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Dynamic Load Balancing of Lattice Boltzmann Free-Surface Fluid
Animations.
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Figure 1: A single rendered frame from the City (left), Shower (centre) and drop (right) test cases.

Abstract

We investigate the use of dynamic load balancing for more ef-
ficient parallel Lattice Boltzmann Method (LBM) Free Sur-
face simulations. Our aim is to produce highly detailed fluid
simulations with large grid sizes and without the use of opti-
misation techniques, such as adaptive grids, which may im-
pact on simulation quality. We divide the problem into sep-
arate simulation chunks, which can then be distributed over
multiple parallel processors. Due to the purely local grid in-
teraction of the LBM, the algorithm parallelises well. How-
ever, the highly dynamic nature of typical scenes means that
there is an unbalanced distribution of the fluid across the
processors. Our proposed Dynamic Load Balancing strategy
seeks to improve the efficiency of the simulation by measur-
ing computation and communication times and adjusting the
fluid distribution accordingly.

CR Categories: I.3.7 [Computing Methodologies]: Com-
puter Graphics—Three dimensional Graphics and Real-
ism C.1.4 [Computer Systems Organization]: Processor
Architectures—Parallel Architectures

1 Introduction

Complex fluid effects are intended to add realism to scenes
in films or advertisements, resulting in a more visually-
appealing and compelling experience for viewers. Due to
both the large scale and the fantastical nature of many
of the scenes required for competitive visual effects, there
is ongoing research into effective methods for the numeri-
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cal simulation of fluids for the film and animation industries.

Fluids, typically water, generate some of the most im-
pressive and complex natural effects to be reproduced in
film. However, physically recreating scenes such dramatic
scenes as a city engulfed by water is not practically possible.
Small-scale models are often unconvincing and expensive.
Instead, media producers increasingly turn to numerical
simulation. In films that are entirely computer animated,
all fluids have to be realistically simulated, ranging from
water, to blood, oil and even air. Air, though not visible,
can effectively be treated as a fluid for simulation of its
affects, such as wind, on scene objects.
For convincing simulations, it is very important to emulate
the correct physical response of the fluid concerned. One
approach is to fully simulate the fluid in three dimensions as
accurately as possible without input from the artist. With
the faster processing power of today’s CPUs and improved
simulation methods, such a full simulation approach is now
feasible [Irving et al. 2006]. However, faster simulation
speeds would allow for larger scenes to be simulated. One
way to achieve this is through the use of parallel algorithms,
which exploit both the multiple cores on modern CPUs and
multiple CPUS in large compute farms. Such techniques
have the potential to reduce simulation times from days
or weeks on a single CPU to a matter of minutes or hours
when running on hundreds of CPUs. Parallelisation of fluid
simulations is the focus of this paper.

The contributions of this research are:

1. The first implementation of the parallel Lattice Boltz-
mann Method free surface simulation using dynamic
load balancing.

2. A comparison of the scalability and efficiency of the
static load algorithm against the dynamic algorithm,
as well as a thorough analysis of the results through
profiling.

3. An estimate of the number of CPUs (or processing
power) required to generated fluid simulations, at the
resolution used in modern movies, when using the Lat-
tice Boltzmann Method.
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2 Background

There are a number of ways to simulate fluids and a
good description of the fluid movement is needed for
correct simulations. One such description is given by the
Navier-Stokes (NS) equations [Kass and Miller 1990; Chen
and da Vitoria Lobo 1995]. These differential equations
were first solved on a grid by Harlow and Welch [Harlow
and Welch 1965]. Foster and Metaxas then extended this
to a method employing the full 3D Navier-Stokes equations
[Foster and Metaxas 1996] for computer graphics. Their
method has the disadvantage of requiring very small
times steps to maintain stability. Subsequently, Stam
[Stam 1999] introduced a superior unconditionally stable
semi-Lagrangian method. It is upon this method that much
of the current fluid simulation research is built [Fedkiw
et al. 2001; Foster and Fedkiw 2001; Foster and Metaxas
1996; Carlson et al. 2004; Fattal and Lischinski 2004;
Irving et al. 2006]. However, these methods still remain
computationally expensive and, as a consequence, parallel
implementations [Irving et al. 2006] or adaptive resolution
techniques [Losasso et al. 2004] have been developed in
attempts to reduce the computational time required for
large simulations of liquids.

