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Deconvolution of native radio interferometric images constitutes a major computational component of the
imaging process. An e±cient and robust deconvolution operation is essential for reconstruction of the true
sky signal from measured telescopic data. The techniques of compressed sensing provide a mathematically-
rigorous framework within which to implement deconvolution of images formed from a sparse set of nearly-
random measurements. We present an accelerated implementation of the orthogonal matching pursuit
(OMP) algorithm (a compressed sensing method) that makes use of graphics processing unit (GPU)
hardware. We show that OMP correctly identi¯es more sources than CLEAN, identifying up to 82% of the
sources in 100 test images, while CLEAN only identi¯es up to 61% of the sources. In addition, the residual
after source extraction is 2:7 times lower for OMP than for CLEAN. Furthermore, the graphics imple-
mentation of OMP performs around 23 times faster than a 4-core CPU.
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1. Introduction

Radio interferometry is a means of observing elec-
tromagnetic radiation at radio wavelengths from
the sky by using an array of receivers. The multiple
receivers in such an array can obtain a resolution
nearly equal to that of a single large receiver that
encompasses all of the smaller receivers.

Radio interferometers measure the sky through
the spatial coherence function, that is, they measure
points in the two-dimensional (2D) Fourier domain.
These measurements are called visibilities, and
usually give co-ordinates u and v in a ðu; vÞ-plane.
The points they measure correspond to the physical
separation of the receivers (baselines). In particular,
given a telescope pair with baseline b, the

corresponding point measured will be the compo-
nents of b orthogonal to the direction of observation
(that is the direction from the telescope to the sky
source under observation), ðu; vÞ. Since it is usually
infeasible to have telescopes at every possible base-
line, the Fourier domain is therefore sub-sampled.

In addition, since the measured points do not
fall on a regular grid, a Direct Fourier Transform
(DFT) is needed to map them onto the image plane.
Since this is often computationally infeasible, the
points are typically ¯rst mapped onto a regular grid.
This process is known as gridding. This way, a
Fast Fourier Transform (FFT) can be used instead
of a DFT.

This sub-sampled Fourier plane results in mul-
tiple possible images matching a set of measure-
ments taken by an interferometer. One approach to1Corresponding author.
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selecting the best image is to consider all unmea-
sured visibilities as zero. This results in what is
known as the dirty image, and su®ers from artifacts,
as can be seen in Fig. 1(a). Because of the as-
sumption of zero values, the sky's image is con-
volved with a Point Spread Function (PSF), which
is the result of the interferometer measuring a single
point source (a single bright point in the sky image).

Deconvolution is the process of selecting the
image that is the closest to the actual sky from
among the possible images. Figure 1(b) shows a
deconvolved image using the same measurements.
This image is much sparser (that is, more values are
zero, or near zero), and is closer to the expected
appearance of the sky. It is also much easier to
identify the sources in Fig. 1(b) than in Fig. 1(a).

Most deconvolution algorithms attempt to re-
move this convolution by subtracting the PSF from
where the sources are thought to lie (typically the
brightest points in the dirty image). However, from
our knowledge of the radio sky, we know that most
of an image will be background with a few small or
point sources, resulting in a sparse image. As such, a
good approach to deconvolution is to ¯nd the
sparsest image that matches the measurements.
In order to achieve this we employ Compressed
Sensing methods.

The theory of Compressed Sensing (CS)
(Candès, 2006) states that, given a signal x with i
non-zero elements, if the measurements can be cal-
culated as a linear combination of x, we have a high
probability of being able to reconstruct x with as
few as Oði logðmÞÞ measurements, where m is the
size of the signal. Orthogonal Matching Pursuit
(OMP) is a compressed sensing algorithm which has

been shown to be e®ective at deconvolution of radio
astronomy images.

In this work, we adapt OMP to take advantage
of several algorithmic optimizations which can be
made when reconstructing radio astronomy images.
We also accelerate the deconvolution by imple-
menting the algorithm on graphics processors,
thereby exploiting the inherent algorithmic paral-
lelism.

Section 2 focuses on the basic theory of Com-
pressed Sensing and OMP, and brie°y describes its
alternatives. In Sec. 5, we adapt OMP for radio
interferometric images. In particular, we make some
modi¯cations which reduce the computational
complexity of the general form of OMP. We discuss
the speci¯cs of implementing OMP on both the
CPU and the Graphic Processing Unit (GPU) in
Sec. 6, as well as the resource requirements of these
systems. We show how well OMP deconvolves a
synthetic image, as well as how quickly it performs
under various circumstances in Sec. 7.

2. Image Reconstruction with Compressed
Sensing

Nyquist–Shannon sampling theory requires that
there be at least twice as many measurements as
points in the image in order to perfectly reconstruct
it. We can, however, use prior knowledge of our
image (that it is sparse) to reduce the number of
measurements required.

The theory of Compressed Sensing (Candès,
2006) shows that compressible signals can be recon-
structed with fewer measurements than Nyquist–
Shannon sampling theory requires. In particular, the

(a) (b)

Fig. 1. Deconvolution of an image: (a) a dirty image and (b) the corresponding deconvolved image.
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signal, x, must have a sparse representation in some
orthonormal basis. In this case, theNmost important
co-e±cients can be found with only OðN logðmÞÞ
measurements, instead of the 2m required by the
sampling theorem, where m is the highest spatial
frequency contained in the signal.

