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Abstract Classic shortest path algorithms operate on graphs, which are suitable for prob-
lems that can be represented by weighted nodes or edges. Finding a shortest path through a set
of weighted regions is more difficult and only approximate solutions tend to scale well. The
Field D* algorithm efficiently calculates an approximate, interpolated shortest path through a
set of weighted regions and was designed for navigating robots through terrains with varying
characteristics. Field D* operates on unit grid or quad-tree data structures, which require high
resolutions to accurately model the boundaries of irregular world structures. In this paper, we
extend the Field D* cost functions to 2D triangulations and 3D tetrahedral meshes: structures
which model polygonal world structures more accurately. Since robots typically have limited
resources available for computation and storage, we pay particular attention to computation
and storage overheads when detailing our extensions. We begin by providing analytic solu-
tions to the minimum of each cost function for 2D triangles and 3D tetrahedra. Our triangle
implementation provides a 50 % improvement in performance over an existing triangle imple-
mentation. While our 3D extension to tetrahedra is the first full analytic extension of Field D*
to 3D, previous work only provided an approximate minimization for a single cost function
on a 3D cube with unit lengths. Each cost function is expressed in terms of a general function
whose characteristics can be exploited to reduce the calculations required to find a minimum.
These characteristics can also be exploited to cache the majority of cost functions, producing
a speedup of up to 28 % in the 3D tetrahedral case. We demonstrate that, in environments
composed of non-grid aligned data, Multi-resolution quad-tree Field D* requires an order
of magnitude more faces and between 15 and 20 times more node expansions, to produce
a path of similar cost to one produced by a triangle implementation of Field D* on a lower
resolution triangulation. We provide examples of 3D pathing through models of complex
topology, including pathing through anatomical structures extracted from a medical data set.
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To summarise, this paper details a robust and efficient extension of Field D* pathing to data
sets represented by weighted triangles and tetrahedra, and also provides empirical data which
demonstrates the reduction in storage and computation costs that accrue when one chooses
such a representation over the more commonly used quad-tree and grid-based alternatives.

Keywords Artificial intelligence · Problem solving · Control methods and Search ·
Graph and tree search strategies · Vision and scene understanding · Representations ·
Data structures and transforms · Perceptual reasoning

1 Introduction

Classic shortest path algorithms such as Dijkstra’s algorithm [1] or A* [2,3] operate on
graphs where the edges or nodes are weighted. This weighting system provides flexibility
in that any quantifiable characteristic can weight the graph, in addition to a typical distance
metric. In a road network for example, edges representing congested roads can be weighted
heavily so that a shortest path calculation will avoid them. The Weighted Region Problem
[4] has been postulated with the intent of developing an algorithm to find the shortest path
through a set of weighted regions. The ability to weight regions also provides flexibility in
finding the shortest path through environments with varying characteristics. For example, a
robot traversing terrain may weight rocky or muddy areas heavily, and grassed or sandy areas
lightly, so that it will avoid difficult terrain.

Mitchell and Papadmitriou [4] introduced the first in a series of ε-approximation algo-
rithms that find a shortest path through a set of weighted regions on a 2D plane for a certain
tolerance ε. Their algorithm utilises Snell’s Law of Refraction and runs in O(n8) time com-
plexity. Mata and Mitchell [5] develop another ε-approximation algorithm based on a pathnet
graph, which runs in O(n3) time complexity. Other ε-approximation methods [6–9] discretize
weighted triangles by inserting Steiner points on boundary edges, creating an approximation
graph on which a standard Dijkstra search can be applied. More Steiner points are inserted
if greater accuracy is required. In general, this results in a time complexity of mn O(log mn)

where m ∝ 1/ε and relates to the number of Steiner points added. Later work [10,11] reduces
this computational complexity at the cost of space by adding data structures that cache the
results of shortest path queries between two points.

While the addition of Steiner points to achieve greater accuracy provides a mathematically
rigorous approach to managing approximation error, this comes at the cost of greater resource
utilisation, since many more vertices and edges may be required to achieve the desired accu-
racy. In our target application, robotics, resources are usually heavily constrained and the
graph may not be allowed to grow beyond a prescribed size. The graph may also be updated
in real time as additional information is received about the environment. These constraints
motivated the development of the Field D* algorithm [12]—an efficient, but approximate,
interpolated solution to the weighted region problem. This paper addresses extensions to the
Field D* algorithm which allow it to operate on triangulated and tetrahedral graph structures.

Field D* adapts the underlying graph structure and cost functions of graph-based short-
est path algorithms. The underlying representation is a unit grid whose squares or cells are
assigned weights. The cost of traversing to a node is calculated by minimizing the cost of
travelling through a weighted cell and interpolating the adjacent node costs along the cell
edges. The resulting path can travel through weighted cells, and in practice produces paths of
lesser cost than A*. Field D* also has replanning capability that allows sections of the path
to be recalculated when changes in the environment occur.
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Due to the interpolation error inherent in the Field D* algorithm, the resulting paths
are not necessarily the shortest, but are reasonable approximations and provide an efficient
alternative to analytic solutions. Extensions include Multi-resolution Field D* [13], which
extends Field D* to quad-trees [14] to reduce the algorithm’s computation time and space
requirements and 3D Field D* [15], an approximate extension to 3D grids. Experimental
evidence in [13] shows that Multi-resolution Field D* can improve performance over Field
D* by a factor of 1.8 times when the resolution of the underlying quad-tree is 13 % of that
of the grid.

Representing an environment with a grid or quad-tree can be expensive in terms of storage.
In the field of Geographic Information Systems for example, terrain data can be represented
with an image-based Digital Elevation Model (DEM) or a Triangulated Irregular Network
(TIN) [16]. TINs are frequently based on Delaunay Triangulations [17] since this represen-
tation avoids narrow triangles. Since TINs use triangles to represents areas instead of the
grid elements used by DEMs, less memory is required to accurately represent the terrain.
This is related to the function approximation: Well-behaved functions can be approximated
with piecewise constant elements and piecewise linear elements. A single piecewise linear
element can more accurately fit a function segment than many piecewise constant elements,
at the expense of a slightly more expensive element volume calculation. However, by reduc-
ing the number of elements, this increased expense becomes insignificant and the overall
expense of computing the approximation is reduced.

Similarly, triangular subdivision of an irregular object is more accurate than a subdivision
with grid or quad-tree cells, since triangles can represent the boundary of the object more
accurately. This concept extends to 3D: approximating a polyhedral object with tetrahedra
will be more accurate than using cubes. Since these structures can approximate objects and
environments accurately, triangulated and tetrahedral meshes are common representations
[18], especially in fields such as Finite Element Methods [19]. As these are important and
useful representations, this paper presents an extension of Field D* to triangle and tetrahe-
dral meshes, expressed in vector notation. Our results show that a triangle implementation of
Field D* is faster than a quad-tree implementation of Field D* and requires fewer elements
to represent the environment when it is not grid-aligned.

Other methods based on interpolation exist. Konolige [20] introduces a Gradient Method
which uses classic grid-based planning to propagate costs over a grid and then uses a function
to interpolate between grid values and calculate the shortest path from start to goal. While the
resulting path is shorter than that on a grid, the initial node values are not as accurate as they
could be since the costs are calculated from travelling along grid edges, but not through grid
cells. The algorithm also has no replanning capability. E* [21] uses Fast Marching Methods
[22] to expand a surface outward from a goal to every part of the environment. This search is
not focused towards the starting location and assigns a cost to travel through a node, assuming
that the cost to transition between grid nodes is constant.

A number of other path-finding algorithms tackle the problem of finding paths across
regions by partitioning environments into solid and empty space. Near optimal hierarchi-
cal path-finding [23] smooths the path produced by an A* search on a grid by iteratively
examining a node and removing the node’s parent from the path if the node has line-of-sight
to the node’s grandparent. This can still be suboptimal if a node has visibility of a much
greater ancestor. Basic Theta * [24] improves this by allowing any vertex to be the parent of a
node. Kallman [25] represents an environment with a Constrained Delaunay Triangulation,
initially calculating the shortest path on the adjacency graph of the triangulation. This path
is then refined using a funnel algorithm [26]. While these algorithms produce good paths,
they lose the richness that a region weighting system provides.
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This paper is structured as follows: We briefly mention some standard path finding lit-
erature in the Related Work section and describe how Ferguson et al. [27] extend the basic
path finding cost function to a weighted grid. We describe the triangle and tetrahedral cost
functions in Sect. 3, showing how the work for most of these functions can be precomputed
and cached. In the Results section, we demonstrate that a triangulation implementation of
Field D* is superior to a multi-resolution quad-tree implementation in environments where
objects are not grid aligned, and detail the performance improvements that can be gained by
function caching. We also provide a performance and space comparison on triangles between
Generalized Field D* [28] and our implementation, as well as results for the 3D tetrahedral
case.