Another approach to fluid simulations, Smoothed Par-
ticle Hydrodynamics (SPH), was introduced to computer
graphics by Muller et al. [Müller et al. 2003]. In this
method, particles are embedded into a scene and are
advected using the NS equations to calculate their acceler-
ation. Premoze et al. [Premoze et al. 2003] extended the
method to incorporate fluid incompressibility, while Keiser
et al. [Keiser et al. 2006] developed a multiresolutional ap-
proach. Losasso et al. show that the NS and SPH methods
for fluid simulations could be combined [Losasso et al. 2008].

The Lattice Boltzmann Method (LBM) was introduced to
computer graphics by Thürey [Thürey 2003], based on the
use of LBM in metal foaming [Körner and Singer 2000;
Körner et al. 2002]. The LBM is fundamentally a cellular
automaton that simulates fluid movement using a grid and
sets of particle distribution functions. The distribution
functions represent the movement of molecules within the
fluid. Fluid is simulated by stepping these distribution
functions through time using update rules. Thurey et al.
[Thürey et al. 2006] subsequently improved the stability of
LBM simulations by introducing adaptive time steps. Later,
Shankar and Sundar [Shankar and Sundar 2009] showed
that the solution obtained from the LBM simulation can be
further improved with more complex boundary conditions.

As fluid simulations are computationally expensive,
there has been some research into the use of parallel
technologies for decreasing simulation times. In addition,
there has been interest in the use of GPU accelerators for
parallel fluid simulations. For example, Wei et al. [Wei
et al. 2003] use the LBM on a GPU to simulate wind effects
on objects such as feathers and bubbles. However, while
Fan et al. [Fan et al. 2004] have shown promising real-time
simulation of the underlying fluid dynamics, at the time
of writing there is no known solution for real-time 3D1

free surface flows on a GPU [Thuerey 2008]. The LBM
without a free surface has been implemented in a parallel
cluster environment [Desplat et al. 2001; Amati et al.

1Simulations that agree with the full 3D Navier-Stokes equa-
tions.

Figure 2: We employed a 3D lattice commonly known as
the D3D19 lattice.The lattice has 19 different lattice veloci-
ties. Each vector represents a possible velocity along which a
distribution function in the fluid can interact. These vectors
allow distributions belonging to the current cell to travel to
neighbouring cells. The c1 vector gives the rest distribution
function. The weights, wi, used in the equilibrium function
are provided on the right.

1997; Kandhai et al. 1998; Wang et al. 2005]. Körner et
al. [Körner et al. 2006] and Thürey et al. [Thürey et al.
2007] provide a LBM free surface algorithm. Körner et
al. [Körner et al. 2006] suggest, but do not implement, a
one-dimensional slave-driven, idle process load balancing
scheme for the LBM, to improve the parallel efficiency. Our
purpose is to compare the efficiency of an implementation
of this approach to an LBM method incorporating dynamic
load balancing. A good overview of general parallel scene
rendering approaches is given by Chalmers et al. [Chalmers
et al. 2002].

3 Method

We use the D3D19 LBM method [Higuera et al. 1989] to
simulate the underlying fluid dynamics, in combination with
the Volume of Fluid method [Thurey 2007] for extracting a
free fluid surface. Our implementation uses the two simplest
boundary conditions for the LBM, known as the no-slip and
free-slip conditions [Thurey 2007; Succi 2001]. The D3D19
categorisation arises because the dynamics are simulated on
a three-dimensional grid (D3), with 19 particle distribution
functions (D19). The distribution functions, fi, are shown
in Figure 2. Each fi describes the proportion of fluid for a
given grid cell traveling along a specific velocity, as indicated
in the figure. Fluid behaviour is achieved from the interac-
tion of all fi(−→x , t) (fi at position −→x , aligned with vector i)
over time t.

The simulation runs in two basic steps: Stream and Collide.
The Stream step allows fi(−→x , t) to travel from position −→x at
time t along its corresponding velocity −→ci to position −→x +−→ci
at time t + 1. During a given Stream step, each grid posi-
tion is updated by copying 18 of the distribution functions
to neighbouring cells. f0 is not copied since it is the rest
distribution. Two copies of the grid are needed in memory,
as the distribution functions must remain consistent during
the copy operation. The Stream step can be summarised as:

fi(−→x +−→ci , t+ 1) = fi(−→x , t) (1)