In terms of radio astronomy, this means that we
can use CS theory and expect a high probability of
reconstructing the image of the actual sky from in-
terferometric measurements so long as the image is
sparse enough (has less than half as many non-zero
pixels as the number of measurements).

So, given a general linear measurement system

�x ¼ y; ð1Þ
where x is a vector of the target signal we want to
measure (of size n), y a vector of the measurements
(of size m), and � an m� n matrix, which is called
the measurement system, if m � n (there are more
unknowns than observations), there are usually
multiple solutions for x. We make use of the fact
that x is sparse in order to ¯nd a good solution.

2.1. Sparsity

Sparsity is required for the signal, x, to be com-
pressible in some way. This means that there must be
a representation of the signal in some space which
has fewer entries than its natural representation.

A signal, x, is sparse (respectively weakly
sparse) if there is a representation, �, of x which has
fewer than n elements. That is, x can be represented
by x ¼ �� for some l� n matrix, with l less than n
and other elements are 0 (respectively close to 0).
Thus, Eq. (1) becomes

��� ¼ y or �� ¼ y; ð2Þ
where � ¼ ��. We call � the sensing matrix, and �
the representation basis.

It is often the case that x already has few non-
zero entries, in which case � can be taken as the
identity matrix (there is no change of space of re-
presentation in that case, because x is already
sparse in its natural representation space).

2.2. Incoherence

Mutual coherence between two matrices, A and B,
is a measure of the largest correlation between any
two rows of A and B, given by

�ðA;BÞ ¼ ffiffiffi
n

p
max

1�k;j�n
jhA 0

k;B
0
jij;

where A 0 contains the rows of A normalized such
that hA 0

i;A
0
ii ¼ 1.

Compressed sensing requires there to be inco-
herence between the sensing matrix, �, and the
representation basis, �. In the case, where the
sensing system is the Fourier domain (as is the
case in radio interferometry), and if x is already
sparse in its natural space, then � is assembled from
selected rows of the Fourier transform matrix F, �
is the identity matrix, and �ðF;�Þ ¼ 1.

Candes & Romberg (2007) show that a signal
can be recovered with high probability when the
number of measurements, m, satis¯es

m � C�2ð�;�Þs logn;
for some constant C, where s is the sparsity of the
signal (the number of non-zero entries in its sparse
representation).

Lustig et al. (2007) have found experimentally
that, for incoherent sampling (that is, �ð�;�Þ ¼ 1),
m need only be 2–5 times larger than s in order to
have a high probability of reconstructing the signal.

2.3. Restricted isometry property

The previous theory focuses on a signal with a
sparse representation. However, it is more often the
case that most entries will have very small values
instead of zero values (for instance, due to instru-
ment noise in the case of radio interferometry). In
order to apply CS theory to this case, we need to
introduce the Restricted Isometry Property (RIP).

We ¯rst de¯ne the isometry constant �s for each
s 2 f1; 2; . . .g as the smallest number such that, for
all s-sparse vectors �,

ð1� �sÞjj�jj22 � jj��jj22 � ð1þ �sÞjj�jj22:
We say that � satis¯es the RIP of order k if �k < 1.

Li et al. (2011) show that, if the isometry con-
stant �2s <

ffiffiffi
2

p � 1, the ‘1 minimization solution,
��, of Eq. (2) satis¯es

jj�� � �jj2 � C
jj�� �s jj1ffiffiffi

s
p ; ð3Þ

where �s is � with all but the largest s entries set to
zero, thereby providing a bound on the reconstruc-
tion error.

In order to allow for noise in the measurement
system, we modify Eq. (2) to

��þE ¼ y;
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where E represents the measurement error. Equa-
tion (3) now becomes

jj�� � �jj2 � C0

jj�� �s jj1ffiffiffi
s

p þ C1�; ð4Þ

where � represents a bound on the amount of noise.
Candès (2006) shows that Gaussian measure-

ment matrices, binary measurement matrices,
Fourier measurement matrices and incoherent
measurement matrices all satisfy the RIP.

2.4. Basis pursuit

The direct solution to reconstructing a sparse signal
(in the absence of noise) is to solve

min
�

jj�jj0 subject to �� ¼ y;

where jj�jj0 is equal to the number of non-zero
entries in �.

This is a combinatorial problem (NP Hard) and
thus is computationally intractable, so a di®erent
approach should be taken.

By providing bounds on the reconstruction
error, Eq. (3) shows us that the ‘1 norm can provide
a good solution (in particular, it provides an upper
bound on the reconstruction error). This leads us to
the Basis Pursuit (BP) algorithm (Shaobing &
Donoho, 1994) by solving

min
�

jj�jj1 subject to �� ¼ y: ð5Þ

In the case of noise in the measurement system,
we can use Eq. (4) to obtain the BP De-Noise (BP�)
algorithm by solving

min
�

jj�jj1 subject to jj��� yjj2 � �: ð6Þ

By recasting the problem to its unconstrained
Lagrangian form, we get the Quadratic basis Pur-
suit (QP�) problem

min
�

ðjj��� yjj22 þ �jj�jj1Þ; ð7Þ
where � is a balancing factor between the signal and
the noise.