2 Related work

Planning shortest paths over a graph is a common computer science problem. Dijkstra’s
algorithm [1] finds the shortest path between a particular node and every other node in a
graph with non-negative edge costs. The algorithm is driven by a priority queue of nodes,
ordered by their cost. When a node is popped off the queue, the costs of the node’s neigh-
bours are derived from the cost of the node and the weight of the connecting graph edge. The
neighbours are then inserted onto the queue.

This graph-wide search can be unnecessary when the start and goal nodes are known.
A* [2,3] extends Dijkstra’s algorithm via the use of a heuristic that focuses the search in
the direction of the goal node. The use of a heuristic reduces the number of nodes that the
algorithm searches. D* [29], Incremental A* [30] and D* Lite [31] extend A* by repairing
calculated paths when dynamic cost changes occur in the underlying graph structure. Field
D* [27] extends D* Lite to operate on a weighted grid by extending the standard cost func-
tion determining the cost of traversing a graph edge used in A* and D* Lite, to a set of cost
functions determining the cost of traversing through a weighted cell. The paths produced by
Field D* may travel through weighted cells and are not restricted to cell edges. Field D* also
inherits the capacity to repair paths and the use of a heuristic from D* Lite.

Theta* [24] is an extension of A* to OPEN/CLOSED grids that not only considers the
neighbours of the node undergoing expansion as possible parents, but also all nodes that are
visible from the expanded node. Thus, the authors note that a Basic Theta* node expansion
is linear in the number of grid cells in the environment. The authors propose a variant called
Angle-Propagation Theta* that reduces the complexity of a node expansion to constant time,
but this is still computationally slower than Basic Theta*’s node expansion. This work also
describes an extension of Basic Theta* to non-uniformly weighted grids based on accumu-
lating grid cell costs along rays cast between the current node and all possible parents. Their
work shows that in randomly weighted environments Field D* finds shorter paths in less
time than Theta*, while in environments where 50 % of the cells are randomly weighted, the
other 50 % are weighted with the cheapest cost and there are large regions of contiguous cost,
Field D* produces equivalent path costs to Theta* in slightly shorter time. Unfortunately, the
values provided are averaged over 100 random environments and paths, with no indication
of variability, so it is difficult to make an informed comparison. It would be interesting to see
Theta* extended to triangulations, along with more extensive benchmarking.

Choi and Yu [32] incrementally extends Theta*’s non-uniform weighted grid extension
by calculating an arithmetic mean and a weighted mean over the ray cast by Theta*. The
arithmetic mean averages the grid cell costs encountered by the ray, while the weighted
mean accumulates the horizontal or vertical contribution—depending on a Bresenham-style
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decision—of a cell’s cost to the overall ray cost. Unfortunately, the authors do not perform
a comparison with non-uniform Theta* mentioned above. The path costs produced by the
weighted mean are equivalent to those produced by arithmetic mean and require 10 % more
time to calculate.

2.1 Field D*

Here, we partially describe the Field D* Algorithm as published by Ferguson et al. [27],
focusing chiefly on the derivation of the cost functions for the paths through a grid cell, since
the extension of these cost functions to triangles and tetrahedra constitutes the main novelty
in our work. In this sense, our work further extends the ComputeCost function that Ferguson
et al. derive from traditional graph-based path planning. Readers interested in learning about
the standard priority queue algorithm used in most A* derived path-finding algorithms should
consult [2,3,27,31]. One difference in our figures compared to previous work, is that arrows
point at the node for which the cost is being calculated (rather than away), as we consider
this a better representation of the direction of cost derivation.

Classic Shortest Path Algorithms operate on a node and edge graph structure in which
either the nodes or edges are weighted with some cost. Field D* also operates on a graph,
with three notable differences. Firstly, the graph is restricted to a grid structure. Secondly,
rather than weighting nodes or edges, the squares of the grid, or cells, are weighted. Thirdly,
instead of being restricted to deriving the cost of a node from the weight of a neighbouring
edge and the cost of the edge’s source node, the cost of a node may be derived from a path
travelling through a neighbouring cell.

Algorithm 1 Field D*
1: function Key(s)

2: return [min(g(s), rhs(s))+ h(sstart , s);min(g(s), rhs(s))]
3: function UpdateNode(u)

4: if s was not visited before then g(s) = ∞
5: if u �= sgoal then

6: rhs(u) = min
(s′,s′′)∈connbrs(u)

ComputeCost(u, s′, s′′)
7: if u ∈ U then U.Remove(u)

8: if g(u) �= rhs(u) then U.Insert(u, Key(u))

9: function ComputeShortestPath
10: while U.TopKey() < Key(sstart ) OR rhs(sstart ) �= g(sstart ) do

11: u = U.Pop()

12: if g(u) > rhs(u) then

13: g(u) = rhs(u)

14: for all s ∈ nbrs(u) UpdateNode(s)
15: else
16: g(u) = ∞
17: for all s ∈ nbrs(u) ∪ {u} UpdateNode(s)
18: function Main
19: g(sstart ) = rhs(sstart ) = ∞; g(sgoal ) = ∞
20: rhs(sgoal ) = 0;U = ∅
21: U.insert(sgoal , Key(sgoal ))

22: loop

23: ComputeShortestPath()

24: if any cell weights have changed then

25: for all cells x with new weights do

26: for all nodes s on x do
27: UpdateNode(s)

The basic Field D* algorithm as presented in [27] is shown in Algorithm 1. g(s) and
rhs(s) are, respectively the path cost and lookahead path costs at node s. U is the priority
queue containing inconsistent nodes (g(s) �= rhs(s)). Nodes are lexicographically ordered
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Fig. 1 The layout and possible
transitions in traditional
graph-based pathing and in Field
D* planning. In traditional
pathing (a), it is only possible to
transition to a node from another
node, along a graph edge. Field
D* (b) relaxes this assumption to
allow transitions across grid cells,
from edges between nodes
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(a) Traditional
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(b) Field D*

on U by the tuple K ey(s). This ordering induces a tie-breaking rule—if the first members
of two tuples are equal, the second member will be used to break the tie. sstart and sgoal

are the start and goal nodes and h(sstart , s) is a heuristic estimate of the cost of a path from
sstart to s. nbrs(s) are the neighbours of s, while connbrs(s) are the consecutive node pairs
surrounding node s (connbrs(s0) = {(s1, s2), (s2, s3), . . . , (s8, s1)} in Fig. 1b for example).
ComputeCost(u, s′, s′′) is the cost of travelling from edge s′s′′, across a cell to node u and is
the distinguishing feature of Field D*. The authors state that Field D* differs from D* Lite
in lines 5–6 and lines 24–27.

2.2 Field D* cost functions

In traditional graph-based path planning, the path cost of a node is determined by finding
the neighbouring node that is cheapest to transition from, as illustrated in Fig. 1a. This is
expressed as:

g(s) = min[c(s, s′)+ g(s′)] where s′ ∈ nbrs(s) (1)

g(s) is the accumulated path cost at node s, nbrs(s) is the set of neighbouring nodes of s
and c(s, s′) is the cost of travelling from s′ to s. This formulation restricts path transition to
graph edges. Field D* relaxes this assumption on a grid graph to allow transitions across grid
cells from a point on an edge between two nodes, as illustrated in Fig. 1b.

For this reason, Field D* weights cells, rather than nodes or edges. Ferguson et al. modify
Eq. 1 to accommodate this. Most notably, for some point sy on an edge between two nodes,
the path cost, g(sy), is estimated by linearly interpolating between the node g values. In
Fig. 1b for example, g(sy) = yg(s2) + (1 − y)g(s1) for some parameter 0 ≤ y ≤ 1. The
general path across half of a square cell is shown in Fig. 2a. c is the weight of the cell, b is
the weight of the adjacent cell and s1 and s2 are the neighbouring nodes of s that are adjacent
to each other. The variables x and y parameterise vectors −→ss1 and −→ss2 respectively. Equation
1 then becomes:

g(s) = min
x,y
[bx + c

√
(1− x)2 + y2 + (1− y)g(s1)+ yg(s2)] (2)

Ferguson et al. show how a variable can be eliminated from Eq. 2 to produce three different
cases.

g(s) = min(b, c)+ g(s1) (3)

g(s) = c
√

2+ g(s2) (4)

g(s) = c
√

1+ (1− x)2 + bx + g(s2) (5)
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Fig. 2 The a General Field D* cost functions and three sub functions (b–d) derived by eliminating a variable

g(s) = c
√

1+ y2 + (g(s2)− g(s1))y + g(s1) (6)

Figure 2b shows Eqs. 3 and 4, which are trivial in the sense that no minimisation over a
variable is required to determine their optimal cost—it will always be constant. In the case
of Eq. 3 the smallest value of b or c is chosen, as the path travels along the edge shared by
two cells. Equations 5 and 6, illustrated by Fig. 2c and d respectively, are parameterised by
a variable, which must be minimized to find the edge points that produce the cheapest cost.