Once the particles have moved to a new grid location, col-
lisions between the new collection of distribution functions
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must be simulated. An example of a collision is a group of
particles, fk, moving along some none zero velocity hitting
a group of particles at rest, f0, causing some of the rest par-
ticles to gain velocity and some of the fk to lose velocity. If
the particles belong to a highly viscous fluid, such as honey,
they will not change velocity as easily as a fluid with low
viscosity, such as water. Collisions are resolved by relaxing
each fi towards an equilibrium distribution, which describes
the ideal distribution of the particles along each −→ci for a
given fluid velocity, −→u (−→x ), and density, ρ(−→x ), at a point. It
is given by the following equation:

fe
i = ρwi[1 + 3−→u−→ci −

3(−→u )2

2
+

9(−→u−→ci )2

2
]. (2)

Here, the superscript e denotes the equilibrium distribution
and wi are the distribution values when −→u = 0. Essentially,
the equilibrium distribution takes the current density of the
cell and distributes it along the −→ci that most closely matches
the fluid velocity. The density and velocity are defined as∑

i

fi = ρ, and
∑
i

fi−→ci = ρ−→u . (3)

At the beginning of the Collide step, the neighbouring distri-
bution functions have been copied to each grid location and
the density and velocity are calculated using the above equa-
tions. Then, the equilibrium values for each i are calculated
and the old value for fi is relaxed towards the equilibrium
using a relaxation parameter, τ , and

fi(−→x , t+ 1) = (1− 1

τ
)fi(−→x , t) +

1

τ
fe
i (ρ,−→u ). (4)

The larger the value of τ , the faster the fluid will reach the
equilibrium velocity and, hence, this controls the viscosity
of the simulation. In general, ∞ > τ > 1

2
is required for the

simulation to remain stable [Reid 2009].

The Volume of Fluid (VOF) tracks the movement of
the fluid by flagging grid locations as either full, empty or
as interface (neither full nor empty) cells. Additionally,
each cell is given a fill fraction from 0 (empty) to 1 (full).
The mass loss of a cell for a given time is then calculated
from the distribution functions. Interface cells can change
state from full to empty. The change of the cell flags is
performed in the Process Queues step of our implementation
and presents additional complexities in the parallisation
of the algorithm, as the current Process Queues step is
dependent on the previous Collide step and the next stream
is dependent on the current Process Queues step. This adds
a extra point of synchronisation.

The fluid surface is then extracted by performing a recon-
struction of the 0.5 fill fraction isosurface on the discrete
grid. We use the Marching Cubes algorithm [Lorensen and
Cline 1987] to produce a triangulated mesh of this isosur-
face, which is saved to disk. The final renderings are done
offline and are not part of the simulation.

3.1 Parallelization

Slice decomposition (along planes orthogonal to one of the
coordinate axes) is used to divide up a scene into chunks of
work for each CPU core. The Master node decides on the
initial division of the scene, counting the fluid and interface
cells (which account for most of the computation time) and
dividing them as evenly as possible amongst the slaves.

Figure 3 illustrates division of part of a scene. In this case,
the division is not perfect, as it is aligned with planes of the
grid and each slice may not necessarily contain the same
number of fluid cells.

A given slave node in the cluster, i, will only ever
communicate with the Master, slave i − 1 and slave i + 1,
unless it is the first or the last slave in the domain. Each
slave stores information on the cells for which it is respon-
sible and two additional layers of halo cells (to either side),
which hold the information received from a slave neighbour.
The slave does no updating of the halos, but uses them to
look up values during the update of its dependent cells.

The surface is constructed by each slave for the cells
within its domain. This leaves a gap in the surface, so
slave n − 1 is responsible for filling the gap between slave
n− 1 and n. The Marching Cubes algorithm requires access
to multiple cells in order to correctly calculate normals,
so one additional plane of fill fractions beyond the halo
is made available. These values are not needed for cells
far from the fluid surface, so the amount of transmitted
data is reduced by only sending the cells that will be used
in surface construction, specifically those cells whose fill
fraction, α, is opposite to an adjacent cell’s fill fraction, β,
in the sense that if α < 0.5 then β > 0.5 or if α > 0.5 then
β < 0.5.

Our parallel implementation makes use of the Mes-
sage Passing Interface (MPI) protocol [Gropp et al.
1999] in a cluster environment. The specifications for the
hardware are given in Table 1. This is a multi user system,
so it was not possible to obtain guaranteed loads at any
point in time. To overcome testing variations for each time
recorded, 5 tests were run, but the worst two were discarded
as outliers and the remaining three were averaged.

3.2 Synchronisation

The fluid simulation generates distribution functions (DFs),
pressure, mass and fill fractions. In addition, the state of
each cell is represented by a cell flag. Each slave is respon-
sible for a part of the fluid domain, but requires knowledge
of cell neighbours to update cells on the boundaries of its
domain. Synchronisation between nodes is required and we
present a design to reduce the cost of these communication
calls.