The BP problem can be solved using linear
programming, while the BP� and the QP� problems
can be solved as second-order cone programs. The
QP� problem can also be solved using quadratic
programming.

2.5. Matching pursuit

While ‘1 optimization techniques have guaranteed
convergence, they often take a large number of

iterations to achieve an acceptable solution. Greedy
algorithms are designed to accurately reconstruct
the signal signi¯cantly faster.

The Matching Pursuit (MP) algorithm (Mallat
& Zhang, 1993), detailed in Algorithm 1, iteratively
selects the best element in � which would minimize
the residual (r ¼ y���), and adds it to the solu-
tion vector. Since � satis¯es the RIP, we can choose
this element as the element of maximum absolute
value in �Hr (�H is the conjugate transpose of �).

2.6. Orthogonal matching pursuit

While MP does converge, in a given iteration the
solution vector, �, is not necessarily the optimal
solution vector with respect to its non-zero compo-
nents. The OMP algorithm (Pati et al., 1993), de-
tailed in Algorithm 2, addresses this problem by re-
balancing all previously selected values such that
the solution vector is optimal for the selected
components.

The OMP algorithm operates exactly like
MP until the best element is selected. Because we
will be weighting this component in each future it-
eration, its index is stored in an (initially empty)
vector, D.

For each selected element, �i, its contribution
to y is determined by the ith row of �. As such, the
matrix �D is set to be the matrix containing only
the columns of � whose index is in the set D.

Since each selected element's contribution is
perfectly represented by �D, the solution vector of
argmin jjy��D�jj2 will result in the minimum
possible residue for the selected components. Find-
ing this solution vector is a well known, solved
problem in linear algebra (least-norm solution of
underdetermined equations).

Because we have minimized the contribution
from each of the selected components, the compo-
nent selected in the next iteration will not be a re-
sult of poor prior weights, resulting in a better
component in the next iteration.

Algorithm 1 Matching Pursuit
1: r ← y
2: while r is significant do
3: p ← ΘHr
4: i ← arg max |pj |
5: αi ← pi

6: r ← y − Θα
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3. Theoretical Comparison to Existing
Image Reconstruction Methods

3.1. CLEAN

The CLEAN Algorithm (H€ogbom, 1974) provides a
solution to deconvolution by iteratively selecting
the brightest point in the dirty image and sub-
tracting a scaled PSF from this point. The scaling
factor for this PSF is chosen to be a small portion
(usually around 10%) of this brightest point.

The idea is that the brightest point in the image
is the most likely place for a source to occur, and by
only subtracting a small portion of it, there is less
chance of subtracting the residue from some other,
nearby source.

The selected points are then considered as the
sky model.

One problem with this is that in the case that a
bad selection is made, the only way it can be cor-
rected is if, in some iteration, the e®ects of that
selection are brighter than any other point in the
image. OMP, on the other hand, rebalances all the
chosen weights in each iteration, thereby ensuring
that poor selection can be corrected.

3.2. Maximum entropy method

The Maximum Entropy Method (MEM) is a
deconvolution technique in which we ¯nd the image
of maximum entropy which ¯ts the data to within
the noise level. The term entropy (which should not
be confused with physical entropy, though the cost
function is derived from the physical de¯nition) is
something which, when maximized, introduces le-
gitimate a priori information. Narayan & Nitya-
nanda (1984) ¯nd that one of the best entropy forms
for general purpose use is

F ¼ �
X
k

Ik ln
Ik
Mke

;

where Ik is the deconvolved image and Mk is a de-
fault image which allows a priori information to be
incorporated. A low resolution image of the target
can provide a good default image.

The resulting intensity of the model should be
consistent with the visibility data, which is mea-
sured through a �2 statistic. This is the measure of
the mean-squared di®erence between the measure-
ments, V , and the corresponding values for the
model, V 0

�2 ¼
X
k

jVk � V 0
kj2

�k 2
:

Obtaining the solution is an iterative procedure
such as CLEAN.

MEM typically performs better on extended
structures when compared to CLEAN and CS
techniques, while performing worse on point sources
(Cotton et al., 1989).

4. Overview of Past and Existing Methods

A large number of deconvolution methods have
been developed, often based on particular assump-
tions about the observed sky. Starck et al. (2002)
provided a review of many of the algorithms prior to
compressed sensing theory, detailing the formalism,
strengths and shortcomings of each of them. They
make the point that each method is typically based
on a particular noise model, or on particular a priori
assumptions, under which the particular algorithm
will perform best.

They expand many of the algorithms into a
multi-scale variant using wavelets. By using a par-
ticular wavelet basis, they are able to overcome the
major shortcomings of each method.

However, a few years later, Candès (2006) in-
troduced Compressed Sensing theory, a method
for reconstructing sparse signals using fewer

Algorithm 2 Orthogonal Matching Pursuit
1: r ← y
2: D ← ∅
3: while r is significant do
4: p ← ΘHr
5: i ← arg max |pj | where j �∈ D
6: D ← D ∪ {i}
7: α ← arg min ‖y − ΘDα‖2 � Only the selected components αj , j ∈ D are determined by

this problem. Define αj = 0 for j �∈ D.
8: r ← y − Θα
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measurements than are required by the more gen-
eral Nyquist–Shannon sampling theorem. Since
images of the sky are typically sparse, or at least
have a sparse representation in some space, this
theory can be used for deconvolution.

