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Fast In-Place Binning of Laser Range-Scanned Point Sets
BRUCE MERRY, JAMES GAIN, and PATRICK MARAIS, University of Cape Town and Centre for High
Performance Computing

Laser range scanning is commonly used in cultural heritage to create digital models of real-world artefacts. A large scanning
campaign can produce billions of point samples—too many to be manipulated in memory on most computers. It is thus necessary
to spatially partition the data so that it can be processed in bins or slices. We introduce a novel compression mechanism that
exploits spatial coherence in the data to allow the bins to be computed with only 1.01 bytes of I/O traffic for each byte of
input, compared to 2 or more for previous schemes. Additionally, the bins are loaded from the original files for processing
rather than from a sorted copy, thus minimizing disk space requirements. We demonstrate that our method yields performance
improvements in a typical point-processing task, while also using little memory and guaranteeing an upper bound on the number
of samples held in-core.
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1. INTRODUCTION

Laser range scanning is increasingly used in cultural heritage documentation. A large scanning cam-
paign can produce billions of point samples of the physical world, which require further processing
such as registration, cleaning, surface reconstruction and hole-filling to be useful [Rüther et al. 2011].
This is too much data to be held in main memory, and so out-of-core techniques are required [Wand
et al. 2008].

Processing point clouds out-of-core is usually nontrivial because common operations on a point also
depend on the spatial neighborhood of that point. Rather than focusing on a specific task, we consider
the general problem of out-of-core point-cloud processing. The goal is to preprocess the data so that it
becomes possible to load each point into memory with its neighborhood for processing. Since current
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disks are 1–2 orders of magnitude slower than RAM, this preprocessing is usually I/O-bound, and
reducing the number of I/O passes can substantially improve performance.

The I/O efficiency of a preprocessing algorithm can be measured as an I/O ratio: the number of
bytes of I/O traffic per byte of input data. Previous work reorders the data on disk, and so necessarily
has an I/O ratio of at least 2: one to read the original data and one to write the reordered version.
Our contribution is an approach that exploits coherence in the original data to achieve I/O ratios only
slightly greater than 1. This is achieved by always reading the original data rather than creating a
reordered copy. Note that, except where otherwise stated, we do not count the I/O operations to load
the data again for processing, as they can be overlapped with computations and so have minimal
impact on performance.

Our strategy is to partition the samples into bins that are small enough to be handled in-core, which
can then be processed by a variety of algorithms. Our approach is based on an octree, with each bin
being an octree node. For each point, we require a position, and a radius of influence that determines
the size of its neighborhood. Points whose spheres of influence intersect multiple bins are provided
in all of those bins, to ensure that points at the boundaries of bins can be correctly processed. If per-
point radii of influence are not known, one can use a conservative global upper bound. We also assume
that the scans have already been registered and so the points are all specified in a single coordinate
system.

Apart from the much-reduced I/O ratio, our scheme requires minimal temporary disk space (com-
pared to creating a sorted copy) and the number of samples held in memory is bounded. Previous
approaches based on a plane sweep [Pajarola 2005] provide no memory bounds. Existing octree-based
approaches can provide a bound [Cignoni et al. 2003], but since they store samples in only one, bin it
is still possible that hundreds of bins will need to be in memory simultaneously.

To summarize, we provide a method for spatially partitioning point cloud data derived from laser
range-scanning campaigns (or other sources that exhibit spatial coherence in the point samples) with
the following benefits (and consequent novelty):

(1) an I/O ratio close to 1, with the result that the partitioning preprocess runs in approximately half
the time of competing schemes;

(2) a bound on the number of in-core samples required.

Section 2 discusses previous work, and we describe our implementation in Section 3. To illustrate
how our approach might be used, we apply it to normal estimation in Section 4, before presenting
results and conclusions in Sections 5 and 6.

2. BACKGROUND

Previous work on out-of-core geometric processing generally falls into two categories: sweep-plane
approaches and approaches based on tree structures, usually octrees. In sweep-plane approaches, the
vertices are first sorted along an axis. During processing, the points are streamed into an active set, and
points that are no longer required are removed from the active set, and written out to external memory
if necessary. This is done in a FIFO manner, so the active set is a slice through the dataset, with the
thickness determined by the type of processing being done. The in-core memory usage is determined
by the number of points that fall within the active set.

Pajarola [2005] introduces a general framework for geometric processing of point clouds, based on a
sweep plane, and demonstrates how it can be used for a number of “local” operators, including finding
k nearest neighbors, estimating normals, curvature and density, and smoothing. He also demonstrates
that these operations can be pipelined, allowing multiple dependent operators to be applied in a single
streaming pass. This is achieved by keeping an active set for each operator, and passing points that are
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removed from the trailing edge of one set into the leading edge of the next. Boesch and Pajarola [2009]
make some refinements, including integration of the sort into the processing. They use an initial pass
for principal component analysis (to determine the sweep axis) followed by an external sort, so the
preprocessing has an I/O ratio of 3.