This set of functions caters for the edge formed by nodes s1 and s2. Another set of cost
functions must be solved for the edge formed by s2 and s3 to fully consider the optimal path
across the cell. In this sense, the original Field D* algorithm finds the minimum cost path
across each cell by subdividing it into two triangles. The minimum cost of the above cases
is returned by the ComputeCost function in Algorithm 1.

Once Field D* has propagated costs to the appropriate nodes, the path between the start
and the goal node must be extracted. Beginning with the start node,1 the cost functions for
a node are re-calculated to determine the point from which the node derived its cost. As the
cost to travel from this point is the cheapest, it is the next point on the path. These points may
lie on edges, the point between s1 and s2 in Fig. 2d for example. We elaborate on Field D*’s
path extraction process in Sect. 4 for the sake of completeness.

1 Field D* is derived from D* Lite and consequently propagates node costs from the goal node towards the
start node. Path extraction is then performed in the opposite direction.
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Fig. 3 3D Field D*
parameterises s f on face
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Two extensions to basic Field D*’s cost functions have been developed. 3D Field D*
[15] extends Field D* to operate on a 3D grid by extending Field D*’s Direct cost function
(corresponding to Fig. 2d and Eq. 6) to cubes. See Fig. 3 for the configuration. The authors
state that no closed form minimization of this function exists in 3D and approximate the min-
imum to avoid the expense of numerical methods. For a cube face, this is accomplished by
estimating the minima for the four edge cases, constructing two lines between the opposing
estimated minima, and considering their intersection point as a possible minimum. Unfortu-
nately, it not clearly explained how the edge minima are calculated. The authors state only
that the process for finding the edge minima is similar to using the interpolation-based edge
calculation (yg(s2) + (1 − y)g(s1)) for the 2D case, but do not elaborate further. This is
an important point since if this is the basis of their technique, it is equivalent to using only
the interpolation component (g((s2) − g(s1))y + g(s1)) of Eq. 6 and neglecting the cost of
travelling through the cell to a node (c

√
1+ y2). This in turn implies that the estimation

of these edge minima will only be accurate if the cell weight c is neglible compared to the
interpolated cost between g(s1) and g(s2).

We note that the original Field D* cost functions could be used to estimate the minima
along edges s0s1 and s0s2 in Fig. 3, since these form unit squares with node s. However, this
is not the case for edges s2s3 and s1s3 since |ss2| =

√
2|s2s3|, for example. Also, no Indirect

cost function is presented for the case where the path travels partially along the side of a cube
(2D equivalent is Fig. 2c, Eq. 5) and then cuts across it to an adjacent node.

Generalized Field D* [28] modifies Field D*’s cost functions to operate on arbitrary trian-
gles. These cost functions are expressed in terms of the edge lengths and angles of a triangle.
This approach has a number of disadvantages. Firstly, if the angles and edge lengths are not
precalculated, expensive trigonometric and square root operations are required to calculate
these angles for each cost function. Alternatively, extra space would be required to store this
data in a triangle. Secondly, an extension of this paradigm to 3D tetrahedra would be clumsy:
Using 2D angles in a tetrahedron quadruples the number of angles and edge lengths, and true
3D angles (solid angles) are even more computationally expensive to maintain.

Our triangle cost functions express the mathematics in vector notation, reducing compu-
tational and space requirements, and allows an easier extension to 3D tetrahedra.

3 Cost functions

In this section we describe a general cost function of one variable, and how to efficiently
minimize this function. It generalises the functions used to determine path costs across a
triangle. (e.g. it could be applied to Eqs. 3–6). We show how to apply this minimization to
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find paths through an arbitrary triangle on a 2D plane in Sect. 3.2. We also show how to find
paths through arbitrary 3D tetrahedra by reducing to the 2D case in Sect. 3.3.

Three cases are presented for both triangles and tetrahedra, Trivial, Indirect and Direct. In
the triangle case, two Trivial, two Indirect and one Direct cost functions must be evaluated.
The least cost value produced by these functions is returned by the ComputeCost function.
In the tetrahedral case, three Trivial, three Indirect and one Direct cost functions must be
evaluated.

3.1 General cost function

The functions described later in this work require minimisation to find the cheapest cost
across a triangle or tetrahedron. These problems can be reduced to solving a General Cost
Function, whose solution and properties we will now describe. Let v1, v2 be non-zero, line-
arly independent vectors in R

n (for our purposes, we may assume n = 2 or 3). Let λ,μ, d
be constants with λ > 0 and let x be a real variable. Let

G(x, λ, v1, v2, μ, d) = λ‖v1 + xv2‖ + μx + d (7)

This is sometimes called the cost equation, but we will refer to it as the cost function,
abbreviated as G(x). In this section, we solve the problem of minimizing G(x) for x ∈ [0, 1].
Let

l(x) = ‖v1 + xv2‖
and note that

l(x) = ((v1 + xv2).(v1 + xv2))
1/2

= (‖v1‖2 + x2‖v2‖2 + 2xv1.v2
)1/2

.

For convenience, we let a = ‖v1‖2, b = ‖v2‖2, c = v1.v2 so that l(x) = (
bx2 + 2cx

+ a
)1/2.

Any local minimum of G(x) must satisfy 0 = dG/dx = λ(bx+c)/
(
bx2 + 2cx + a

)1/2+
μ. Re-writing this as

λ(bx + c)/
(
bx2 + 2cx + a

)1/2 = −μ (8)

and squaring both sides yields the quadratic equation

b(μ2 − bλ2)x2 + 2c(μ2 − bλ2)x + μ2a − λ2c2 = 0 (9)

Note that in squaring, we may introduce extra solutions. In fact, in Eq. 8, we necessarily
have (bx + c)μ < 0 because μ > 0 and v1 and v2 are linearly independent. Assuming this,
the solutions to functions (8) and (9) are identical. If μ2 − bλ2 = 0 then (9) has a solution
if and only if ab = c2, i.e. ‖v1‖2‖v2‖2 = (v1.v2)

2, which is impossible by the Cauchy
Schwartz inequality since v1 and v2 are linearly independent. If μ2− bλ2 �= 0 then there are
two solutions:

x = − c

b
± δ (10)

where

δ = μ
√

(μ2 − bλ2)(c2 − ab)

b(μ2 − bλ2)
.
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For these to be real, we require (μ2−bλ2)(c2−ab) ≥ 0. By the Cauchy–Schwartz inequality,
c2−ab ≤ 0, so we require μ2 < bλ2. Furthermore, as noted above we require μ(bx+c) < 0,
so that only the smaller root (+δ) satisfies (8) if μ > 0, and only the larger (−δ) root does if
μ < 0. We have the following cases.

1. If μ = 0, G ′(x) has a root at x = −c/b.
2. If μ2 ≥ bλ2, G ′(x) has no real root.
3. If μ2 < bλ2, G ′(x) has a root at x = −c/b + δ.

To determine whether a critical point is a local minimum, we consider the second deriva-
tive. We have

d2G
dx2 = λ

(
l(x)b−(bx+c)l ′(x)

l(x)2

)

= λ
(

l(x)b−(bx+c)2l(x)−1

l(x)2

)

= λ
(

l(x)2b−(bx+c)2

l(x)3

)

= λ
(

ab−c2

l(x)3

)

= λ
( ‖v1‖2‖v2‖2−(v1.v2)2

l(x)3

)

> 0

again by the Cauchy–Schwartz Inequality. The fact that the second derivative is positive
everywhere implies that the first derivative is strictly increasing on the whole of R. There are
three possibilities: If G ′(x) has a root α then G(x) has a global minimum at α; if G ′(x) is
positive everywhere, then G(x) is strictly increasing; if G ′(x) is negative everywhere then
G(x) is strictly decreasing. The minimum value of G(x) on the interval [0, 1] therefore occurs
at 0 and 1 in the second and third cases, respectively. Note that in the first case, the function
G(x) is strictly decreasing on (−∞, α) and strictly increasing on (α,∞).

Thus if G(x) has a global minimum α that does not lie in the interval [0, 1], the minimum
on the interval [0, 1] will occur at 0 if α < 0 and at 1 if α > 1.

3.2 Triangles

In this section we describe the cost functions for non-degenerate triangles. These can be
thought of as embedded in R

2 or in R
3—the discussion will be the same, irrespective of the

dimension of the ambient space.
Figure 4a shows the layout. Consider a triangle � AB1 B2. We define the weight of the

triangle as λ, the weight of the triangle opposite B1 as λ1 and the weight of the triangle
opposite B2 as λ2.

Unless indicated otherwise, we will denote the cost at a point X by g(X). Let the vec-
tors corresponding to the vertices A, B1, B2 be w, v1, v2 respectively and let u1 = v1 − w,
u2 = v2 − w and u3 = v2 − v1.