In addition, Candès (2006) employed the BP
algorithm, a method which uses the Compressed
Sensing theory to reconstruct a sparse signal.

Tropp et al. (2007) provided a description of
OMP, a greedy Compressed Sensing technique for
general signal recovery. They also provided detailed
experimental results on how many measurements
are required to recover a signal.

Wiaux et al. (2009) provided a detailed expla-
nation of compressed sensing from the perspective of
radio astronomy, and constructed a BP algorithm.
They then used this algorithm to deconvolve both a
dirty image containing point sources and a dirty
image containing extended structure, and showed
that it produces a superior signal-to-noise ratio to
CLEAN.

Schwardt (2012) created a CPU implementa-
tion of OMP for radio interferometric data. In ad-
dition, he benchmarked the performance of OMP
against other compressed sensing algorithms (QP�

and BP�), as well as against the Cotton–Schwab
CLEAN algorithm. He found that OMP produced
sparser images in less time when compared with the
other test algorithms, although the image's dynamic
range was less than that of the other compressed
sensing algorithms.

Schwardt's algorithm executed in 5.3 s for a
100� 100 image, executing for 200 iterations using
a 2.3GHz Intel Core i7 CPU. While he did not
provide many implementation details, he speci¯ed
using an FFT, so we can assume it's at least n log2 n.
Extrapolating from this single result implies his
implementation (using 200 iterations) would require
around an hour for a 4 megapixel image (by con-
trast, our implementation can manage this in 2:6 s)
which, while feasible, is still a long time and can
become infeasible for larger images.

Schwardt also found that introducing a posi-
tivity constraint on the algorithm (thereby making
it identical to Non-Negative Least Squares (NNLS)
algorithm described by Lawson & Hanson (1974))
allowed convergence with fewer iterations and pro-
duced an image with greater dynamic range. This
constraint limits the application to non-negative
images however, which is not always the case for
radio interferometry.

Carrillo et al. (2012) observed that, depending
on the observation, astronomical phenomena are
typically sparse in either the Dirac basis, wavelet
bases, or exhibit gradient sparsity. In particular,
astronomical images can contain all these types of
structures at once. As such, they de¯ne a dictionary
of bases in which the image might be sparse, and
identify the solution which has the best average
sparsity across all chosen bases using a reweighed
BP method. They found that this approach pro-
duces superior results to methods only optimizing a
single basis.

Garsden et al. (2015) tested a CS implementa-
tion against Cotton–Schwab CLEAN (CoSch-
CLEAN) and Multi-Scale CLEAN (MS-CLEAN).
They develop a wavelet-based implementation of
the FISTA algorithm, a method which replaces the
CS ‘1 with a smooth approximation, thereby en-
abling many existing convex-optimization algo-
rithms to solve the compressed sensing problem.

When deconvolving point sources, they found
that their CS implementation performed competi-
tively when compared with CoSch-CLEAN. The
CS implementation had an improved angular res-
olution at high and moderate signal-to-noise ratios,
with a similar angular resolution at low ratios. The
CS implementation was able to detect more faint
sources than CoSch-CLEAN, but had a larger
error on their °ux density values. When decon-
volving extended emissions, they found the CS
implementation showed an improved angular res-
olution compared with both CoSch-CLEAN and
MS-CLEAN.

Septimus & Steinberg (2010) implemented
OMP on a GPU and on FPGAs; however, this only
supports images smaller than 128 elements, with a
sparsity no greater than 5, which is too restrictive
for radio astronomy as it only allows for images of
around 11� 11 pixels and ¯ve non-zero sources.

Fang et al. (2011) obtained a 30 to 50 times
speedup for their GPU implementation of com-
pressed sensing. Their implementation is not spe-
cialized for radio interferometric data, and thus does
not take into account the algorithmic enhancements
described in Sec. 5. As such, it has a worse algo-
rithmic complexity than can be achieved by a spe-
cialized method.

Their GPU implementation executed in
1454ms for an \;image" of size 16,384 (that is, the
equivalent of a 128� 128 image), with 4096 mea-
surements and executing for 512 iterations on an
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NVIDIA GTX480 GPU. Extrapolating the results
for this general algorithm to a megapixel image
would result in an execution time somewhere on the
order of months, which is again infeasible for most
radio astronomy.

5. Adapting OMP to Radio Astronomy

This section will detail the adaptation of the OMP
to deconvolution of radio interferometric images. In
particular, we are adapting Algorithm 2 to this use
case. In terms of compressed sensing, the sensing
matrix (�) is a \;masked" 2D Fourier transform
matrix, the representation basis (�) is the identity
matrix, and y is a vector containing the visibilities
produced by the interferometer.

This particular choice allows us to make some
improvements to OMP. In this section, we detail
each step shown in Fig. 2, a diagrammatic overview
of OMP.

We initially project the di®erence by which each
candidate component can reduce the residuals. This
component is then added to the list of selected
pixels. From there, we determine the weights for
each selected component that would minimize the
residue. This continues until the stopping case is
reached. This stopping case is typically a ¯xed
number of iterations.