Sweep-plane approaches are also used in several surface reconstruction algorithms. A simple form
of this is the ball-pivoting algorithm [Bernardini et al. 1999], which is adapted to run out-of-core by
dividing space into slices and processing one slice at a time, keeping track of edges that need to be
reconsidered in the next slice. Bolitho et al. [2007] implement Poisson-based reconstruction using a
“multilevel” streaming approach. A virtual octree covers the entire bounding box, but only those nodes
intersected by the sweep plane and their k-neighborhoods are retained in-core. There is thus an active
set of octree nodes per octree level. Cuccuru et al. [2009] similarly use an octree for Moving Least
Squares (MLS) surface reconstruction, again with only nodes near the sweep plane kept in memory,
but they force it to be fully refined to some minimum depth in order to bound the width of the active
set.

A significant limitation of sweep-plane approaches is that they do not give any hard bounds on
memory usage, as it depends on the distribution of the input samples. Boesch and Pajarola [2009]
show that in real-world use cases, the active set can contain up to 9% of the total data, making it
unsuitable for extremely large datasets.

The other main approach to out-of-core geometry processing is to use a spatial tree structure such
as an octree. This allows octree nodes to be refined until the leaves contain a sufficiently small number
of points. Storing relatively large numbers of points in each leaf allows the octree structure to be kept
in-core and minimizes the effect of disk latency [Wand et al. 2008].

The octree-based approaches differ substantially in how they initially construct the octree. Wand
et al. [2008] perform online construction, adding one point at a time and refining existing nodes where
necessary, as well as creating a new root if the point falls outside the bounding box. Richter and Döllner
[2010] take a top-down approach: if the point-set is too large to be handled in-core, it is split into 8
smaller point-sets (corresponding to the child nodes of the octree root), and then processed recursively.
Both of these approaches have a high I/O ratio, as each sample is read and written each time it is
moved deeper in the tree.

Fiorin et al. [2007] have a more elegant solution, wherein the samples are sorted by their position
along a space-filling curve, which causes all the samples in any octree node to be contiguous. A single
pass is then sufficient to compute the octree structure. However, this still has an I/O ratio of 4 for
preprocessing, due to the use of the external sort.

Cignoni et al. [2003] use an octree to index a mesh, with each vertex stored in a single leaf and each
face stored in the leaf of one of its vertices. Their octree construction is similar to ours. In a first pass, a
maximum octree depth is chosen and the triangles are scanned to determine how many would fall into
each maximum-depth leaf node. The octree is then coarsened by merging leaf nodes together, as long
as the resulting leaves do not contain too many triangles. A second pass over the data then distributes
the triangles into the final set of leaves. Since each element is read twice and written once during this
preprocessing, the I/O ratio is 3 (there are further processing steps, but as they are specific to meshes
rather than point clouds we do not consider them).

When using an octree to store spheres of influence, one must decide how to store spheres that in-
tersect multiple octree nodes. Most previous work favors storing the sample in only one octree node,
which then requires all of a node’s neighbors to be loaded before the node can be processed. Cignoni
et al. [2003] bound the number of neighbors by constraining the difference in depth between neighbors
to 3, but hypothetically this still allows a node to have hundreds of neighbors that must be loaded.
It is also unclear how many nodes should be cached to avoid each node being loaded multiple times.
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Instead, we reference a sphere of influence from all octree nodes that it intersects. This causes a minor
increase in the number of samples stored in a bin of a given volume, but allows bins to store far more
samples as only one bin needs to be in memory at a time.

Chiang et al. [1998] use a different approach when bucketing the vertices of a tetrahedral mesh: to
produce H3 bins, they first partition into H equal-sized sets along the X axis, then subdivide each of
these into H equal-sized sets along the Y axis, and finally subdivide each of these into H equal-sized
sets along the Z axis. This is similar in idea to a kd-tree, but with a breadth of H rather than the usual
2, and a depth of only 3. This approach requires each vertex to take part in three external sorts (one
per axis), which creates significant I/O traffic.

All of these approaches have an I/O ratio of at least 2 during preprocessing, and for many of them it
is higher.

3. BINNING

We now present our method of placing samples into bins. Each sample i is assumed to have a position
pi, a radius of influence ri, and possibly other data (such as a normal) that will be needed for later pro-
cessing, but which do not affect the binning process. The output is a stream of bins, each consisting of a
volume of space and the data for all the samples whose spheres of influence intersect that volume. The
user specifies an upper bound M on the number of samples in a bin. We assume that M is sufficiently
large that no single point in space is overlapped by more than M spheres of influence, and hence the
problem can always be solved with sufficiently small bins.

In practice, sphere/box intersection tests are relatively expensive and would significantly complicate
some of the code, so in all intersection tests we conservatively approximate the spheres of influence by
their axis-aligned bounding boxes. The spheres of influence are generally smaller than the boxes they
are tested against, so this does not greatly increase the number of intersections.

Our basic approach is based on an fixed-depth octree and has some similarities to that of Cignoni
et al. [2003], although we handle boundaries differently as we are not dealing with a triangle mesh.
We start by building a multiresolution histogram to determine how many samples are associated with
each octree node. We then select a nonoverlapping set of nodes from this octree to form buckets, into
which we distribute the samples. Buckets with at most M samples immediately become bins. Some
buckets will be leaves that still contain more than M samples, and these are subdivided recursively,
similar to Richter and Döllner [2010]. However, this causes additional I/O and so we prefer to choose
the leaves to be small enough, or M large enough, that this does not happen too frequently. Figure 1
shows a 2D example of this recursive reprocessing, and Section 3.1 covers this process in detail.