Trivial: Figure 4b illustrates trivial paths which travel along the edge of a triangle. In this
case there is a unique path from B1 to A and we have

g(A) = min{λ, λ1}|u1| + g(B1) (11)
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(a) Layout (b) Trivial Routes

(c) Indirect Routes (d) Direct Routes

Fig. 4 The layout of a triangle is shown in (a). The triangle is defined by three vertices, A, B1 and B2. The
triangle is weighted with value λ, while the triangles opposite B1 and B2 are weighted λ1 and λ2 respectively.
b–d show the three types of path through a triangle

Indirect: Indirect paths originate at a node and cut across the main triangle to a point
on the opposite edge, and then travel along this edge to the destination node, as shown in
Fig. 4c. The intuition is that it is cheaper to travel some of the way through the adjacent
triangle, rather than travelling the entire distance through the main triangle. We now express
this problem in terms of the general cost function. We assume that the path originates at B1,
cuts across the triangle and travels along the edge opposite B1 until it reaches A. The cost of
this path can be expressed as

g(A) = λ‖u1 − xu2‖ + λ1‖xu2‖ + g(B1) (12)

where x minimizes g(A) and can be obtained by the method given above by noting that

g(A) = G(x, λ, u1,−u2, λ1‖u2‖, g(B1)).

Direct: Figure 4d illustrates a direct path, which originates on an edge between two nodes
B1 and B2 and travels straight through the main triangle to end at the destination node. It
is on this path that the linear interpolation of Field D* is exercised. While the trivial and
indirect paths both originate from a node B1, adding g(B1) to their costs, the g value for a
path originating on the edge B1 B2 must be estimated via interpolation. The cost function is
formulated as:

g(A) = λ‖u1 + xu3‖ + xg(B2)+ (1− x)g(B1) (13)

This can be minimized by the method given above by noting that

g(A) = G(x, λ, u1, u3, g(B2)− g(B1), g(B1)).
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(a) Layout (b) Trivial

(c) Indirect (d) Direct

Fig. 5 The layout of a tetrahedron is shown in (a). The tetrahedron is defined by four vertices, A, B1, B2 and
B3. It is weighted with value λ, while the tetrahedra opposite B1 and B2 are weighted λ1 and λ2 respectively.
(The tetrahedra opposite B3, weighted with λ3 is not shown.) b–d show the three types of path through a
tetrahedron

3.3 Tetrahedra

In this section we describe the cost functions for non-degenerate tetrahedra in R
3.

We define a tetrahedron by four vertices: A, B1, B2 and B3. This layout is illustrated
is Fig. 5a. We write the weight of the tetrahedron as λ, and the weights of the tetrahedra
opposite B1, B2 and B3 as λ1, λ2 and λ3 respectively. We denote the vectors corresponding
to A, B1, B2, B3 by w, v1, v2, v3 respectively. Set u2 = v2 − v1 and u3 = v3 − v2.

Trivial: Similar to the trivial triangle case, trivial tetrahedron paths originate at a node
and travel along a tetrahedron’s edge as show in Fig. 5b. The cost of the trivial path from B1

to A is:

g(A) = min{λ, λ2, λ3}|B1 A| + g(B1) (14)

Indirect: Indirect routes originate at a node, cut across the tetrahedron and then travel
across the opposing face to reach the destination node as shown in Fig. 5c. We assume that
the node of origin is B1. Since points on the face of a tetrahedron can be described by two
parameters, a cursory formulation of the cost function might indicate that it is necessary to
minimize a function of two variables. Specifically, if P is the plane passing through A, B2

and B3, and some point C lies on P , then

g(A) = λ|C B1| + λ1|C A| + g(B1) (15)

which would seem to require an iterative solution. However, we can show that there is a line
in P on which the minimum occurs. Let O be the orthogonal projection of B1 onto P and
let Q be the plane containing A, B1 and O . Note that P ⊥ Q. Let l0 be the line containing
AO; see Fig. 6a.
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Fig. 6 a the plane Q resulting
from the projection of B1 onto
plane P . b The fact that for any
point C ∈ P�l0 its projection
C0 onto l0 is closer to both B1
and A than C

(a)

(b)

(c)

Let L be the set of all lines in P which are perpendicular to l0. Consider a line l ∈ L
and let C0 be the point of intersection of l and l0. Let C be a point on l distinct from C0

and note that � AC0C is a right angle. It follows that |AC | > |AC0|. Since l, l0 and O B1

are mutually orthogonal, � CC0 B1 is a right angle. It follows that |C B1| > |C0 B1|. This is
shown in Fig. 6b. Therefore, for C lying on the line l, the cost of the path B1 → C → A is
minimized when C = C0. If C0 does not lie on �AB2 B3, the cost of the path is minimized
by choosing C to lie on �AB2 B3 as close as possible to C0, hence on the boundary of the
triangle. Let D be the point of intersection of l0 and line segment B2 B3 (if it exists). We have
shown that the minimum occurs either on AD or on the boundary.

Let u4 be the vector for O . Let D be the point of intersection (if it exists) of the lines AO
and B2 B3. If O lies on �AB2 B3 then we need to minimize

g(A) = G(x, λ,w − v1, u4 − w, λ1‖u4 − w‖, g(B1)).

Alternatively, if O does not lie on �AB2 B3 then we need to consider only points on the
triangle lying closest to the line l0. The possible positions of O are shown in Fig. 6c with
subscripts matching the cases laid out below. For the remainder of this subsection we will
consider only line segments and not full lines. The cases are as follows.
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1. If D ∈ B2 B3 ∩ AO then we need only consider a point C lying on AD or on B2 B3, the
first of which we can solve as above. As for points on B2 B3, this will be covered by the
method indicated below.

2. If D ∈ B2 B3 and A ∈ O D then g(A) is minimized by taking the trivial path from B1 to
A.

3. If O ∈ AD then for B2 ∈ DB3, g(A) is minimized by choosing a point C on AB2, while
for B3 ∈ DB2, g(A) is minimized by choosing a point C on AB3.

4. If D ∈ AO then for B2 ∈ DB3, g(A) is minimized by choosing a point C on AB2 or
B2 B3, while for B3 ∈ DB2, g(A) is minimized by choosing a point C on AB3 or B2 B3.

5. If AO and B2 B3 are parallel, then for
−→
AO.
−−−→
B2 B3 > 0, g(A) is minimized by choosing a

point C on AB3, while for
−→
AO.
−−−→
B2 B3 < 0, g(A) is minimized by choosing a point C on

AB2.

We are reduced to minimizing the cost function for points lying on a single side of the
triangle. For instance, for C ∈ AB2 we have

g(A) = G(x, λ,w − v1, v2 − w, min{λ1, λ3}‖v2 − w‖, g(B1)).

The cost functions for C ∈ AB3 and for C ∈ B2 B3 are similar.
Direct: Direct routes originate on a face and cut across the tetrahedron to the destination

node as shown in Fig. 5d. Here it is necessary to interpolate the g value from the three vertices
of the face.

Let P be the plane containing B1, B2 and B3. For a point E lying on �B1 B2 B3 we will
consider the cost function of the direct path E → A. Let v4 denote the vector corresponding
to the point E . Since u2, u3 generate P , we can write v4 = v1 + xu2 + yu3. The point E
will lie on �B1 B2 B3 if and only if 0 ≤ y ≤ x ≤ 1. This configuration is shown in Fig. 7a.
We define our cost function h as follows:

g(E) = λ|AE | + x(g2 − g1)+ y(g3 − g2)+ g1 (16)

where gi := g(Bi ) for i = 1, 2, 3. The crux of our reduction to two dimensions will be
to identify pencils of parallel lines in P such that the second part of this cost function,
g̃(E) = x(g2 − g1)+ y(g3 − g2)+g1, is constant on each line in the pencil. Specifically, the
linear functional g̃ on P is zero on the line l1 = v1+{t (g3 − g2)u2 + t (g1 − g2)u3 | t ∈ R}
and constant on any line in P parallel to l1. Next we will identify a distinguished line in P .
Let O be the orthogonal projection of A onto P . The vector corresponding to O may be
written as v1+ x0u2+ y0u3. Let l0 be the line perpendicular to l1 and passing through O . Let
XY be the line segment consisting of the intersection of l0 and�B1 B2 B3 (if it is non-empty).
In contrast to the indirect case, the position of the candidate line l0 for the minimum depends
not only on the geometry of the tetrahedron but also on the weights g1, g2, g3 at the nodes
B1, B2, B3.