5.1. De¯nitions

Let y be a vector, of size m, which represents the
measurements, and let the image we want to re-
construct be of size n (that is, a

ffiffiffi
n

p � ffiffiffi
n

p
image).

Let F be the 2D n� n Fourier transform matrix
(which is multiplied by the size n image vector) and
M the m� n masking matrix that picks the m
measured visibilities from the Fourier plane. Note
that FH is then the inverse Fourier transform. As
such, we have � ¼ MF.

For iteration i, let xi represent our candidate
image, which is initially blank (every entry is zero),

and let ri represent the residual image of the can-
didate xi (and thus is initially the dirty image).
That is, ri is the di®erence between the measure-
ments (y) and the measurements that would be
obtained from the candidate image (MFxi), thus
ri ¼ y�MFxi. In the ¯nal formulation, we do not
directly need ri and instead use its Fourier trans-
form. This allows us to avoid the computational
cost of de-gridding and re-gridding the image.

Let P be the matrix representing the 2D con-
volution by the PSF.

Artifacts are considered to be any features in
the dirty image that do not correspond to a con-
volution of an image by the PSF. These can be
caused by noise or as a result of using an approxi-
mation in the gridding process.

5.2. Projection

The ¯rst step of OMP is to identify which column of
MF will most reduce ri. For column ci, the pro-
jection onto ri can be computed (according to the
general OMP approach) as

ci � ri
jjci jj2

:

However, in interferometry we have the prop-
erty that each entry of ci is an entry from F and
thus jjci jj2 ¼ mffiffi

n
p , a constant factor for any n, and can

thus be ignored when identifying the maximum
element. Thus we can compute the weighting of
each column as the vector

ðMFÞHri ¼ FHMHri:

Since we have ri ¼ y�MFxi, we get

FHMHri: ¼ FHMHðy�MFxiÞ
¼ FHMHy� FHMHMFxi;

where FHMHy is the dirty image, and FHMHMFxi

is xi convolved with the PSF.
The best column can then be selected by ¯nding

the index, i, of the maximum value in FHMHri. We
can then construct Ai as the matrix that selects
values whose indices correspond to those selected in
both the current and in previous iterations (satis-
fying D in Algorithm 2).

Due to the implementation of gridding and the
nature of the radio antennas, artifacts may be pro-
duced around the edges of the dirty image (which
can be seen in Fig. 4). This can be mitigated by
restricting the selection to a window inside the

Start Project
difference

Select best
component

Component
weighting

Stopping
Case?

Stopyesno

Fig. 2. A diagrammatic overview of OMP.
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projection, that is, to not search for the maximum
near the boundaries of the image.

5.3. Weighting

We now need to identify the weights for the selected
columns, xiþ1, which best approximate the mea-
surements. We identify this by ¯nding the para-
meters which minimize the ‘2 norm

argmin
xiþ1

jjy�MFAixiþ1 jj2:

These can be computed by solving the normal
equation

ðMFAiÞHMFAixiþ1 ¼ ðMFAiÞHy:
General OMP would have us calculate this

product directly, however, because of the speci¯c
matrices used in interferometry, we can simplify this
further. By expanding we get the following:

AH
i F

HMHMFAixiþ1 ¼ AH
i F

HMHy: ð8Þ
Since MHM is a diagonal matrix, it can be

considered as a point-wise multiplication by the
vector, s, which contains the elements along the
diagonal of MHM. In particular, point-wise multi-
plication by s corresponds to applying the sampling
function of the observation. Thus FHMHMF is
simply applying the Fourier transform, the sampling
function, and then the inverse Fourier transform.
But this is identical to convolving by the PSF, P.

Thus Eq. (8) simpli¯es to

AH
i PAixiþ1 ¼ AH

i F
HMHy: ð9Þ

Since FHMH remains ¯xed between iterations,
it can be precomputed and stored. Also, since P is a
2D-convolution, only the kernel needs to be stored
instead of the full matrix.

Furthermore, since Ai only has a single non-
zero value for any column, AH

i PAi consists simply
of scaled values from P and can be constructed
directly (rather than by matrix multiplication).

Between two iterations, exactly one row and
one column is added to AH

i PAi. If we solve the
system of equations using a matrix inverse, we can
thus store the inverse and simply update it on each
iteration (the details doing so are shown in Sec. 6.1).

5.4. Stopping case

There are several possible stopping cases, depending
on what the astronomer requires. The best stopping

case, of course, is when the residue is blank and the
problem has been perfectly solved. This cannot
occur in practice, since there is always inherent
noise in the measurements. As such, it is sometimes
better to only run for a speci¯c number of iterations,
which can be manually tweaked if a ¯rst pass pro-
duces a bad image. Other options are to stop when
further iterations no longer produce much change to
the error, or when the error is su±ciently small.

5.5. Complexity

For iteration i we have:

(1) The projection step requires a convolution op-
eration, which can be performed using zero-
padded FFTs [Oðn lognÞ], followed by a di®er-
ence calculation [OðnÞ], followed by ¯nding the
maximum [OðnÞ]. Thus, this step is Oðn lognÞ.

(2) The weighting step requires selecting the values
to be added to the matrix [OðiÞ], followed by
updating the matrix inverse [O(i2)], and then
matrix-vector multiplication [Oði2Þ]. Thus, this
step is Oði2Þ.