Figure 4 indicates the quantities required and quanti-
ties updated in each step of our algorithm. Ideally, each
of the updated data items should be synchronized after
the appropriate step has completed. However, this would
introduce three points of synchronisation. Instead, steps are
grouped according to the data they need from neighbours,
as some steps, such as Collide, may only operate on local
data. To hide the communication overhead, we overlap
as much of the communication time as possible with
computation arising from local data. This is implemented
using non-blocking communication calls, with appropriate
buffering.

The Process Queues operation adds additional complexities,
as the Filled and Emptied queues have to be processed
in the correct order to avoid erroneously emptying cells
adjacent to fluid cells. This does not pose a problem for the
sequential algorithm, as the entire Filled queue is processed
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Nodes CPU Cores/Node CPU Type Interconnect Tstart−up Tdata Memory/Node
160 4 Dual core 2.4Ghz Xeon Infiniband 87.06µs 396Mbs−1 17GB

Table 1: The target simulation cluster. The values for Tstart−up and Tdata were calculated using SKaMPI .

Figure 3: Dependent and independent cells. Shown here
are parts of a 2D scene that have been divided up using slice
decomposition. Here, the slaves n−1, n and n+1 are shown.
The dependent cells are in green on the outer edges of the
domain, while the independent cells are shown in yellow on
the inside of the domain. The three DFs shown in red are
required by the neighbour slaves and are packed together
during a later synchronisation. Other quantities required by
the dependent cells are the mass, velocity and pressure.

before the Emptied queue. It is important to note that
slaves only add Filled or Emptied cells to the queue for cells
within their domain and the neighbour slaves must then
be informed of the change in the cells on the edge of their
domain. To accomplish this, additional Filled halo queues
replicate the elements in the queue on the edge of domains.

Emptied halo queues are formed by a post-process of
cells in the x = 1 and x = width − 1 planes, to identify
those marked as emptied, taking care not to count cells that
would be effected by the Filled queues. The two queues
are then sent to their neighbours, as they are consistent
and correctly ordered and thus usable for domain updates.
The halo queues are unable, however, to inform slaves of
the addition of an interface cell to the halo plane, causing
inconsistencies in the cell neighbour counts. Processing of
the halo queues allows each slave information on the flag
state cells on the edge of the domain, in preparation for the
Stream step.

The two points of synchronisation, Sync-A (before the
Stream step) and Sync-B (after the Collide step), are shown
in Figure 4. In Sync-A, the fill fractions are changed due
to the redistribution of mass from filled or emptied cells in
the Process Queues step. The difference in fill fraction is on
the order of 1% of the total fill fraction, as the mass that is
redistributed is only from cells that are within 1% of filling
or emptying. This value is averaged with neighbouring
fill fractions in the Stream step, so the influence on the
simulation mass redistribution is negligible.

In Sync-B, the mass, pressure, velocity, filled queues,
emptied queues and extended fill fractions are synchronized.
The Sync-B operation also counts neighbour flags for each
cell on the x = 1 and x = width − 1 planes. This is
important, as the Process Queues step could have added

Figure 4: Simulation steps and required quantities with syn-
chronisation points indicated (in purple and green). The re-
quired data indicates the data is used within the step, while
the data updated indicates the data changed during that
step. The fill fraction input into the Stream step has minor
differences due to the Process Flag Changes step where mass
is only distributed to cells within a slaves domain. Extended
fill fractions are needed for normal calculations.

new interface cells to the halos. When employing a Stream,
Collide and Process Queues order of operations, minor
inconsistencies were found in the fill fractions when saving
the geometry. This is undesirable, as it leads to breaks
in the fluid surface between slave geometries. To remedy
this, we took advantage of the fact that the three steps
are cyclic. The steps were reordered to synchronise the
fluid fractions before the geometry is saved, i.e.: Process
Queues, Stream and Collide. The geometry at this point
contains no information from the filled and emptied queues,
but this is only a redistribution of 1% of the fill fractions
(as mentioned above). This is not an issue, as the slight
behaviour difference between the fluid surface of a perfectly
synchronised simulation and the optimised version is
unlikely to be detectable by the human eye. After Sync-B
is complete, the flags and cell neighbour counts for the cells
on the edge of the domain are updated from the Filled and
Emptied queues received from slave neighbours.