We next show that the minimum of g is achieved when E ∈ �B1 B2 B3 lies either on XY
or on the boundary of�B1 B2 B3. (In fact one can do better than this, limiting to points on XY
together with a subset of the perimeter of�B1 B2 B3 determined by a certain ‘shadow’ of the
line l0. However, for our purposes we shall be content to consider the entire perimeter.) The
configuration is shown in Fig. 7b and c and goes as follows. Let l be a line perpendicular to l0.
We will consider how the cost function varies as E moves along l. As before let v1+xu2+yu3

be the vector corresponding to E ; then l = v1+{(x+t (g3−g2))u2+(y+(g1−g2))u3 | t ∈ R}.
Let E0 be the point of intersection of l and l0, and let E ′0 be the point on E E0 ∩ �B1 B2 B3

lying closest to E0. Of course, if E0 ∈ �B1 B2 B3 then E ′0 = E0 and if E0 /∈ �B1 B2 B3 then
E ′0 lies on the boundary of�B1 B2 B3. Since the lines l, l0 and AO are mutually orthogonal, it

123



368 Auton Agent Multi-Agent Syst (2013) 26:354–388

Fig. 7 a How vectors v1 and v2
form a coordinate system in
�B1 B2 B3. b Finding a minima
on the boundary of �B1 B2 B3
and c finding a minima along the
line XY within �B1 B2 B3

(c)

(b)

(a)

follows that � AE0 E is a right angle. Thus the length of AE increases as E traces a path from
E0 along l. In particular, we have |AE ′0| ≤ |AE |. Recall that g̃ is constant on l. It follows,
therefore, that the cost function g, restricted to line segment E E ′0, is minimal at E ′0. We have
thus established our claim. Unlike the indirect case, here we will need to compute the cost
functions for each side of �B1 B2 B3 as well as for the line segment XY (if it exists). The
vector u4 for O can be obtained in the same way as described in the indirect case. The line l0
can be parametrised as {γ u5+u4 | γ ∈ R}where u5 is any non-zero solution to the equation
u5 · ((g3 − g2)u2 + (g1 − g2)u3) = 0. The vectors for X, Y , say vX , vY respectively, can be
found in terms of the vectors for O, B1, B2, B3 (this is easily done once a coordinate system
is chosen for the plane P). Let gX , gY denote g̃(X), g̃(Y ) respectively. Then g(A) is obtained
as the minimum of the minima of the following functions:
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G(x, λ,w − vX , vY − vX , gY − gX , gX ),

G(x, λ,w − v1, v2 − v1, g2 − g1, g1),

G(x, λ,w − v2, v3 − v2, g3 − g2, g2),

G(x, λ,w − v3, v1 − v3, g1 − g3, g3).

4 Path extraction

After propagating costs to the appropriate nodes, the path is extracted in an iterative process,
beginning at the start node. Firstly, the start node is added to the path. Then, the cost functions
of the last node on the path are re-evaluated to determine the point from which it derived
its cost. As the cost to travel from this point is the cheapest, it is the next point on the path.
This continues until the goal node is reached. The pseudocode for this process is shown in
Algorithm 2. It is slightly more compact and general than the path extraction pseudocode
provided for Generalized Field D* [28].

Algorithm 2 Path extraction. ComputeCost(s, a) computes the cost of travelling to node s
across cell a. The cell subdivision process in InterpolatedChild is illustrated in Fig. 8b
1: function InterpolatedChild(p)

2: Subdivide cells adjacent to p into temporary cells

3: bc ←∞; bp ← NU L L

4: for all temporary cells b do

5: if ComputeCost(p, b) < bc then

6: bc ← ComputeCost(p, b)

7: bp ← point associated with cost bc .

8: Return {bc , bp }
9: function ExtractPath
10: s ← sstart ; PATH={sstart }
11: while s �= sgoal do

12: if s is an interpolated point then

13: {c, p} ← InterpolatedChild(s)
14: s ← p; PATH=PATH∪{p}
15: else
16: a← arg minc∈cellnbrs(s)ComputeCost (s, c)

17: A = {a1c , · · · , akc , dc} ← costs across a
18: dc ← cost of the Direct Path through a.

19: dp ← interpolated point associated with cost dc .

20: if dc = ComputeCost(s, a) then � Direct Path is cheapest

21: {bc , bp } ← InterpolatedChild(dp )

22: Update dc ∈ A with bc � Check the estimate

23: c← min(A)

24: s ← point(s) associated with c
25: PATH=PATH∪{s}

Fig. 8 a The interpolation cost
at i may be a bad estimate since it
is expensive to travel through the
grey triangle. b The interpolation
cost estimate is tested by
subdividing the two triangles
sharing the edge containing the
interpolated point into four
subtriangles and evaluating the
cost functions originating at the
surrounding nodes and edges

(b)(a)
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If the cheapest point to travel to is produced by a Trivial cost function then the next point
is a node point. If produced by an Indirect cost function, then both an edge point and a node
point are added to the path. In the Direct case, the interpolated point lying an edge or face is
added to the path. Ferguson et. al. recommend a check of the interpolated cost at this point
since it may, in fact, be incorrect.

To see why this may be the case, consider Fig. 8a. The grey triangle is expensively
weighted, while the others are weighted cheaply. At node a, an evaluation of the cost func-
tions suggests that the cheapest point to transition from is an interpolated point i , lying on
the edge between p1 and p2. However, at i , the cheapest point to transition from would be p1

or p2 since it would be prohibitively expensive to travel through the grey triangle—the path
from either p1 or p2 to a would be cheaper. The interpolation assumption is incorrect because
the grey triangle is expensive and therefore the path must flow around instead of through the
triangle. A better estimation of the cost at i would be derived as g(i) = c‖i − p1‖ + g(p1)

for example, instead of interpolating between g(p1) and g(p2).
For this reason, it is necessary to perform a lookahead operation at interpolated points that

checks the interpolated cost estimate. Firstly, the two triangles sharing the edge containing
the interpolated point are subdivided into four triangles, with the interpolated point, i , at
their apex. Then, the costs of travelling to i from the surrounding nodes and edges of the four
sub-triangles are evaluated as illustrated in Fig. 8b. Both Trivial cost functions originating
from nodes and Direct cost functions originating from edges 2 are evaluated and the cheapest
of these costs replaces the interpolated cost.

Using this improved estimate, the extraction algorithm decides if the interpolated point
is still the cheapest to transition from, compared to the original Trivial and Indirect cost
functions, and if so it is added to the path. A useful side-effect of this operation is that if the
lookahead confirms the interpolated cost, the point producing the cheapest lookahead cost
can be used as the next point on the path.

An example referring to Fig. 8b: evaluating cost functions at node a indicates that the
cost for a is derived from interpolated point i . The two triangles are subdivided and the
cost functions of the four subtriangles triangles with apex i are evaluated. These costs are
used to test the interpolated cost at point i . If all these costs are greater than the cost at
i , it is rejected as the next point and p1 or p2 are considered. However, if there are costs
that are equal to or less than that at i , the interpolated cost is confirmed, i is added as the
next point on the path, and the point producing the least cost, pn , for example, is evaluated
next.

Note that a triangle and tetrahedral version of Field D* enables the subdivision of cells
around an interpolated point into triangles and tetrahedra respectively. Consequently, the
triangle and tetrahedral cost functions can be used to evaluate the cost of travelling across
these temporary cells. In contrast, subdividing around interpolated points in Field D* and
3D Field D* will produce rectangles and cuboids, but the cost functions associated with
these implementations only operate on squares and cubes respectively. It is not clear in
Field D* [27] or 3D Field D* [15] whether these cost functions are employed during
path extraction. In fact, [27] suggests using a local planner to perform path extraction
instead.

2 In the 3D case Direct cost functions originating from the surrounding tetrahedra faces are evaluated. Also,
interpolated points may lie on tetrahedra edges or faces.
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5 Caching

In this section, we describe how the path-finding algorithm can be made more efficient by
caching calculations that remain constant regardless of the search parameters.

We have defined the cost functions for triangles and tetrahedra in terms of G(x). A char-
acteristic of G(x) is that parameter d is not utilised in finding the roots in Eq. 10. Now, as
long as parameters λ, v1, v2 and μ are calculated with constants, the roots of such functions
can be cached.

If the mesh, and the weighting of the mesh remain constant, then the weights and vectors
derived from the triangles and tetrahedra will also remain constant, regardless of the search
parameters. The only values that change are the g(p), representing the accumulated cost of
the search at node p. Thus, if parameters λ, v1, v2 and μ of G(x) do not contain g(p) values,
their roots can be cached. Additionally, since d is merely a scalar value added to the rest of
the G(x), the bulk of the cost calculation can also be cached.

On examining the cost functions, it can indeed be seen that the trivial and indirect cost
functions for both triangles and tetrahedra only have g(p) values in parameter d . Thus, their
roots and the sections of G(x) composed from λ, v1, v2 and μ can be also be cached.

We can further exploit the fact that a pair of trivial and indirect cost functions originate
from the same node. For triangles, for example, one trivial and one indirect path originate
from p1. It is only necessary to store the root and cached cost for the least expensive path
originating from p1, since g(p1) will be added to the cost functions for both paths. The type
of path can be indicated in the cached root via the use of ranges. For example, if the cached
root and cost is for an indirect path, then 0 ≤ root ≤ 1, but if they represent a trivial path,
root = 2 for instance.

Thus for a triangle, two pairs of roots and costs need to be stored at each triangle vertex,
resulting in 12 cached values. If each value is represented by a four byte floating point vari-
able, 48 bytes of cache are required per triangle. For a tetrahedron, three pairs of roots and
costs must be stored at each vertex, resulting in 24 cache values and 96 bytes of cache per
tetrahedron.