(3) Determining if the stopping case is reached
might require computation of the ‘2 norm
[OðnÞ].

Thus, when executing for k iterations, the entire
deconvolution has a complexity of

O
Xk

i¼1

½n lognþ i2�
 !

¼ O kn lognþ kðkþ 1Þð2kþ 1Þ
6

� �
¼ Oðkn lognþ k3Þ:

For the most part, the complexity is dominated
by the kn logn part determined by a linear number
of Fourier transforms. However, in the case of a
large number of iterations (typically many thou-
sands for standard image sizes), the k3 part may
start to dominate, making each successive iteration
signi¯cantly more costly than the previous one.

6. Implementation

In this section, we discuss the particulars of the
implementation. We review the least-squares im-
plementation used in computing the optimal
weights for the selected pixels. We also discuss the
methods and libraries used in the implementation,
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with a focus on how the parallelization was per-
formed for both CPU and GPU architectures. We
also look at the expected memory utilization for
various image sizes and iteration counts.

6.1. Least-squares implementation

In order to obtain the best weights for the selected
columns, we need to solve Eq. (9). Normally, we
would use a matrix inversion or a Cholesky de-
composition in order to solve this, which is a Oði3Þ
computation. This kind of calculation becomes
prohibitively expensive for large matrices.

Fortunately, the matrix we need to invert,
Ri ¼ Ai

HPAi, is similar to the matrix already
inverted in the previous iteration, Ri�1. In partic-
ular, since Ri is constructed as Ri ¼ HH

i Hi (for
Hi ¼ MFAi) in which Hi has had a single column,
fi, added to it, we are able to update the inverse
obtained in the previous step by using the method
described by Fang et al. (2011)

Ri
−1 =

F −dRi−1
−1Hi−1

Hci

−dci
HHi−1Ri−1

−1H
d

,

where

d ¼ 1

jjci jj2 2 � ciHHi�1Ri�1
�1Hi�1

Hci
;

F ¼ Ri�1
H þ dRi�1

�1Hi�1
Hcici

HHi�1Ri�1
�1H

:

There are a number of repeated calculations in
this formulation. To consolidate terms, we let

u1 ¼ Hi�1
Hci:

We do not need to explicitly store Hi�1 or ci, as
we can obtain this product directly. Since ci is a
column of MF, u1 is the corresponding row in

Hi�1
HMF ¼ ðMFAiÞHMF

¼ Ai
HFHMHMF

¼ Ai
HP

and the values can thus be obtained directly from
the PSF. We then let

u2 ¼ Ri�1
�1Hi�1

Hci ¼ Ri�1
�1u1:

We also note that, when the PSF is considered
as the Fourier transform of the Sampling Function,
jjci jj2 2 is simply the zero-frequency component
(center) of the PSF.

By substituting u1 and u2 into the initial for-
mulation, we then get

Ri
−1 =

F −du2

−du2
H d

,

where

d ¼ 1

jjci jj2 2 � u1Hu2

;

F ¼ Ri�1
H þ du2u2

H:

6.2. Implementing OMP on the CPU

Since the FFT dominates the computational com-
plexity, this should be the most rigorously opti-
mized step. Fortunately, a lot of e®ort has already
been expended on optimizing FFTs, and we can
thus use the popular FFTW library (Frigo &
Johnson, 1998). In particular, this library makes
good use of multi-core architectures, as well as the
AVX instructions found in most modern desktop
CPUs, providing similar performance to vendor-
tuned code such as Intel's MKL FFT library (Wang
et al., 2014).

Furthermore, since the FFTs are being used to
compute a convolution, we need to zero-pad the
image to twice its initial height and width in order
to compute the discrete convolution (since the
convolution theorem applies to the circular convo-
lution). Additionally, because we need to know the
contribution that a source on one corner of the
image will have in the opposite corner of the dirty
image, the convolution kernel will have to extend
out to twice the dimension of the dirty image; that
is, the PSF will have to extend over twice the hor-
izontal and vertical range of the dirty image. This
can then be circularly convolved with the zero-
padded image in order to obtain the correct discrete
convolution. An example of this is shown in Listing 1.
This results in the FFT operating on an image four
times the size of the dirty image; this has a signi¯cant
memory and performance cost. As such, in some cases
(when the PSF is su±ciently small and the error is
accepted), this might be ignored.

Although the FFT determines the computa-
tional complexity, FFTs can be computed very
quickly for reasonably sized images (around 50
million °oating point operations for a 1MP image).
This means that the various linear steps (¯nding the
maximum element, computing the ‘2 norm) become

Accelerated Deconvolution of Radio Interferometric Images using OMP and Graphics Hardware
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signi¯cant. To compensate, we compute these steps
in parallel using the OpenMP framework (Dagum &
Menon, 1998).

OpenMP allows us to easily parallelize the lin-
ear for loops, so long as each loop iteration is inde-
pendent from every other iteration. An example of
this is shown in Listing 2. In addition, implementing
supported reductions is also easily accomplished, an
example of which is shown in Listing 3. Performing
a more general reduction is somewhat more in-
volved. Listing 4 shows the code used to ¯nd the
index of the maximum element in an array. For this
reduction, each OpenMP thread must accumulate
into a separate variable (each of which should be in
a separate cache line in order to avoid false sharing
(Torrellas et al., 1994)) which are then combined.