The basic approach requires two passes over the input data, and would thus have an I/O ratio of
at least 2. To reduce the I/O ratio to just above 1, we take advantage of the high spatial coherence in
input files extracted from range maps: not only are the individual range maps likely to be a coherent
subset of the entire point cloud, but sequential points in a single file are likely to be very close together.
We exploit this by precomputing blobs: contiguous ranges of samples that occupy the same leaves in
the octree. Because each blob represents a large range of samples, they take orders of magnitude less
storage, and are also more efficient to process. Section 3.2 describes how the blobs are created and
used.

Each bin is described by a bounding box and a list of sample IDs. Section 3.3 discusses loading those
samples from disk. The entire process is summarized in Algorithm 1 and depicted in Figure 2.

While the primary design goal has been to minimize I/O, we were only able to reach the full I/O
bandwidth during preprocessing by utilizing multiple CPU cores. In Section 3.4, we discuss how we
have used parallel programming to prevent the CPU from becoming a bottleneck.
ACM Journal on Computing and Cultural Heritage, Vol. 6, No. 3, Article 14, Publication date: July 2013.
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(a) (b)

Fig. 1. Example of binning with M = 4. (a) The dashed lines delineate the leaves of the initial octree, and the shaded boxes
show the buckets. The gray buckets become bins, but the blue bucket contains more than M samples. (b) The blue bucket is
recursively processed using a higher-resolution histogram (blue lines). The blue boxes are the bins that result.

Fig. 2. Overview of the binning process. For simplicity, the bounding boxes have been omitted.

3.1 Histogramming

In this section, we describe the basic algorithm, ignoring the “blob” optimization for the moment.
We thus describe streaming passes over the input samples. Section 3.2 will describe how this basic
algorithm is modified to use the blobs for acceleration.

We assume that we have a bounding box for the volume of interest. At the top level, this is extracted
during the blob-computation pass (see Section 3.2); during recursive binning of an overfull leaf, this is
simply the region covered by the leaf.

The octree is represented using a hash table per level. This allows any node to be located in expected
O(1) time, and we found that this representation was about 75% faster and also used less memory
than a traditional octree with nodes that contain pointers to their children. A dense 3D array per level
would be even faster, but use far more memory.

The choice of leaf size is a trade-off. Leaves should ideally be small enough that almost all of them
contain no more than M samples, as otherwise they will have to be reprocessed recursively. However,
excessively small leaves slow down the histogramming and also make the use of blobs less effective.
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ALGORITHM 1: Overview of the binning process. Where a function takes blobs it can also take samples, by using
an adapter that converts each sample to one blob.
function Binning(samples)

blobs, bbox = MakeBlobsAndBbox(samples);
RecurseBinning(blobs, bbox);

endfunction
function RecurseBinning(blobs, bbox)

histogram = MakeHistogram(blobs, bbox);
buckets = ChooseBuckets(histogram.root);
FillBuckets(histogram, blobs);
foreach bucket ∈ buckets do

if |bucket.samples| ≤ M then
LoadBin(bucket);

else
RecurseBinning(bucket.samples, bucket.bbox);

end
end

endfunction

For the top level histogram, we used a leaf size of 1 m for all datasets, although this would need to be
adjusted if the sampling density is significantly higher or lower. When reprocessing a volume with side

length S and N samples, we heuristically choose a leaf size of L = 1
2 S

√
M
N . This yields S

L = 2
√

N
M leaves

to a side, and if the nonempty leaves occupy a 2D slice through the volume, then they will contain M
4

samples on average.
Each node in the octree contains a count of the samples whose spheres of influence intersect the

node. Samples are streamed in sequentially and accumulated into this histogram. Parent counters are
not necessarily equal to the sum of their child counters, because a single sphere of influence might
intersect more than one child but will only count once towards the parent. Figure 3(b) shows a 2D
example with a quadtree, based on the spheres of influence depicted in Figure 3(a).

Once all the samples have been accumulated into the octree, we select a subset of the octree nodes
to form buckets. These buckets must cover the spheres of influence with no overlaps. We have imple-
mented this using a top-down walk of the octree, as shown in Algorithm 2. The descendant nodes are
also updated with the bucket ID, which allows the bucket covering a leaf to be determined in expected
O(1) time.

ALGORITHM 2: Selecting buckets. This is a recursive algorithm, which is initially called with the root node of
the histogram tree.
function ChooseBuckets(node)

if node.count ≤ M or node is a leaf then
if node.count > 0 then

Append node to the list of buckets;
end

else
foreach child of node do

ChooseBuckets (child);
end

end
endfunction
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(a) Spheres of influence. This is an artificially sparse example: in real data the spheres would overlap far more. The grid
represents the finest level of the histogram.
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(b) Multi-resolution histogram. Each level of the tree is shown separately. The grey shading shows entries that were incremented
due to the red sphere of influence. The empty cells are implicitly zero, but are not stored in the hash table.
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(c) Delta-encoded histogram. In coarser levels, each count has been decremented by the sum of the corresponding counts at the
next finer level. The gray cells show the entries that are modified due to the red sphere of influence; note that the two coarsest
levels do not need to be modified.