To obtain performance gains from caching, the mesh and the triangle or tetrahedron
weights should remain reasonably static, since changes to these values will require recalcu-
lating cached values for the modified triangle and its neighbours. In cases where the number
of triangle weights changes are small, it may be feasible to recalculate cached values, but
the performance gained from caching would be lost if the weighting and structure of large
portions of the mesh change constantly.

6 Replanning

As stated earlier, Field D* is able to replan paths should grid cell weights change after a
path has been computed. In lines 24–27 in Algorithm 1, if a grid cell weight is changed, then
UpdateNode is invoked on the nodes on the corner of these cells, updating the RHS-values.
Then, ComputeShortestPath is invoked to propagate the changed node values.

Similarly, if the weight of triangles or tetrahedra change, UpdateCost can be invoked on
the nodes of these structures. Our extension to Field D*’s cost functions does not modify it’s
basic replanning capability and while we have not specifically investigated this part of the
algorithm, this capability can be used as is to perform replanning on weighted triangulations
and tetrahedralisations.
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7 Results

In this section, we discuss results related to our Field D* implementation. Firstly, we compare
the expense of our cost functions to those of Generalized Field D*. Secondly, we show how
our Triangle implementation of Field D* provides superior performance to that of a Quad-
tree implementation, when the world data is not grid-aligned. Thirdly, we provide results for
our 3D Tetrahedral implementation of Field D* and lastly, demonstrate the gains that can be
obtained from caching.

We implemented Field D* using C++ and used a binary heap to represent the priority queue
driving the algorithm. Random deletes of priority queue elements were optimised to bubble
the element out of the queue, instead of deleting the element and shifting the array. Likewise,
priority queue key updates were optimised to bubble the queue element to the new location. In
terms of heuristics, we used the version suggested by Ferguson et. al. whereby the Euclidean
distance is multiplied by half of the minimum weight in the triangulation/tetrahedralisation:
0.5 ∗ minval ∗√

dx2 + dy2.

7.1 Performance comparison of Generalized Field D* and Triangulated Field D*

Generalized Field D* [28] evaluates the Field D* cost functions on a triangle using the inner
angles and side lengths of that triangle. In contrast, our implementation of the Field D* cost
functions for triangles is based on vector calculus operations on the points defining the trian-
gle. Thus, Generalized Field D* must either calculate the angles and side lengths every time
a triangle is processed, or store these values in addition to the triangle points. Additionally,
both implementations produce two roots when minimising the indirect and direction cost
functions, but our formulation of the general cost function presented in Sect. 3.1 allows our
implementation to predict which root to use, which means that only the cost for one root
must evaluated. Based on this reasoning, we expect that our vector calculus implementation
of cost functions for triangles would be less expensive than those of Generalized Field D*.

To confirm this, we created a million random triangles and compared the time taken by our
implementation and Generalized Field D* to evaluate their cost functions over 100 iterations,
in addition to the space required for each implementation. Two versions of the Generalized
Field D* cost function were implemented, one where the triangle edge lengths and trigono-
metric angles values are calculated for each cost function, and one in which they are cached.
Note that for the same triangle, Generalized Field D* produces the same costs as our imple-
mentation, but uses a different formulation. For this reason, we compare the performance of
the two techniques on the same triangle. Table 1 shows these results.

Our implementation based on vector calculus takes 13.12s to complete, requiring 28 bytes
for the representation (six four bytes floats for the coordinates and one for the triangle weight).
Our basic implementation of the Generalized Field D* cost functions takes 20.53s with the
same representation, as the side lengths and trigonometric values must be calculated when

Table 1 Comparison of the time and space required by our triangle Field D* cost function implementation
versus Generalized Field D*

Vector Field D* Generalized Field
D*

Generalized Field
D* (Cached)

Time (s) 13.12 20.53 14.83

Space (bytes) 28 28 64
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evaluating a triangle’s costs. Caching these values (three sines, three cosines and three edge
lengths) results in a execution time of 14.83s, which is only slightly slower than our imple-
mentation. This is probably because three more cost functions must be evaluated to determine
the correct root to use.

In summary, our vector implementation of the triangle cost functions is around 1.56 times
faster than Generalized Field D*. Even if the various edge lengths and trigonometric values
of Generalized Field D* are cached, our implementation is faster and requires less than half
the space.

7.2 Comparison of Multi-resolution Field D* and Triangulated Field D*

We have extended Field D* to triangulations since triangulations represent general polygonal
objects more accurately than grids and quad-trees. This is because triangles can represent
polygonal objects exactly, since the interior of a polygonal object can always be subdivided
into triangles. Grids or quad-trees, however, will always be subject to geometric error, unless
that object’s boundaries are grid-aligned. This implies that a grid or quad-tree requires high
levels of subdivision to accurately represent polygonal objects. Additionally, since Field D*
computes approximate paths across cells due to interpolation error, increasing the level of
subdivision in either case should improve this approximation. In [28], the authors perform a
single simple experiment showing that triangle-based Generalized Field D* is an improve-
ment over the original Field D* in terms of node expansions. In the interests of generality,
we perform several experiments contrasting our scheme with Multi-resolution Field D* as
[13] shows that it provides time and space improvements over the original Field D*. In this
section we demonstrate the reduction in computational cost that is afforded when one allows
pathing through a triangulated, rather than grid-based, environment.

To this end, we compare the paths produced by Field D* implementations for quad-trees
and triangulations at different levels of subdivision and demonstrate that, due to geometric
error, a quad-tree requires a far higher level of subdivision than a triangulation to produce
paths of similar cost. We also show that increasing the subdivision reduces interpolation
error in both cases. We implemented two versions of Field D*, one based on the triangle
cost functions described in this paper, and the other based on the quad-tree cost functions
described by Ferguson et. al [13].

7.2.1 Triangulation construction

We construct Constrained Triangulations, which allow the specification of constraints in
the form of edges that must be present in the triangulation. Therefore, if an environment
is constructed out of a set of weighted, non-intersecting polygons, we derive a constrained
triangulation by inserting polygon edges as constraints and weighting the triangles internal
to the polygon with the polygon’s weight. A Constrained Triangulation generates a rela-
tively coarse mesh. We apply Delaunay Refinement [33] on the mesh to produce a finer
Constrained Delaunay Triangulation that respects the original constraints. Triangles in a
Delaunay Triangulation satisfy criteria that discourage thin triangles or slivers.

7.2.2 Quad-tree construction

Quad-trees [14] are restricted to representing polygonal data with squares or cells. To con-
struct a quad-tree, we first subdivide the world into a square grid whose sides are a power of
two. Then, we determine which polygons intersect each grid cell. If a polygon intersects a
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cell, we store the area of intersection as well as the polygon’s weight in a list of tuples within
the cell as {{a1, w1}, {a2, w2}, . . . , {an, wn}}. The weight of the grid cell is then calculated as
the sum of the products of each area-weight pair, divided by the total area of the cell ac. Since
the cell cannot represent the polygons intersecting it with complete accuracy, there is an error
associated with the cell’s weight which measures how accurately the quad-tree models the
original polygonal representation. Given this cell weight, w̄, the Root Mean Square Error, or
L2 error for the cell weight can also be calculated from the area-weight tuples.

w̄ = 1

ac

n∑

1

akwk (17)

L2 =
√√√√

n∑

1

[ak (w̄ − wk)]2 (18)

We then construct a quad-tree via the normal process of aggregating child cells with equal
weights. Our quad-tree implementation trades space for time in that it stores references to
neighbouring cells within a cell, rather than determining the neighbours at execution time.

7.2.3 Test environments

We constructed four environments, shown in Fig. 9, to contrast the paths produced by quad-
tree and Triangulated Field D*. In each environment, we calculated the path between prede-
fined start and goal points in the lower left and upper right corners, respectively, at differing
levels of subdivision for both quad-tree and triangulation. Results for these paths are shown
in Table 2, which details the path cost, number of faces, number of node expansions, path
costs and L2 error. In this table, quad-tree faces are square cells, whereas triangulation faces
are triangles. However, it should be noted as in Sect. 2 that basic Field D* treats a cell as
two triangles when computing cost functions. Quad-tree Field D* may treat a cell as a com-
position of even more triangles, if the cell has higher resolution neighbours, as shown in
Fig. 12. Since this “decomposition” occurs during the runtime evaluation of cost functions it
is difficult to directly compare quad-tree-generated triangles to pre-calculated triangles and
we must instead compare squares to triangles. For this reason, we consider the number of
faces to be prejudiced in Quad-tree Field D*’s favour. The number of node expansions refers
to the numbers of nodes popped off the priority queue in order for the algorithm to complete.

It is an interesting exercise to compare the path costs produced by Field D* with those of an
A* implementation. We created a directed graph from the edges of the various subdivisions
of our Voronoi Diagram environment. The edges are weighted by their length multiplied by
the minimum weight of the adjacent cells and we used a heuristic of the minimum triangle
weight multiplied by the Euclidean distance. The results of A* searches on these constructed
graphs are shown in Table 3.

