

For statistical significance, we derived the credible intervals cor-
responding to 95% of each probability density function (see Fig-
ure 14), implying that if the intervals for two treatments in a cate-
gory do not intersect then they credibly represent distinct distribu-
tions. For the purposes of inspection, Figure 11 shows the terrains
most and least favored by participants grouped by treatment and
category.

Our analysis indicates that users are able to reliably distinguish
real from generated terrains in the case of hills, but not plains, cliffs,
and mountains (see Figure 14). In fact, our method outperforms
cGANs for plains and hills and, surprisingly, even real terrains in
the case of plains. Our tentative conclusion is that these differences
are primarily due to viewers favouring terrains with well-defined
erosion detail (as borne out by Figures 11 and 13). Such detail

is visible because we use a fractional Laplacian to enhance high
frequencies in our rendering. The cGAN approach lacks any dis-
cernible notion of style and this impacts its performance in cer-
tain categories. It also has a tendency to produce small grid arti-
facts [GDG∗17]. While this clearly harms the realism of terrain
upon close inspection, such artifacts can pass for plausible detail
at medium viewing distances or when viewed for a short amount
of time. Finally, it is worth noting that these categorical differences
support the view [SD22] that perceptual experiments really should
treat terrain types separately.

6.4. Limitations

Based on the success of sketching and stylization, we attempted to
extend the authoring toolset to include elevation constraints: with
the idea that users would be able to specify the elevation of key fea-
tures, such as mountain peaks and river junctions. Unfortunately,
we found it impossible to achieve alignment with the base terrain,
while balancing control and ease-of-use. We also attempted to in-
corporate elevation-to-satellite translation, as a means of texture
synthesis. Although the generated textures exhibited well-defined
feature lines and shadows, present in the satellite imagery, they
were particularly noisy and lacked a coherent global structure.

Diffusion models have shown marked success in text-to-image
generation tasks [RDN∗22, SCS∗22]. This prompted us to exper-
iment with terrain synthesis conditioned on free-form textual de-
scriptions. Unfortunately, the results were deeply disappointing:
our crowdsourced labeling resulted in generic landform descrip-
tions and vaguely specified placement leading to poor quality in-
ference. Our conclusion is that non-expert language is insufficiently
precise in this context, especially when compared to a combination
of stylization and sketching.

Finally, the performance of our framework approaches but does
not cross the threshold of real-time response (20Hz) and indistin-
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Figure 11: Terrains selected as most and least realistic in our perceptual study, by category (mountains, cliffs, hills, and plains) and method
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255 10 25050 100 Target

M
o

u
n

ta
in

s
M

es
as

C
an

y
o

n

Figure 12: Sketch-to-terrain generation at different sampling timesteps.

guishability from real terrains across all landform classes. Another
issue, common in the use of diffusion models for iterative author-
ing, is flickering and inconsistent outputs after minor adjustments
to the canvas. Although increasing the detail of the input sketch
and fixing the random seed during authoring may improve consis-
tency, further research and experimentation is required. This may
include, for example, conditioning on previous frames to provide a
more coherent authoring experience. It is also worth noting that this
is a highly active area of research and the inevitable improvements
to come can be carried over to our system.

7. Conclusion

We have shown that diffusion models form a sound basis for author-
ing terrains, with an appropriate balance of interactive response and

both perceptual and structural realism. Our diffusion-based author-
ing framework enables artists to select terrain styles from a palette
and also sketch features that include cliffs, ridges, drainage, and flat
areas. This provides expressivity in terms of the achievable terrain
diversity, economy in the extent to which terse input leads to rich
output, and precision in that the combination of a style and detailed
feature sketch effectively represents an accurate terrain signature.

Nevertheless, there is an opportunity to take diffusion-based ter-
rains further in future work. We would like to extend authoring to
encompass accurately registered surface detail derived from satel-
lite imagery and elevation controls at feature points, such as river
junctions and mountain peaks. In this regard, recent advances in
latent diffusion [RBL∗22] offer a promising avenue.
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Figure 13: A side-by-side comparison of cGAN, ours, and real ter-

rain based on the same canyon signature. All three of these terrains

appeared by chance in the perceptual experiment due to a lack of

diversity in the cliff category. Within its category the cGAN canyon

scored worst, ours performed best, and the real was intermediate

(see Figure 11).
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tions show the 95% credible interval, with no overlap implying a

statistically-significant difference in distributions.
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Figure 15: Examples of terrains authored by non-expert users in under a minute. From left to right: (1) a canyon with a narrow river flowing

through it, (2) a snow-capped mountain range with a fjord, (3) a large island and surrounding lake, and (4) a cliff-dominated coastline with

rocks protruding from the sea.
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Figure 16: Sketch-to-terrain sample diversity, showing progressively less diversity as sketches become more detailed.
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Appendix A: Terrain Representation

A terrain’s elevation can be defined by a continuous function h :
R

2 → R, where the height/altitude of the terrain at a point (x,y)
is given by h(x,y). The primary limitation of such a definition is
its inability to represent terrains that contain overhangs, arches, or
caves, since only one height value can be associated with each point
in the function’s domain [GGP∗19]. However, due to its simplicity,
terrain is most often represented in this manner.