Fig. 3. 2D example of the multi-resolution histogram.

Having selected the buckets, we now pass over the input data again to determine which buckets
contain each sample (Algorithm 3). For each bucket, we store a list of sample IDs. To save space, we
represent runs of consecutive IDs by the initial ID and the length. We have found this run-length
encoding to be so efficient that we are able to keep the lists in-core. To further reduce space, we use a
variable-length encoding for the runs: if a run starts within 216 samples from the end of the previous
run and has a length of less than 215, we use a 4-byte encoding, otherwise a 16-byte encoding.

ALGORITHM 3: Distributing samples to buckets
function FillBuckets(histogram, samples)

foreach sample ∈ samples do
B := ∅;
foreach leaf in histogram intersecting sample do

Insert leaf.bucket into B;
end
foreach bucket ∈ B do

Append sample.id to bucket.samples;
end

end
endfunction
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This approach is still somewhat computationally expensive as-is. In considering how to optimize it,
we note that in typical usage the leaves are significantly larger than the spheres of influence, and hence
the spheres generally intersect only a few leaves. In this case, FillBuckets (Algorithm 3) is relatively
cheap, as each sample requires time proportional to the number of leaves it intersects. ChooseBuckets
(Algorithm 2) is also very quick, because it is independent of the number of samples. The histogram-
ming is the slowest part of the algorithm, as it increments at least one counter at each level of the
histogram for each sample.

We can improve this by representing the histogram using delta encoding. For each non-leaf node, we
replace the count by the count less the sum of the counts of the children, as shown in Figure 3(c). As
noted previously, this will be nonzero where a sphere of influence intersects more than one child yet is
counted only once in the parent. The advantage of this representation is that adding a sample to the
histogram becomes much cheaper in the common case: an internal node is updated only if the sphere
of influence intersects more than one of its children. The worst case still requires one update for each
level of the tree, but this rarely occurs. In our test cases, the average number of nodes updated per
sample (including leaves) was less than 13.

While this encoding is efficient for computing the histogram, it is inconvenient for the top-down
walk used to select the buckets. Thus, immediately before selecting the buckets we do a bottom-up
propagation to convert the histogram back into the original form shown in Figure 3(b). Algorithm 4
shows the optimized implementation of MakeHistogram.

ALGORITHM 4: Constructing the histogram
function MakeHistogram(samples, bbox)

Set node counters to zero;
foreach sphere of influence do

foreach level in octree do // Fine-to-coarse
foreach node ∈ level intersecting sphere do

c := number of children intersected;
if node is a leaf then

Add c to node.count;
else

Add 1 − c to node.count;
end

end
if only one node intersected then

break;
end

end
end
// Convert to non-delta-encoded form
foreach level in octree do // Fine-to-coarse

foreach node ∈ level do
Add node.count to node.parent.count;

end
end

endfunction

3.2 Acceleration through Coherence

A fundamental limitation of the algorithm as described so far is that it requires two passes over all the
samples: one to compute the histogram, and one to compute the list of sample IDs in each bucket. This
ACM Journal on Computing and Cultural Heritage, Vol. 6, No. 3, Article 14, Publication date: July 2013.
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1–3 B0–B0
4–5 B0–B1
6–6 B0–B0
7–7 A0–B1
8–8 A1–B1
9–10 A1–A1

Fig. 4. 2D analogue of blobs. Left: sample points, their spheres of influence and their IDs, with the grid of cells. Right: blob
representation, one per line. Note that although 6 intersects the same cells as 1–3, it is not contiguous with them so cannot be
part of the same blob.

gives an I/O ratio of 2, and if the bounding box is not known a priori, a third pass would be required to
compute it.

To reduce I/O, we exploit the spatial coherence between sequential points in the input files to accel-
erate the top level of the recursive binning algorithm (i.e., buckets that have too many samples and
need to be further subdivided do not benefit). Specifically, we note that a sample has a high probability
of intersecting the same leaf nodes as the previous sample, and hence they can be batched together
and handled as a unit.

To take advantage of this, we use a data structure that we term a blob. 3D space is divided into an
infinite regular grid of cubic cells of user-specified size. A blob stores a range of sample IDs, together
with the cells that their spheres of influence intersect. Since we approximate the spheres by their
bounding boxes, this is simply a cuboid of cells, which we represent by storing two opposite corners.
Figure 4 shows an example in 2D.

The blobs are computed by making a pass over the samples, computing the corresponding cells
for each sample, and if possible merging the sample into the previous blob. The blobs are written to
external storage, but take orders of magnitude less space than the original sample data due to the
run-length compression.

In our implementation, a blob is represented using 40 bytes: 64-bit sample IDs for the start and end
of the range, and three 32-bit cell coordinates for each corner. Since blobs are always processed serially,
we can reduce the storage required by compressing them. We have used a simple variable-length
encoding: blobs are specified with either the full 40-byte encoding, or a compact 4-byte differential
encoding. The differential encoding contains 19 bits for length, 3 bits per axis to specify the position
relative to the previous blob, 1 bit per axis to indicate the extent (either one or two cells), and a 1-bit
flag to indicate the encoding. Table II shows that the average bytes per blob is only slightly above 4,
implying that the differential encoding is used for the majority of blobs. We have not explored other
encoding schemes as this scheme is sufficient to make the blobs effective.