A clean window can be chosen, which prevents
the selection of an element outside this area in the
projection step of OMP. This can be used if the

sources are known to lie within a particular area, or
to prevent selection in the border areas of the image
in the case of gridding artifacts.

Since the image resolution is typically higher
than the resolving power of the interferometer, the
model image is often convolved with a Gaussian
beam, called the restoring beam, to ¯lter out the
higher frequency components. Since CS algorithms
can bring super-resolution (the algorithm is able to
resolve sources within the angular resolution of the
interferometer), whether or not to perform this
convolution is currently being debated and, as such,
this choice is often more an aesthetic choice rather
than a physical choice.

When computing this convolution using the
convolution theorem, the Fourier transform of the
Gaussian kernel (that is, the restoring beam shape)
can be computed in uv coordinates directly (instead
of computing the Gaussian kernel in image space,

// Copy image to a buffer of twice the height and width.
memset ( img padded , 0 , he ight ∗width ∗4∗sizeof (∗ img pad ) ) ;
for ( int j =0; j<he ight ; ++j )

for ( int k=0; k<width ; ++k)
img padded [ j ∗width∗2 + k ] = img [ j ∗width + k ] ;

// Transform to UV co-ordinates via FFT
f f t p . f f t 2 ( img padded , uv padded ) ;

// Point -multiply by a precomputed FFT of the PSF.
// This precomputed mask is correctly shifted and include a normalization factor.
for ( int j =0; j<he ight ∗2∗( width +1); ++j )

uv padded [ j ] ∗= mask padded [ j ] ;

// Transform back to image co-ordinates via FFT
f f t p . i f f t 2 ( uv padded , img padded ) ;

// Copy image back into original buffer
for ( int j =0; j<he ight ; ++j )

for ( int k=0; k<width ; ++k)
img [ j ∗width + k ] = img padded [ j ∗width∗2 + k ] ;

Listing 1. Convolution performed using FFT to eliminate the cyclical nature of the FFT. A custom FFTW wrapper is used to
compute the FFTs.

#pragma omp p a r a l l e l f o r
for ( int i =0; i<width∗ he ight ; ++i )

r e s u l t [ i ] = lh s [ i ] − rhs [ i ] ;

Listing 2. OpenMP code to parellelize a for loop in which each loop iteration is independant from every other iteration (used here to
compute a di®erence image).

#pragma omp p a r a l l e l f o r r educt i on (+:sum)
for ( int i =0; i<width∗ he ight ; ++i )

sum = sum + pow( std : : abs ( img [ i ] ) , 2 ) ;

Listing 3. OpenMP code for reduction into a sum (used here to calculate the ‘2 norm).

J. V. Belle, R. Armstrong & J. Gain
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and then computing the FFT of that kernel), since
the Fourier transform of a Gaussian is another
Gaussian with an inverted standard deviation. This
prevents an unnecessary Fourier transform, and
doesn't require any extra memory.

The ¯nal implementation requires 19 times the
memory required to store the image. This excludes
the memory required for initial storage of the image
and PSF (an additional ¯ve times the storage of the
image), the calculation of the inverse matrix
(2k2 þ 2k °oating point numbers), and a small
constant factor. This means that an image requires
96MB of memory per megapixel for a 32-bit °oating
point system. While this is more than su±cient for
most current interferometers, which produce images
smaller than 16 megapixels, future interferometers
are expected to produce far larger images. The
Square Kilometer Array (expected to be completed
by 2024), for instance, is expected to produce up to
10-gigapixel images. Table 1 shows expected mem-
ory costs for various image sizes and iteration

counts. Table 2 shows the breakdown of the mem-
ory cost.

6.3. Implementing OMP on the GPU

The GPU implementation was designed by using
the CPU implementation as a template. In partic-
ular, the uni¯ed memory model introduced in
CUDA 6 (Harris, 2013) supports incremental de-
velopment by allowing each function to be rewritten
for the GPU while still compiling into a functioning
program.

CUFFT (Nvidia, 2010) was chosen to compute
the FFTs, both for its performance and for its
similarity to FFTW. In particular, it has a similar
API to FFTW, thereby allowing for easier

// Create separate reduction variable (accumulator) for each thread.
// These variables are separated in memory by the cache line size
// to prevent false sharing.
int ∗ i x = new int [ num threads ∗ CACHE LINE SIZE ] ;
for ( int j =0; j<num threads ; ++j )

ix [ j ∗ CACHE LINE SIZE ] = w star ty ∗width + w star tx ;

// Allow each thread to reduce into a separate accumulator.
#pragma omp p a r a l l e l f o r
for ( int j=w star ty ; j<w endy ; ++j )

for ( int k=w star tx ; k<w endx ; ++k)
if ( img [ j ∗width + k ] > img [ i x [ omp get thread num ( ) ∗ CACHE LINE SIZE ] ] )

i x [ omp get thread num ( ) ∗ CACHE LINE SIZE ] = j ∗width + k ;

// Reduce the accumulators to find the index of the maximum element.
int i x r educ e = ix [ 0 ] ;
for ( int j =0; j<threads ; ++j )

if ( img [ i x [ j ∗ CACHE LINE SIZE ] ] > img [ i x r educ e ] )
i x r educ e = ix [ j ∗ CACHE LINE SIZE ] ;

delete [ ] i x ;
return i x r educ e ;

Listing 4. OpenMP code for a general reduction (used here to ¯nd the index of the maximim element). This is somewhat simpler in
later gcc compiler versions, which allow custom OpenMP reductions to be speci¯ed.