3.3 Static and Dynamic Load Balancing Algorithms

Thus far, we have described a system where the simulation
data is passed once from the Master to a number of slaves,
which then update the simulation and send the resultant
fluid surface back to the Master. For each iteration, the
slaves must synchronize with each other. This means that
an iteration is only as fast as the slowest slave, as all the
slaves must wait for that slave to complete its computation.
Through load balancing, we aim to ensure that each slave
runs for the same time per iteration, thereby maximising
the parallel efficiency.

The simplest approach to load balancing involves a
static balance of the load: dividing the scene evenly,
so that each slave receives equivalent scene volumes to
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simulate. As fluid is accelerated due to gravity, it is
possible to predict the movement of fluid downwards,
so load balancing should divide the scene along an axis
perpendicular to the direction of gravity. In scenes
without complex floor geometry, gravity will ultimately
balance the load well. A 1D decomposition helps load
balancing, as it keeps the load balancing logic simple and
reduces side-effects due to multiple synchronisations with
neighbours. The more neighbours a slave is required to
synchronize with, the more possible load connections,
which makes it harder to load balance correctly. Körner
et al. [Körner et al. 2006] suggested such a 1D scheme
that adjusts the domain decomposition when the measured
idleperiod for synchronisations with neighbouring processes
is too large. At this point, a load balance is initiated and a
plane of cells is fetched from the neighbour causing the wait.

In our implementation, the idleperiod while waiting
for each of the Sync operations to finish, is stored separately
for each slave-neighbour. If the idleperiod is larger than a
threshold percentage of the total time for the current load
balancing step, the slave that has been waiting requests a
load balancing phase from the slave-neighbour in question,
by sending a message containing the idleperiod. Upon
receiving the request, the slave-neighbour will compare the
received idleperiod to its current idleperiod and, if it is
appropriately larger, the request will be acknowledged. In
this case, the two slaves enter a load balancing phase, during
which their domains are re-sized. If however, the received
idleperiod is not sufficiently long, the load balancing is
denied.

The load balancing phase proceeds as follows:

1. Wait for Sync-B and then process Sync-B to ensure
local domain consistency.

2. Increase or decrease the current domain to cater for
adjustment of domain size.

3. Send or receive the plane of VOF LBM cells resulting
from the change, to or from slave-neighbour.

4. Perform the Sync-A and Sync-B operations for halo
consistency.

Our implementation requires three parameters to be opti-
mised to obtain the best results for the load balancing algo-
rithm: the computation threshold at which a slave decides
to fetch more data from a neighbour, the interval at which
this is decided and the wait factor. The wait factor is how
many times longer a given slave must wait compared to a
neighbour’s idleperiod before load balancing is allowed. This
seeks to avoid cascading load balances, as large idleperiods
due to an individual slave waiting for a neighbour will be
ignored. Load balancing should only occur when the ac-
tual computation time causes a large idleperiod. We use a
sparse set of tests to determine the optimal values for these
parameters, as detailed in the results.

4 Test Cases

We compare the time taken for dynamic and static load
balancing for a number of test cases at different simulation
scales. The test cases used are based both upon the target
applications, namely animation sequences for movies and
advertisements, and common test cases employed in the
literature. These test cases are (see Figure 5 for two

Walls

Pumps

Source

Sinks

Domain

Figure 5: City (Top) and Shower (Bottom) test cases

example setups and Figure 1 for some resulting frames):

(1) Waterfall scene - A scene with a curved river bed
and a pump in the upper left corner of the figure that fills
the already half-filled upper section of the river with water.
The water then overflows and falls to the lower level of the
river. (2) Wave breaking over a city - To introduce water to
the scene, a large block of water is placed in one corner of the
domain, along with two pumps. This mimics the scene from
The Day After Tomorrow where a city is flooded by a vast
wave2. (3) Gnomon3 showering in water/mud - This depicts
a creature being showered with fluid. The inspiration for
this test case is a scene in the film Shrek4. (4) Breaking
dam - This the a standard falling dam example [Thürey
2003], with a block of water in one corner of the domain.
(5) Waterdrop falling into a pool - A standard in the litera-
ture [Thürey et al. 2007]: a waterdrop falls into a pool below.

Each of the test simulations were run for different
numbers of CPUs. For these measurements, the wall clock
time elapsed for each of the test simulations was recorded
from the time the Master process started loading a scene
specification until it had saved the last frame’s fluid mesh.
The Tuning and Analysis Utilities (TAU) [Mohr et al.
1994] was used to profile each of the simulations running on
different numbers of CPUs. To minimise the difference in
profiled code and normal running code, only key functions
were profiled, as follows. Each of the simulations were
decomposed into four main sections:

1. Stream - This contains the LBM Stream and Collide
sections and the mass transfer.

2. Communication - This section is responsible for the syn-
chronisation of the slaves with each other and the Mas-
ter (note that the idleperiods for synchronisation are
included).