Once the blobs are computed, the original sample data are not needed for the top-level bucketing.
Instead, the blobs are used directly. When the multiresolution histogram is created, the leaf size is
set to a multiple of the cell size and the octree is aligned to the cell grid, so that each occupied cell is
contained in exactly one leaf. In general, the leaves and cells will be the same size, but if necessary we
increase the leaf size until the volume of the bounding box is no more than 230 leaves. This helps to
keep the histogram performance reasonable even if the user makes a poor choice of cell size.

Algorithm 4 is modified to replace operations on spheres of influence with operations on blobs, with
histogram updates scaled by the number of samples represented in the blob. Similarly, Algorithm 3
appends the range of IDs encoded in a blob to the sample ID list for a bucket. Since the sample ID lists
are also run-length encoded, the blob is either merged with the previous range (if they abut) or forms a
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new range. Using the blobs thus not only saves I/O bandwidth, but also reduces CPU load by enabling
each blob to be processed as a single unit.

To further reduce the number of passes required, we compute both the bounding box and the blobs
in a single pass. Each sample is thus loaded just once during preprocessing while the blobs are written
once and read twice. This gives the preprocessing an I/O ratio of 1 + 3r, where r is the compression
ratio for the blobs (the ratio between the size of the blobs and the size of the input). Since r is less than
0.01 for all test cases, this makes the I/O highly efficient in spite of having to process blobs multiple
times.

3.3 Retrieving Samples

Once preprocessing is complete, the bins are ready to be processed. For each bin, we have in memory
the run-length encoded list of sample IDs for the bin, but the samples themselves are still on disk and
need to be retrieved.

Unlike the blob creation pass, this phase requires random access. The spatial coherence is important
once again, as each contiguous range of samples can be loaded with a single read. Furthermore, there
are frequently small gaps between ranges. We found that merging multiple ranges into one larger
read request to the operating system improved performance, in some cases by 65%. When we load a
range, we combine it with all subsequent ranges that fall within the next 4 MiB. This block size is an
arbitrary choice and we have not experimented with tuning it. While this causes a lot of data to be
loaded unnecessarily, our results show that the access pattern allows reuse from the operating system
cache.

3.4 Parallelization

The use of blobs makes the actual bucketing process very efficient, but we found that in our implemen-
tation with a single CPU core and a striped RAID array, the blob creation/bounding box pass was still
CPU-limited. Additionally, we wanted to ensure that I/O and processing could be efficiently overlapped.
To achieve this, we use multiple threads to improve performance in several areas.

To overlap computation with I/O, the input data are read using a separate thread that enqueues the
data to the main computation thread. We have used the STXXL library to manage the external storage
of blobs, and it similarly uses a separate thread for asynchronous I/O.

For the bounding box/blob creation pass, we use OpenMP [OpenMP Architecture Review Board 2008]
to handle each block of data in parallel. Computing the cells intersected by a sample is expensive, but
also trivial to parallelize as it is independent for each sample. Each thread also computes a local bound-
ing box for the samples it examines, and at the end these are used to update the global bounding box.
Variable-length encoding of the blobs is also done in parallel: each sub-block is encoded independently
to a per-thread buffer, and these buffers are then serially written to external storage. These optimiza-
tions were sufficient to make the implementation I/O-bound on our system. Figure 5 shows the flow of
data and responsibilities of each thread.

So far, we have only discussed the CPU load of the binning process, but the binning is, of course,
merely a preprocess to some computation, such as estimating normals as described in Section 4. This
computation is also overlapped with the sample retrieval described in Section 3.3. Once all the samples
for a bin have been retrieved, they are placed on a queue, and a consumer thread fetches from the
queue and performs computations. It is also possible to parallelize the computations by using multiple
consumer threads, at the expense of having more bins resident in memory at a time. Once the sample
retrieval thread has enqueued a bin, it can immediately start fetching samples for the next bin without
waiting for the computation, as shown in Figure 6.
ACM Journal on Computing and Cultural Heritage, Vol. 6, No. 3, Article 14, Publication date: July 2013.
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Fig. 5. Blob creation and bounding box pass. The read thread (red arrow) reads a block of data from disk and passes it to
the master thread. The samples are divided into sub-blocks, each of which is processed by an OpenMP thread (blue arrows) to
produce encoded blobs and a bounding box per sub-block. The master thread (black arrows) then merges the bounding boxes
and concatenates the blobs.

Fig. 6. Overlapping computation and sample loading. Time increases left-to-right, and each row represents a thread. Each
colour represents a specific bin and shows how it is first loaded and later processed by a separate thread. The loader thread
pauses before loading the blue bin so that no more than four bins are resident in memory at a time.

4. NORMAL ESTIMATION

To illustrate how the binning process might be used in practice, we provide an example application:
estimating normals at the sample points from their neighborhoods. It should be emphasized that this
is simply one example, and the technique is general and could be applied to other problems such as
smoothing, resampling, surface reconstruction, etc.