The first environment is a grid maze (Fig. 9a) and we use it to show how quad-tree and
triangulation implementations compare when data is grid-aligned and no geometric error is
present. Since the data is aligned to a grid, a quad-tree cell represents a grid cell exactly and
does not overlap with other grid cells. To subdivide in the quadtree case, we simply split
the grid squares into four smaller squares at each level, rather than using normal quadtree
decomposition. The triangulation is subdivided with the usual Delaunay Refinement, with the
original grid squares as constraints. The polygons representing the other three environments
are not grid-aligned in the sense that polygons may not necessarily fit exactly into a quad-tree
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(a) Maze Grid (b) Axis Aligned Rooms

(c) Arbitrarily Aligned Structures (d) Randomly Weighted Voronoi Diagram

Fig. 9 Environments used in comparing Quadtree Field D* to Triangulated Field D*. a is a grid-aligned
maze and is designed to contrast the two implementations to a case where no geometric error is present.
b is a connected series of axis-aligned rooms, while c consists of arbitrarily aligned structures. d Randomly
weighted Voronoi Diagram. Darker regions are weighted more heavily, while the lighter regions have lesser
weightings

cell. This discrepancy in representation is quantified by the L2 error metric we mentioned
previously.

The second environment (Fig. 9b) is a series of interconnected, axis-aligned rooms. The
third (Fig. 9c) consists of arbitrarily aligned structures, while the fourth (Fig. 9d) is a randomly
weighted Voronoi Diagram. These last three environments are approximated by quadtree
subdivision and are consequently subject to geometric error. The grid maze, axis-aligned
and arbitrarily aligned world have their open space and obstacles weighted with 0.1 and
255 respectively. The Voronoi Diagram cells are randomly weighted with multiples of 16,
clamped between 0.1 and 255. We have graphed the relationship between the normalised
path cost and the number of faces in the environment in Fig. 10, and the normalised path cost
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(b) Axis-Aligned World
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(c) Arbitrarily-Aligned World
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(d) Voronoi Diagram
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Fig. 10 Normalised path cost versus number of faces

and the number of node expansions required by the algorithm in Fig. 11. We normalise the
path costs for a particular environment by dividing path costs by the minimum path cost.

7.2.4 Discussion

The path costs for the grid maze decrease slowly as environmental subdivision increases for
both the quadtree and the triangulation, with the path costs for the quadtree case being slightly
lower than those of the triangulated case. This is because the environment is a grid, which
ensures that cell edges will largely be parallel with the direction of the path. This provides
superior interpolation results since, when edges are not parallel to the path direction, one
of the nodes of the edge being interpolated is favoured, causing the path to “hug” or travel
directly along an edge connected to the node. While both quadtree and triangulated variants
are subject to this edge-hugging behaviour, the subdivision of the grid environment favours
the quadtree slightly in this regard. In Fig. 9a for example, the grid cells in the upper right
corner are mostly subdivided from the top left to the bottom right corner of the cell. The
bottom right corner is favoured, causing the algorithm to “hug” the right wall.

However, in the other three environments, the quadtree requires an order of magnitude
more faces to produce a path cost similar to that of the triangulation at the lowest subdivision
level. In the axis-aligned world for example, 2,586 triangles produce a path cost of 37.31,
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while 12.7 times (32,738) more quadtree faces are required to produce a slightly higher path
cost of 37.47. In the arbitrarily-aligned world, 1,676 triangles produce a path cost of 39.68,
while 8 times (13,535) more quadtree faces are required for a higher path cost of 39.8. As
the number of faces used to represent the environment grows and geometric error decreases,
the quadtree begins to produce improved path cost estimates as can be seen in Fig. 10.

Since the Delaunay Triangulation requires a minimum of around 16,500 triangles to rep-
resent the Voronoi Diagram, it was not possible to compare path costs at 1,024 and 4,076
quad-tree faces respectively. The path cost of 8439.44 for 16,789 triangles beats the quad-
tree path costs at all levels of subdivision so there are no comparable data points, but Fig.
10d shows that the Voronoi Diagram exhibits a similar graph profile to the axis-aligned and
arbitrarily-aligned world for the relationship between path cost and number of faces.

The quadtree representation of the Voronoi Diagram starts with a normalised L2 of 0.210
at the lowest level of subdivision, while the quadtree representations of the axis-aligned
and arbitrarily-aligned worlds start with much higher Normalised L2’s of 0.537 and 0.321,
respectively. This indicates that the quadtree has difficulty in accurately representing these
structures at low resolutions. Regions of high and low cost may be aggregated into a single
cell, creating obstacles not necessarily present in the polygonal representation and causing
Field D* to underestimate the path length by travelling through regions of high cost. Extreme
cases of this, indicated in grey in Table 2, are not used as graph data points due to issues of
scale. Note how the quad-tree first underestimates path length, then reaches a point where it
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Fig. 12 Quadtree subdivision:
when calculating the cost of node
A, the upper left quadtree cell
must be further subdivided into
four triangles, since this cell has
high resolution neighbours

A

overestimates the path length before tending once again to lower path lengths. This suggests
that a certain level of quad-tree subdivision is required before pathing through high cost
regions is avoided, around 40,000 faces in the case of the Voronoi Diagram for example. It
is also interesting to note that the axis-aligned world suffers the most from geometric error.
This is because the walls in this world are relatively thin and require high subdivision for
accurate representation.

The number of node expansions required for the quadtree implementation to complete
is consistently greater than that of the triangulated implementation. Between two and three
times as many expansions are required on the quadtree for a similar number of faces, since
a node in the triangulation has fewer neighbours compared with the quadtree. The Delaunay
Refinement we used produces vertices with an average of six neighbours. A node in basic
Field D* has eight neighbours and a quadtree representation will increase this if the node is
on the border of a low-resolution cell with high-resolution neighbours (see Fig. 12). If we
consider the node expansions required to produce a similar path cost, the quadtree requires
23 times more node expansions to produce a path cost of 37.47 in the axis-aligned world,
compared to the triangulation path cost of 37.31. For the arbitrarily-aligned world, 15 times
more expansions are required for a quadtree path cost of 39.8, compared to a triangulation
path cost of 39.68.

In terms of running time, our implementation of the Field D* on a triangulation is between
seven and 10 times faster than the quadtree implementation for a similar number of faces.
A number of factors favour the triangulation implementation. Firstly, as noted above, the
average valence of a node in the quadtree is greater compared to a quadtree node, increasing
the number of node expansions. Also, more faces are adjacent and consequently more cost
functions are evaluated. Secondly, a quadtree face requires further subdivision into triangles,
again increasing the number of cost functions evaluated. Thirdly, we implemented Field
D* optimisations for the triangulated case, described in [27], that are not applicable to the
quad-tree’s multi-resolution structure. Lastly, the triangulated implementation utilises cach-
ing while the quadtree implementation does not, since it does not make sense to cache data
for triangles that are temporarily constructed during the calculation of a node’s cost. Divid-
ing the time taken in seconds by the number of nodes expanded, a value of around 18µs is
required for a quadtree node expansion as compared to about 6µs for a node expansion on
the triangulation.

Since these differences in structure and implementation exist, we use the number of faces
in the environment as a measure of the space required and the number of nodes expanded as
a measure of the time taken to find a path when comparing the two implementations. A trian-
gulated version of Field D* requires an order of magnitude less space and between 10 and 20
times less running time to produce paths of similar costs within an environment, compared
to a quadtree. As the geometric error in quadtree representation decreases, the differences in
time and space measures decrease. Our results show that a triangulation implementation per-
forms slightly worse than a quadtree implementation when the data is grid-aligned, but is far
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superior for non grid-aligned environments. It can also be seen that increasing the subdivision
level of the environment decreases the path cost at a slow linear rate for all triangulations in
Fig. 10 and also for the quadtree in the grid maze case.

In comparison to A* on the triangulation edges, Field D* on the triangulation returns
shorter paths in equivalent or less time, and requires fewer faces for the representation.
For example, with respect to the Voronoi Diagram in Table 3, Field D* produces a cost of
8439.44 in 0.05s on 16789 faces compared to 8550.83 in 0.14s on 461450 faces. In the case
of the Axis-Aligned and Arbitrarily-Aligned Worlds, Field D* produces a better path cost
on fewer triangles, in equivalent time. A*’s path cost on grid edges is relatively expensive
and does not converge as quickly as A* on triangulation edges. A node expansion of our A*
implementation takes about 0.6µs, 10 times faster than a node expansion of our Field D*
implementation.

The original Field D* algorithm was designed for use on the Mars Rovers and so, as
a practical example of the environments in which Field D* can be applied, we show (see
Fig. 13) how paths can be plotted across the surface of Mars. In this figure, triangles have
been weighted according to their steepness, encouraging the algorithm to plot paths avoiding
difficult features. This would be useful as the battery life of these vehicles is limited and
maximising their lifespan involves conserving energy.