3. Data Packing - This encapsulates the extra work per-
formed to prepare the data needed to synchronise the
slaves.

4. Load Balance - This records the time spent load bal-

2http://www.imdb.com/title/tt0319262/
3A fantastical Digimon character from TV.
4www.shrek.com
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ancing.

Surface construction was not included, as it only accounts for
3.5% of the overall run-time of the simulation [Reid 2009].

5 Results

We present the results from the VOF LBM parallel simula-
tions. Renderings of one frame of each of the final test cases
are shown in Figure 1. These renderings were produced with
Mantra5 from SideFX, with various shaders being used for
the different objects in the scene. As mentioned previously,
these were generated offline and after the simulation had
been saved the mesh to disk. The drop simulation used
grid dimensions of 600 × 600 × 600, the mud simulation of
480×720×480 and the city 600×165×600. In general, the
fluid showed good physical fluid behaviour, when judged
by the human eye, and a significant amount of detail was
generated by the parallel simulations (see the amount of
drops visible in the mud simulation). However, there were
problems with instabilities when fluid speed became too
great, as such methods of Thürey et al. [Thurey et al.
2005] or d’Humiéres et al. [d’Humières et al. 2002] were
not used. The visible effects of such instabilities can be seen
in the extra number of water drops being created in the
mud test case and unphysical behaviour of the drop test
when speed was too great.

The parallel efficiencies of each of the simulations on
varying numbers of CPU cores are shown in Figure 6,
where each simulation involved 1 Master process and N
slave processes. Note that, for the cluster architecture, each
compute node has four physical cores and four processes can
be run at a time. Thus, processes are first assigned to the
same compute node so communication times are minimised.
Processes on the same node make use of the memory based
communication of MPI instead of using the Infiniband
interconnect. The figure shows that in general the dynamic
load balancing performs better for all simulations when
using a small number of CPU cores. All the graphs exhibit a
crossover point where the static algorithm starts performing
better. The number of CPU cores at which this crossover
point occurs is (approximately): Dam - 18, Drop - 25, Mud
- 32, Waterfall - 14 and City - 25.

5.1 Profiling

Execution profiles for all test simulations are shown in Figure
8. The graphs show the maximum total time taken by all
slaves for a given section of the simulation. It is important
to consider the maximum time, as the wall clock time of
the simulation will be limited by the slowest slave. Note
that the computation time and communication times will
be partially linked, as the longer a slave takes to update its
designated grid cells, the longer another slave must wait to
communicate.

6 Discussion

6.1 Dynamic Load balancing parameters

We found the computation threshold to have the greatest
influence on the speed of the simulations, followed by the

5www.sidefx.com

load balancing interval and, lastly, the wait factor. Our re-
sults show no consistent minimum for all scenes: the final
choice of parameter values is a balance between making the
load balancing decisions sensitive to an imbalance (which is
good for simulations such as the dam) or insensitive (good
for simulations such as the drop). As a design decision, we
choose an load balancing interval of 1, as this allows the
simulation to adjust as often as possible, favouring unbal-
anced simulations. The wait factor is also chosen as 1, but,
as stated, does not play a large role in the load balancing
decisions when compared to the effect of the computation
threshold. The optimal range for the computation threshold
was found to be 0.03− 0.11.

6.2 Profiling

Profiling (Figure 8) of the execution reveals the reasons for
the differences in performance for the dynamic and static
load balancing approaches. Firstly, Figure 8(a) shows that
the static load balancing approach has an unbalanced load
for low numbers of CPU cores and becomes far better for
higher values because the maximum time for a given slave
is far larger for low CPU core numbers. The data packing
time remains constant, as the shared boundary between
slaves does not change in size. This is one of the causes of
poor scaling. For dynamic load balancing, the load for lower
numbers of CPUs is balanced better. Figure 8(a) shows
that ultimately the balance degrades for large numbers
of CPUs. This probably occurs because slaves only have
information about the time they spend waiting for their
neighbours and the staggered computation times across the
whole domain prevent an unbalanced slave on one end of
the domain from claiming work from a slave on the other
end. For example, consider a simulation with 10 slaves. Let
slave 2 have computation time of x seconds per iteration.
Now, let slave 3 have a computation time of 0.95x and slave
4, (0.95)2x, etc. Eventually slave 8 will have a computation
time of 0.66x, which is a definite candidate for load bal-
ancing, but the difference with its neighbours is only 5% in
terms of computation time, so it will not ask to load balance.