Our normal estimation is based on the work of Hoppe et al. [1992]: for each sample, the k nearest
neighbors are found, and a plane is fitted through these neighbors using principal component analy-
sis (PCA). The normal is then taken perpendicular to the plane. The first step is thus to compute the
nearest neighbors of each point, which we describe in Section 4.1. Computing a normal from the neigh-
borhood is outlined in 4.2. For comparison, we also implemented the same normal estimation approach
on top of a plane-sweep over the data, as described in Section 4.3.

4.1 Finding k Nearest Neighbors

When a bin is loaded, we compute the normals for all samples that fall inside the bin. To ensure that
the correct neighborhood is found, we must set the radii of influence appropriately so that all neighbors
will have spheres of influence that intersect the bin. For simplicity, we require the user to specify a sin-
gle radius R that is used for all samples. We use libnabo [Elseberg et al. 2012] to construct a kd-tree
over the samples in the bin and to search it for the nearest k neighbors within a ball of radius R.

Not all samples will have k neighbors inside a ball of radius R, and for those we do not compute a
normal. We consider this a feature, as these samples are normally outliers that we would like to filter
out anyway.
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4.2 Fitting Normals to a Neighborhood

A normal is estimated by computing a covariance matrix for the samples in a neighborhood, and tak-
ing the eigenvector corresponding to the smallest eigenvalue. We use the Eigen library to find this
eigenvector [Guennebaud et al 2010].

This only gives an unoriented normal. Hoppe et al. [1992] start by orienting one normal and then
propagate this orientation through the neighborhood graph, but this would be complex to implement
out-of-core. However, since our samples are acquired by laser range scanning, we have a simpler al-
ternative: the input samples already contain crude normals, estimated by triangulating the grid of
samples in a scan, and oriented towards the scanner. We thus choose the orientation that minimizes
the angle between the original and our updated estimate.

4.3 Estimating Normals in a Plane Sweep

Pajarola [2005] uses a dynamic balanced kd-tree to index the points in the active set. We found that
most kd-tree libraries we examined only support static kd-trees. We did find one library that imple-
ments dynamic randomized kd-trees [Duch et al. 1998]. However, the approach in this section using
multiple static kd-trees turned out to be significantly faster.

Since the user is already expected to provide an upper bound R for the neighborhood search, we
can exploit this to avoid the need for a dynamic data structure. We partition the points into slices
with width R, and build a kd-tree on each slice. To find the neighbors of a point within a slice, we
first search for neighbors in the same slice, and then search the two adjacent slices if they potentially
contain neighbors. We thus need to keep three slices and their kd-trees in memory at a time.

4.4 Parallelization

Each normal can be computed independently of the others, so this is an easily-parallelizable problem.
We considered two ways to parallelize the implementation: either a single bin can be processed by
multiple threads, or each thread can process a single bin with multiple bins being processed in parallel.
The latter gives better performance because it also parallelizes the construction of the kd-trees, but it
requires more bins to be resident in memory. We chose a trade-off by processing two bins in parallel
with eight threads per bin. This gives twice as many threads as CPU hardware threads on our target
system, which helps keep the CPU saturated while the kd-tree is being built for one of the bins.

To overlap computation with I/O, we allow the loader thread to run two bins ahead of the computa-
tion. There are thus up to four bins resident in memory at a time.

We used a similar approach to parallelize the sweep-plane version: we process two adjacent slices
in parallel, using eight threads per slice. Running the loader one slice ahead is sufficient to keep the
computation threads from stalling. There are thus up to five slices resident at a time, as shown in
Figure 7.

5. RESULTS

We now present the results of running our normal-estimation code on a number of datasets, and com-
pare it to the version using a plane sweep. We demonstrate the efficacy of our optimizations, and also
consider the overall performance and memory usage.

5.1 Experimental Setup

We ran our experiments on a desktop PC with a Core i7-2600 CPU (4 cores, 3.4 GHz), 16 GiB RAM
and two 3 TB hard drives using software RAID-0 (striping). We measured the read speed for the RAID
setup as 250 MiB/s. We used 64-bit Ubuntu 12.04 and GCC 4.6.
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Fig. 7. Active slices. Columns represent slices while each row represents a different thread. Each processing thread computes
a kd-tree over one slice (1) and nearest neighbors for another slice (2), taking into account neighbors in the adjacent slices. Note
that step (2) requires that all three slices have kd-trees available, so the threads are not completely independent.

Table I. Datasets
Name Samples Bytes Size (GiB) Bounding box (m) Radius (m) Outliers (%)

Amman Tower 1.26 · 107 31 0.36 14 × 14 × 6 0.1 0.006
Pisa Cathedral 1.57 · 108 28 4.11 118 × 87 × 54 0.2 0.011
Siq 3.82 · 109 31 110.29 531 × 1 110 × 157 0.2 0.019
Songo Mnara 6.25 · 109 31 180.38 331 × 291 × 24 0.2 0.008
San Sebastian 7.25 · 109 28 189.09 382 × 329 × 21 0.2 0.003
Big 6.53 · 1010 28 1 701.80 1 146 × 986 × 21 0.2 0.003

Bytes is the average number of bytes per sample. Outliers is the fraction of samples that have fewer than k neighbors inside
the radius limit.