A Digital Elevation Model (DEM) is a 3D representation of a
terrain’s surface, created from elevation data. DEMs are most com-
monly defined as heightmaps, where altitudes are arranged on a
regular 2D grid. As a result, they can be stored as grayscale im-
ages, where the pixel value represents the altitude at a point.

While heightmaps remain the predominant form of terrain sur-
face representation, in many cases, such as landslide detection al-
gorithms [BFM06,Paw19], it is advantageous to store terrain slope
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as opposed to raw height values. Mathematically, a terrain’s slope
is defined as a two-dimensional vector field, whose components are
the first-order partial derivatives of the elevation function, h, given
by g =∇h = (∂h/∂x,∂h/∂y). These gradient/derivative images can
also be stored as images with two channels being used (one for each
component of the vector field), where the pixel value represents the
angle of the slope at a point.

In practice, elevation images are stored at a bit-depth of 16
(values between 0 and 65535), while derivative images use 8
bits for each channel (values between 0 and 255). These ap-
proaches to structuring height data play an important role in trans-
ferring geographical knowledge to computer-processable informa-
tion [HWL∗22] and have found many uses in texture synthesis and
machine learning methods [GGP∗19].

Appendix B: Diffusion Models

The forward diffusion process, q, is modelled as a Markov chain,
where Gaussian noise is added to a data point y0 ≡ y over T

timesteps:

q(yt+1 | yt) = N (yt−1;
√

αtyt−1,(1−αt)I) (1)

q(y1:T | y0) =
T

∏
t=1

q(yt | yt−1) (2)

The hyper-parameters αt determine the variance of the noise added
at timestep t and are chosen such that by timestep t = T , yT is
virtually indistinguishable from Gaussian noise.

A useful property of this process is that we can sample yt at
an arbitrary time step t in a closed form by reparameterising the
forward process. Let γt = ∏

t
i=1 αi, then

q(yt | y0) =N (yt ;
√

γty0,(1− γt)I) (3)

The posterior distribution of yt−1 given (y0,yt) can be derived as

q(yt−1 | y0,yt) =N (yt−1 | µ,σ2
I) (4)

where µ=
√

γt−1(1−αt )
1−γt

y0+
√

αt (1−γt−1)
1−γt

yt and σ2 =
(1−γt−1)(1−αt )

1−γt
.

Learning

The goal of the reverse process, p, is to recover the target image y0
from a noisy image ỹ,

ỹ =
√

γy0 +
√

1− γε,ε∼N (0, I) (5)

To this end, the neural network fθ(x, ỹ,γ) is parameterised to con-
dition on an input image x (e.g., a user sketch), a noisy image ỹ,
and the current noise level γ. The network is then trained to predict
the noise vector ε by optimising the objective function:

E(x,y)Eε,γ

∥∥∥ fθ(x,
√

γy0 +
√

1− γε
︸ ︷︷ ︸

ỹ

,γ)− ε
∥∥∥

p

p
(6)

Algorithm 1 Training a denoising model fθ

1: repeat

2: (x,y0)∼ p(x,y) ▷ Sample conditional and target images
3: γ∼ p(γ) ▷ Select amount of noise to add
4: ε∼N (0, I) ▷ Sample Gaussian noise
5: Take a gradient descent step on

∇θ∥ fθ(x,
√

γy0 +
√

1− γε,γ)− ε∥p
p

6: until converged

Inference

Since fθ is trained to estimate ε given a noisy image ỹ and yt , y0 is
approximated by rearranging the terms in equation 5 to get

ŷ0 =
1√
γt

(
yt −

√
1− γt fθ(x,yt ,γt)

)
(7)

This estimate, ŷ0, is then substituted into the posterior distribu-
tion of q(yt−1 | y0,yt) in equation 4 to parameterise the mean of
pθ(yt−1 | yt ,x) as

µθ(x,yt ,γt) =
1√
αt

(
yt − 1−αt√

1− γt
fθ(x,yt ,γt)

)
(8)

The variance of pθ(yt−1 | yt ,x) is set to (1−αt), a default given by
the variance of the forward process [HJA20].

Finally, with this parameterisation, each iteration of the reverse
process can be computed as

yt−1←
1√
αt

(
yt − 1−αt√

1− γt
fθ(x,yt ,γt)

)
+
√

1−αtεt (9)

where εt ∼N (0, I).

Algorithm 2 Inference in T timesteps

1: yT ∼N (0, I) ▷ Start with pure Gaussian noise
2: for t = T, . . . ,1 do ▷ Perform iterative refinement
3: z∼N (0, I) if t > 1, else z = 0

4: yt−1 =
1√
αt

(
yt − 1−αt√

1−γt
fθ(x,yt ,γt)

)
+
√

1−αtz

5: end for

6: return y0 ▷ The denoised image

Appendix C: User study demographics

Gaming

A B C D Total

H
ik

in
g

A 3 1 1 4 9
B 2 7 1 7 17
C 2 1 3 5 11
D 0 3 0 1 4

Total 7 12 5 17 41

Table 2: Demographics in our perceptual study pertaining to regu-

larity of experiencing nature (hiking) and playing games in outdoor

environments (gaming). Possible responses: A) never or rarely (less

than once a year), B) occasionally (a few times a year), C) often
(every month), or D) usually (every week or almost).
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