In the end, Figure 8 shows that the communication
time, although initially small relative to the Stream time,
eventually becomes much more comparable. This causes the
poor scaling, as it forms a large portion of the effectively
non-parallelizable time (which is constant for all slaves).
The other factor causing poor scalability of the dynamic
simulation is the time required to load balance, which
increases with the number of CPUs. With higher numbers
of CPUs, it becomes harder to determine exactly when a
load balance should occur, as the time for each iteration is
reduced and the relative idleperiods are higher. Thus, the
system becomes more sensitive to load imbalances, causing
an increased number of load balances and the increase in
time on the graph.

Figure 8(e) shows the profiling graph for the drop
simulation. It exhibits very similar characteristics, except
the balance in general is far better. Similar effects are
observed for lower resolutions, but the main difference is
that the ratio of computation to communication is lower,
causing even poorer scaling.

The mud and water simulation exhibit very poor scal-
ing, for all resolutions. From 8(a) and (b) it is easy
to see that the reason for such behaviour is that the
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Figure 6: The efficiency results for the test cases at a medium resolution. The label CPU refers to a CPU core.
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Figure 7: The efficiency results for test cases at high resolutions.The strange “kink” in the dynamic load balancing graph, for
the dam simulation, is due to the initial conditions of the scene being set the same as the static load balancing. The dynamic
initial conditions require larger memory, causing virtual memory thrash. The label CPU refers to a CPU core.

97



0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

8.00E+04

Ti
m

e 
(m

ir
co

 s
ec

o
n

d
s)

Program section

Mud simulation at 
80x120x80 grid resolution for 6 and 26 slaves

slaves=6,stat
slaves=6,dyn
slaves=26,stat
slaves=26,dyn

Stream Communication    Data 
Packing

Load balance

(a)

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

3.50E+04

4.00E+04

4.50E+04

5.00E+04

Ti
m

e 
(m

ir
co

 s
ec

o
n

d
s)

Program section

Waterfall simulation 
at 120x100x50 grid resolution for 6 and 26 slaves

slaves=6,stat
slaves=6,dyn
slaves=26,stat
slaves=26,dyn

Stream Communication    Data 
Packing

Load balance

(b)

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

Stream Communication    Data 
Packing

Load balance

Ti
m

e 
(m

ir
co

 s
ec

o
n

d
s)

Program section

City simulation at 
200x55x200 grid resolution for 15 and 32 slaves

slaves=6,stat
slaves=6,dyn
slaves=26,stat
slaves=26,dyn

(c)

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

Ti
m

e 
(m

ir
co

 s
ec

o
n

d
s)

Program section

Dam simulation at 
300x300x300 grid resolution for 6, 18 and 44 slaves

slaves=6,stat
slaves=6,dyn
slaves=18,stat
slaves=18,dyn
salves=44,stat
slaves=44,dyn

Stream Communication    Data 
Packing

Load balance

(d)

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

1.80E+06

2.00E+06

Ti
m

e 
(m

ir
co

 s
ec

o
n

d
s)

Program section

Drop simulation at 
300x300x300 grid resolution for 6, 18 and 44 slaves

slaves=6,stat
slaves=6,dyn
slaves=18,stat
slaves=18,dyn
salves=44,stat
slaves=44,dyn

Stream Communication    Data 
Packing

Load balance

(e)

Figure 8: Profiling of simulations. The four major sections of the simulation have been profiled and are indicated on the
graphs. (a) Mud, (b) Waterfall, (c) City, (d) Dam and (e) Drop test cases. Each slave runs on its on CPU core.

communication time outweighs the computation time. In
addition, the packing time and the load balancing time
reduces the scaling. The scene specification has a small
amount of fluid and this is the cause of the small streaming
time. If streaming is proportionally small, then there will
be poor scaling as there is less total computation to be
distributed among the slaves. The ratio of computation
to communication is low. The higher resolution scaling
exhibits similar effects.

The city simulation in 8(c) has a static case that is
very unbalanced, in comparison to the dynamic case. This
is understandable when the scene specification is considered.
The scene initially has large empty regions that have no
fluid, which is an easy mistake to make, as an artist would
not always be aware of the optimal scene specification. This
will adversely affect the static load balancing algorithm,
as it has no way of catering for such a scenario. Hence,
dynamic load balancing performs better for this test case,
as it measures such an imbalance and adjusts slave-domains
accordingly.