Table I lists the datasets we have used and the chosen radius limit on the nearest neighbor searches.
For all datasets, we used k = 16 for the nearest neighbor search, limited samples per bin to M = 107

and used a cell size of 1 meter. The leaf size for the top-level histogram was also 1 meter. The “Big”
dataset is a special case: it consists of nine copies of San Sebastian, arranged in a 3 × 3 grid, to create
a test that is an order of magnitude larger than any of our real data. Figure 8 shows the datasets and
the corresponding bins.

5.2 Performance

Figure 9 and Table II show the breakdown of time required to compute normals, normalized by the
number of samples. Note that we have not implemented write-back of the computed normals to file,
since we assume that the normals will be used in further processing such as surface reconstruction. We
have separated the time into preprocessing (prior to any normals being computed) and the processing
to compute normals. The recursive subdivision of over-full leaves is done in parallel with the normal
computations, and hence is not included in the preprocessing time; however, this makes little difference
as only 6 buckets are reprocessed across all datasets (5 for Siq and 1 for Songo Mnara).

Our preprocessing performance is close to the theoretical limit: Table III shows that the I/O ratio
is only fractionally above 1, and preprocessing time corresponds to a rate of 165–223 MiB/s. The two
smallest datasets (Amman Tower and Pisa Cathedral) are entirely cached in memory by the OS, and
so their total I/O ratio is only slightly above 1. For the bigger datasets, the total I/O ratio is somewhat
larger than the theoretical minimum of 2, and this is reflected in the proportionately longer time spent
in loading during processing compared to the sweep-plane approach. However, since the total I/O ratio
is less than 3, our in-place approach will still out-perform any approach that rearranges the data
out-of-core.
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Fig. 8. Datasets and bins. The points in the interior of each bin are shown in a different color. The point clouds have been
randomly subsampled to make density variations more apparent. Datasets are c© Visual Computing Lab ISTI-CNR (Pisa) and
African Cultural Heritage and Landscapes Database (others).
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Fig. 9. Time for each phase. In each pair of stacks, the left stack is for our binning approach and the right stack is for the
plane-sweep approach. The two substacks in each stack indicate the loading thread and the processing threads, which execute
in parallel. The plane-sweep approach was not run for the Big dataset due to insufficient memory.

Table II. Processing times (all in seconds). Where three numbers appear in a column, they are respectively
the time for our binning approach, the time for the plane-sweep approach and the ratio between the two. The

time for MakeBlobsAndBbox is part of the preprocessing time. The total time is greater than the sum of
preprocessing and processing times because there are delays while data are loaded. The Big dataset was not

run with a plane sweep due to insufficient memory
Name MakeBlobsAndBbox Preprocess Process Total

Amman Tower 1.8 2.0 / 4.7 / 2.4 8.5 / 10.7 / 1.3 11.2 / 15.7 / 1.4
Pisa Cathedral 20.1 23.2 / 54.1 / 2.3 100.8 / 145.4 / 1.4 124.2 / 201.4 / 1.6
Siq 451.3 506.0 / 1 278.1 / 2.5 2 700.5 / 3 950.7 / 1.5 3 370.3 / 5 236.6 / 1.6
Songo Mnara 774.9 859.6 / 2 253.8 / 2.6 4 793.4 / 8 927.7 / 1.9 5 953.2 / 11 212.8 / 1.9
San Sebastian 1 085.1 1 175.1 / 2 217.0 / 1.9 5 263.7 / 10 673.2 / 2.0 6 715.8 / 12 910.4 / 1.9
Big 8 906.6 9 509.1 / / 47 479.3 / / 60 251.9 / /

Table III. Statistics. Range length is the average number of samples in a contiguous range within a bin. Bin size
is the average number of samples in a bin. Blob length is the average samples per blob. The I/O ratios are

computed from the kernel’s reported low-level disk accesses, and may include disk I/O from unrelated processes
Range Blobs Blob Bytes/ I/O ratio I/O ratio

Name Range length Ranges Bins Bin size (MiB) length Blob preprocessing total

Amman Tower 561 2.33 · 104 4 3.27 · 106 2.02 28.77 4.83 1.00 1.00
Pisa Cathedral 436 3.84 · 105 62 2.70 · 106 38.13 19.48 4.95 1.00 1.00
Siq 373 1.35 · 107 1 741 2.88 · 106 582.65 32.98 5.27 1.00 2.25
Songo Mnara 186 5.18 · 107 3 292 2.93 · 106 992.21 31.31 5.21 1.01 2.37
San Sebastian 271 4.04 · 107 3 577 3.06 · 106 797.25 47.88 5.52 1.00 2.49
Big 269 3.65 · 108 31 738 3.10 · 106 7 180.07 47.84 5.52 1.00 2.86
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Fig. 10. Effect of cell size on performance for the Siq dataset. For cell sizes of 0.1 m and 0.2 m, the top-level leaf size is auto-
matically increased to 0.4 m. For larger cell sizes, the top-level leaf size matches the cell size.

Figure 9 shows that the I/O ratio corresponds well with actual performance: our preprocessing is
roughly twice as fast as the sweep-plane method; and while loading during processing is slower, it
is entirely overlapped with computation. Apart from faster preprocessing, it also appears that the
processing is more efficient with our method. While we have not investigated the reasons for this, we
hypothesize that cube-shaped bins are better for kd-tree searches than thin slices.