7.3 Pathing through 3D models

We obtained a number of 3D surface models and tetrahedralized their interiors. The tetrahe-
dra used to generate the path in Fig. 14a were uniformly weighted. Additionally, we obtained
a 3D Medical DICOM data set in which the structures of the abdomen were segmented and
labelled. We tetrahedralized this data set using the Computational Geometry and Algorithms
Library (CGAL) [34] to produce paths through anatomical structures. Such path information
could be used in angiographic (vascular) surgical planning and training, or in applications
like virtual endoscopy, where a path needs to be traced through a 3D model of the winding,
tubular structure of the intestinal tract without piercing the wall.

Figure 14a illustrates 3D pathing through an object with high genus. Figure 14b shows a
3D path through the human skeletal structure, starting at the sternum, travelling along a true
rib, down the spine and across the pelvis to a femoral head. The tetrahedra in this structure
were weighted uniformly. Figure 14c shows a path starting at the leg vein and travelling up
the inferior vena cava to the hepatic vein within the liver. Inexpensive weighting of the vein
and expensive weighting of the liver tetrahedra encourage the algorithm to avoid pathing
directly through the liver when tetrahedra from the two structures are adjacent.

Finally, we simulated the velocity of fluid over an underwater terrain model using the
Palabos Lattice Boltzmann Method package. We tetrahedralized a timestep of the simulation
using CGAL and plotted paths through the fluid, as shown in Fig. 15. The black path favours
fluid represented by high velocity tetrahedra and follows the general fluid flow, while the red
path favours low velocity tetrahedra and descends into the crevices of the model, where the
fluid moves more slowly. This demonstrates how our technique could be applied to plotting
a safe course for submersible robot in a 3D underwater environment.

We note that the same geometric error that arises from representing arbitrarily-aligned
shapes with a 2D grid also applies to the 3D grids employed by 3D Field D* [15].

Table 4 shows data for paths across two 3D models as the number of tetrahedra used
to represent the object increases. We chose these objects since they have large amounts of
space in their interiors, allowing us to vary the number of tetrahedra used to represent them,
as opposed to the medical data sets which require high levels of subdivision to produce
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Fig. 13 Three paths plotted across a triangulation of the Mars landscape. The triangles are weighted according
to the difference in angle between the z-axis and their normal. The red and green paths illustrate how steep
sections of the Valles Marineris are avoided, with the green path showing how the flatter end of the valley
is favoured when leaving it. Similarly, the blue path avoids pathing over the steep volcanoes of the Tharsis
Plateau (Color figure online)

tetrahedra representing veins and ribs. In both cases, increasing the number of tetrahedra,
decreases the path cost and path length somewhat, but at the cost of more node expansions
and a greater running time. The path lengths can fluctuate slightly upwards as the number
of tetrahedra increases, but the trend for the path lengths is downwards. The time taken for
the algorithm to complete increases linearly as the number of faces and node expansions
required increases.

7.4 Timings

We tested the running time of Field D* on a single core of a Intel Quad Core Q9550 2.83 Ghz
CPU with 4 GB RAM. For the triangulated mesh case, we constructed a random Delaunay
Triangulation within a square, while for the tetrahedral mesh case, we constructed a uniform
tetrahedralisation within a cube grid. Half of the triangles or tetrahedra were weighted with
0.1 (open space), while the other half were weighted with a random multiple of 16 between
16 and 256.
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(a) High Genus Object

(b) Sternum to Femoral Head (c) Leg Vein to Hepatic Vein

Fig. 14 3D path-finding. a and b show paths through objects composed of uniformly weighted tetrahedra.
In c, tetrahedra representing the veins were weighted inexpensively, and other anatomical structures weighted
expensively, resulting in the path following the veins (Color figure online)

We generated 100 random environments for both the triangulated and tetrahedral mesh
case and measured the time it took for the algorithm to find a path from one corner of the
square (or cube) to the opposite corner. For each case, we measured the time for the algorithm
to complete with caching turned both on and off. Table 5 shows the average of these times
for both the normal and cached cases and for a varying number of elements.
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Fig. 15 3D path-finding through a fluid simulation. a Top-down, b side and c three-quarter views. The red
shading indicates areas of high fluid velocity, while blue indicates low velocity. The black path results from
a tetrahedral weighting favouring the high velocity, while the red path favours low velocity, diving into the
terrain crevices

Table 4 This table shows how
the number of node expansions,
time to find a path, path cost and
path length vary as the number of
tetrahedra in the object increases

Number of Node Time (s) Path Path
tetrahedra expansions cost length

Cow model

45,684 7,923 0.64 1.0923 10.6936

86,939 14,126 1.40 1.0754 10.6360

146,774 23,773 2.60 1.0735 10.6258

217,889 35,365 4.18 1.0722 10.6282

High genus model

83,919 13,129 1.12 0.9000 8.75

100,088 14,438 1.29 0.8975 8.7821

121,232 16,725 1.64 0.8939 8.7441

164,971 22,226 2.27 0.8901 8.7161

273,943 36,338 4.06 0.8876 8.7213

Table 5 Algorithm run-times for
non-cached and cached cases

Number of Normal Cached % Speedup
elements time (s) time (s)

Triangulation

52,600 0.18 0.15 16.6

80,700 0.28 0.24 14.2

102,000 0.36 0.32 11.1

Tetrahedral mesh

52,800 1.56 1.11 28.8

79,350 2.41 1.72 28.6

101,250 3.18 2.29 27.9

Caching proved to be of greater benefit in the tetrahedral case, which is to be expected
considering the greater number of calculations involved in the tetrahedral cost functions and
the increased opportunity for caching.
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In terms of space, we define a triangle as having three indices to vertices, three indices to
neighbouring triangles and a floating point value defining the triangle weight. If each variable
takes up four bytes, then 28 bytes is required to represent a basic triangle. To cache function
values in the triangle an additional 48 bytes are needed, resulting in a total size of 76 bytes.
Similarly, a tetrahedron will have four vertex indices, four neighbour indices and a weight,
requiring 36 bytes of space. 96 bytes of cache is required to cache tetrahedron functions for
a total of 132 bytes per tetrahedron. Therefore, to cache triangle functions, approximately
2.71 times more space is required per triangle to produce an average speedup of between 11
and 16 %, while 3.66 times more space is required per tetrahedron to produce an average
speedup of 28 %.

8 Conclusion

This paper describes an extension of Field D*’s cost functions to triangles and tetrahedra. The
analytic solutions for finding the minimum of these functions are provided for both triangles
and tetrahedra, expressed in terms of vectors. Experimental results indicate a 50 % increase
in performance over a previous extension of the cost functions to triangles, which relied on
the expensive calculation of trigonometric values and triangle edge lengths. Also, by provid-
ing the complete set of cost functions and their minimizations to tetrahedra, a full analytic
extension of Field D* to 3D has been achieved, improving upon previous work where only
an approximate minimization to one function was provided for a cube.

These functions allow Field D* to operate on triangulated and tetrahedral meshes, which
approximate irregular environments more accurately. Since the triangle functions can be
applied to triangles situated in 3D, the triangle cost functions can be applied to triangulated
surfaces in 3D and not just triangular subdivisions of a 2D plane.

We have demonstrated that, for non grid-aligned data, a quadtree requires an order of
magnitude more faces compared to a low resolution triangulation for Field D* to find a path
of similar cost. Due to this, and also because a node in a triangulation has fewer neighbours,
Field D* has to expand between 10 and 20 times fewer nodes when calculating a shortest
path on a triangulation.

We have also analysed the triangle and tetrahedra cost functions for values that can be
pre-calculated and cached. For the tetrahedral case, this results in a 28 % improvement in the
algorithm’s running time at the cost of using 3.66 times more space.

In terms of future work, Graphics Processing Units (GPUs) implement vector operations
very efficiently and also support a high degree of parallelism. Thus, a GPU implementation
of Triangulated and Tetrahedral Field D* could potentially offer significant speed increases
over a CPU implementation, as well as allowing many path queries to be performed simul-
taneously.

The original Field D* cost functions operates on unit squares. In practice, each square
is temporarily subdivided into two triangles during evaluation and the minimum cost across
both is calculated. Similarly, it may be useful to consider subdividing a world into con-
vex polytopes. The polytopes can then be temporarily subdivided into general triangles or
tetrahedrons when calculating the path cost of a node on the polytope.

Finally, high levels of subdivision can reduce the interpolation error inherent in Field D*,
but the path cost decreases too slowly to justify the increase in space and time requirements.
A better solution might be to calculate a shortest path on a coarse triangulation and then use
Adaptive Mesh Refinement [35] to subdivide the relevant sections of the triangulation during
path extraction to improve the solution. This approach would also have the advantage of
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being able to place nodes and edges during the refinement process in such a way as to avoid
the kind of interpolation problems that occur with the grid maze test case.
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