6.3 Scalability and Efficiency

For simulations at different resolutions, the scalability
of the VOF LBM simulation is good for low numbers of
CPUs, but eventually the communication prevents effective
scaling, as can be seen from the profiling graphs. For the
lower numbers of CPUs, where the scaling is good, dynamic
load balancing improves the efficiency of the algorithm. In
most cases, the dynamic load balancing performs worse
for larger numbers of processors, as a small mistake in the
load balancing can cause one node to have a higher total

time, thus slowing the entire simulation. As mentioned
above, this is because only local slave computation times
are considered during balancing. Incorporating a higher
order scheme that regulates the load balance with global
knowledge could be beneficial. In addition, the dynamic
load balancing is also affected by the extra communication
needed to perform load balancing. This unbalances the
communication-to-computation ratio even further.

Overlapping the communication and computation helps to
explain the better scaling for lower numbers of CPUs as
most of the communication time can be hidden. However,
the time required for communication and data packing
remains constant for all numbers of CPUs and so eventually
dominates the simulation run time.

A positive aspect of the scalability results at different
resolutions is that the system exhibits good “weak scaling”.
Weak scaling measures the system performance against
number of CPUs as the problem size (in our case, the size of
the grid) increases, proportionally to the number of CPUs
[Dachsel et al. 2007]. Conversely, strong scaling fixes the
problem size. A higher number of total grid cells, means a
higher number of cells assigned to each slave and the ratio
of computation to communication becomes larger. Still, for
the mud and waterfall simulations, with smaller amounts
of fluid, the scaling is not as good as the drop and dam
simulations. This result indicates that parallel VOF LBM
is suited to large scenes with a high proportion of fluid, but
will still have poor scaling for scenes with low amounts of
fluid agreeing with Gustafason’s law [Gustafson 1988].

It is important to note that the VOF LBM algorithm
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requires a large amount of communication every iteration.
Therefore, good scaling is not expected. With this in mind,
the scaling results for our implementation are positive.

6.4 Architecture and scene scale recommendations

The size of animations currently created in research and,
hence, movies is similar to that of our high resolution
tests (see resolutions in Losasso et al. [Losasso et al.
2008]). Here we use the scaling at these resolutions to
make recommendations on the number of CPUs for creating
simulations. A required reference duration for a scene is
chosen to be 1 min (180 frames). In reality, the scene could
be very short, or possibly longer, but this is a suitable
length of time to draw conclusions. The film duration for
drop and dam test cases is 3.5s and the duration of the
mud, waterfall and city is 7s. Essentially, the reference time
is 17 times longer than the simulations produced.

The time it would take to produce 1 min of similar
simulations, ranges from 3hrs for the waterfall simulation
to 17hrs for the drop and dam simulation, when using 35
CPUs. When using 100 CPUs, these times become 2hrs
and 8.5hrs. At these resolutions, there is still room for
scaling at reasonably efficient rates, as the simulation is
not yet dominated by the communication. Fitting a power
regression line to the static load balancing times of the
drop and dam yields an estimate of 4.5hrs when using
200 CPUs. This time is more acceptable, as this would
allow the creation of 2 simulations within a 9hr day. In
production this would mean that a simulation with one edit
could be made within a day. At these levels the returns
are diminishing with increasing numbers of CPUs. For this
number of CPUs, further optimisations of communication
are required, as that forms the main bottleneck.

7 Conclusions

We have presented a parallel algorithm for Lattice Boltz-
mann Free-Surface Fluid Dynamics suitable for implemen-
tation on a cluster of CPUs. In particular, we focus on dy-
namic load balancing in order to ensure an equal distribution
of computation between nodes during the simulation.

In general, parallelisation of fluid simulation is highly desir-
able since with high numbers of CPUs it is possible to re-
duce typical simulation times from around 17 hrs to 8.5 hrs
or less. Further, our tests show that dynamic load balancing
outperforms static load balancing only for small numbers of
CPUs, typically less than 20-30 CPUs. The cross-over point
depends on the nature of the simulation, with dynamic load
balancing favouring large scenes with a high proportion of
fluid.

There are several viable extensions to this work, most
notably parallelisation across a mixed cluster of CPUs
and GPUs. More complex global dynamic load balancing
schemes, that take into account the load across the entire
system, may show benefits. It would also be worth includ-
ing dynamic objects that interact with the fluid simulation,
as this is often a requirement for film.
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