Since the cell size is chosen by the user, it would be unfortunate if performance was highly sensitive
to this parameter. Figure 10 shows the impact on performance for one of the datasets. When the cell
size is very small, preprocessing performance suffers because the blobs become very short and do
not compress well. When the cell size is large, there will be many over-full buckets that need to be
recursively reprocessed, which affects total time. However, it is clear from the figure that performance
remains reasonable across two orders of magnitude in cell size.

To verify the effectiveness of our delta-encoded histogram, we modified the code to skip the delta
encoding and to propagate updates all the way up to the root (as in Figure 3(b)) and reran the Songo
Mnara dataset. The time spent in RecurseBinning increased by 34%, from 92 s to 123 s.

We also tested whether there is any benefit in using adaptively sized bins rather than just a uniform
grid, by modifying Algorithm 2 to only select leaves as buckets. On the Pisa dataset, total execution
time increased from 124 s to 209 s, the number of bins increased from 62 to 31,738 and the memory
required to hold the splat ranges increased from 2 MiB to 50 MiB. While performance may be better had
the code been written from scratch for this approach, the huge increase in bins and memory indicate
that the adaptive sizing is valuable.

5.3 Memory Usage

The only out-of-core storage we use, other than the original samples, is for the blobs. Table III shows
that this is orders of magnitude less than the original data, or the copies that would be generated
during an external multiway merge sort.

In-core, the storage is usually dominated by the samples that are loaded per bucket and the kd-
trees that are built from them, along with some buffers for inter-thread communication. These are all
independent of the size of the input data. For the Big dataset, the histogram takes 99 MiB and the
sample ID ranges take 2030 MiB.
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Fig. 11. Peak number of samples in memory. For our binning approach, this asymptotically approaches the upper bound of
4 × 107 (four bins of M elements). With a plane sweep, there is no upper bound, and the largest dataset was not run due to lack
of memory.

Fig. 12. Peak memory usage. Usage is measured at the malloc level, so includes the memory pools used by std::allocator.
For our approach, the samples account for most of the memory in the smaller datasets, but in the largest set the sample ID
ranges contribute 2 GiB.

We found that our binning approach needed a deeper loading pipeline to reduce stalls caused by
differently-sized bins (even with this longer pipeline, Figure 9 shows that the processing threads
spend some time waiting for the loading thread). In spite of this, both the number of samples allo-
cated (Figure 11) and the maximum total memory (Figure 12) were lower for our binning approach
than a slice-based approach on large datasets.

6. CONCLUSIONS

We have shown that as long as the points have a spatially coherent order, our novel blob representation
enables spatial binning with a preprocessing I/O ratio that is essentially half that of previous work.
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Our overall I/O ratio is also well below 3, which is the lower bound for algorithms that rearrange the
data out-of-core.

Our method bounds the number of samples held in-core and uses only a small amount of memory
even for very large datasets, and so can scale up further with the current leaf size. Arbitrarily large
datasets can be handled by increasing the leaf size to prevent the octree from becoming too large, at
the expense of more buckets requiring reprocessing and hence more I/O.

An argument often made for sorting points is that it only needs to be done once, after which the
sorted file can be used multiple times. The same can be done in our approach, by storing per-bin
information (bounding box and sample ranges) on disk, although it is slightly less flexible as the data
structure is dependent on the radii of influence and not just the point positions.

While our framework is more complex to implement than a plane sweep, operations implemented on
top of the framework are simpler. Rather than dealing with dynamic data structures and dependencies
between slices, each bin can be processed independently as a static point cloud.

As already noted, the algorithm is specifically designed for handling range-scanned point clouds
by exploiting spatial coherence. If this order was lost, for example by sorting the points for a plane
sweep, the method would perform extremely poorly. Nevertheless, tools based on our method could
still be used if the points were first re-sorted along a space-filling curve to restore coherence. It is also
necessary for the input to be stored in a file format that allows for random access to samples.

An advantage of our method is that it can use the original data files without modifying them, and
minimal extra external storage for data structures. This makes our method particularly well-suited
to applications that do not need to make persistent alterations to the original point cloud. Surface
reconstruction is a good candidate: for each bin, normals and density estimates can be computed in
memory and used to generate an output mesh. Resampling is also likely to perform well. Applications
that modify the point cloud and write it back to disk (such as simply computing and storing normals)
will also work, but such cases one can no longer avoid creating a copy of the point cloud and so this
advantage is lost.

6.1 Future Work

Pajarola [2005] discusses a framework for applying multiple operators to a stream, where each is able
to use the results of previous operators. A composition of operators has a larger footprint; for example,
it may depend on neighbors’ neighbors. Conceptually, it should be possible to achieve a similar effect
with binning by increasing the amount of duplication between bins to ensure that all necessary points
are loaded. However, this might cause excessive I/O traffic, and it is unclear how to determine this
footprint when per-point radii are used instead of a global radius of influence.

Because an octree has a fan-out degree of 8, many bins contain far fewer than M = 107 points, as
seen in Table III. Splitting by a factor of 2 each time would allow bins to be larger, which would reduce
the number of samples that are duplicated across bins.

At present, the histogramming occurs after the blob creation pass, but it should be possible to inter-
leave the two, allowing for better overlap between I/O and computation during preprocessing.
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