Table 1. Expected memory cost for CPU implementation for
various image sizes and algorithm iteration counts.

Image size 1 iteration 1000 iterations 10,000 iterations

1MP 96MB 104MB 896MB
10MP 960MB 968MB 1.8GB
100MP 9.6GB 9.6GB 10GB
1GP 98GB 98GB 99GB
10GP 983GB 983GB 984GB

Table 2. Memory cost breakdown for an image of
size n and deconvolving for k iterations. Constant
factors are not included.

Bu®er use Size

Dirty image height � width
Deconvolved image height � width
Residue height � width
PSF 4 � height � width
Padded image 4 � height � width
FFT of image 4 � height � width
FFT of PSF 4 � height � width
Inverse matrix k2

Matrix update k2

Solution vectors 2k

Accelerated Deconvolution of Radio Interferometric Images using OMP and Graphics Hardware
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implementation from the CPU code; it also uses the
same input and output format, preventing addi-
tional complexities in the code.

The Thrust (Hoberock & Bell, 2009) library was
chosen to compute most of the simple computa-
tions. This library (which is based on Cþþ's Stan-
dard Template Library) should allow for an
optimized implementation for any CUDA device. In
particular, Thrust's reduce function is used to select
the column in the projection step. Since this selec-
tion is restricted to a speci¯ed window, a custom
iterator was implemented which passes over regions
outside this window. Thrust was also used to per-
form simpler operations such as padding the image
for the convolution, performing the point-wise
multiplication for the convolution, scaling arrays,
setting values of array elements, and for permuting
arrays.

Similarly, the matrix-vector multiplication has
been implemented using CUDA's CUBLAS
(Nvidia, 2008) library. One problem with CUBLAS
is that it requires a column-major order, while
CUFFT requires a row-major order. Fortunately, all
the matrices that CUBLAS operates on are sym-
metric, and thus the order can safely be ignored.

The calculation of the inverse matrix is a bit
more complicated:

(1) We need to obtain the u1 from Sec. 6.1. This is
done by simply reading o® the appropriate
values from the PSF.

(2) We can then use u1 to obtain u2 by multiplying
u1 by the inverse matrix obtained in the previ-
ous iteration, which is achieved using CUBLAS.

(3) Using Thrust, we can then take the inner
product of u1 and u2 in order to calculate d.

(4) The previous iteration's inverse matrix must
then receive a rank-1 update. Since the result of
this update will be the new value in the current
iteration, the result is stored directly in a new
array allocated for the current iteration's in-
verse matrix, instead of occurring in-place.

(5) We can then ¯ll in the missing row and column
of the new inverse matrix using d and u2, com-
pleting the calculation of the inverse matrix.
Since the previous iteration's inverse matrix is
no longer needed, that memory can be cleared.

(6) The ¯nal step is then to multiply the right-hand
side values obtained from the dirty image by
the new inverse matrix. This is achieved using
CUBLAS.

For all of these kernels, the block size was deter-
mined by CUDA in order to maximize the occu-
pancy. This allows the same code to work on
multiple architectures without having to optimize
for each one, including future, unknown archi-
tectures.

Since the ¯nal GPU implementation requires
the same memory bu®ers as the CPU implementa-
tion, it requires 19 times the GPU memory required
to store the image. In addition, it also requires a
small logarithmic factor to perform reductions. This
excludes the host (CPU) memory required for the
initial storage and ¯nal result (7 times the storage of
the image), the GPU memory required to store the
inverse matrix (2k2 þ 3k °oating point numbers),
and a constant factor. This means that an image
requires about 76 MB of GPU memory per mega-
pixel for a 32-bit °oating point system. Table 3
shows expected GPU memory costs for various
image sizes and iteration counts.

Additionally, the execution of the GPU kernels
is in a separate stream for each image, allowing for
multiple images to be deconvolved simultaneously.
This can increase the usage of the GPU for small
workloads.

7. Results

In this section, we discuss the results obtained by
our implementation of OMP. We look at its ability
to deconvolve radio interferometric images by
deconvolving an image produced using a simulated
interferometer and a known sky model. This
deconvolved image is compared to the results of the
CLEAN algorithm. We also examine the perfor-
mance characteristics of both our CPU and GPU
implementations.

Table 3. Expected GPU global memory
cost for GPU implementation for various
image sizes and iteration counts.

Iterations

Image Size 1 1000 10,000

1MP 80MB 88MB 880MB
10MP 764MB 772MB 1.6GB
100MP 7.6GB 7.6GB 8.4GB
1GP 78GB 78GB 79GB
10GP 778GB 778GB 779GB

J. V. Belle, R. Armstrong & J. Gain
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7.1. Synthetic testing

One of the major problems in testing imaging sys-
tems for radio astronomy is that there is no
completely known astronomical image with which
to verify the system. As such, we create a synthetic
sky model, with randomly positioned point sources,
which is then run through a simulation of the KAT-
7 interferometer (Jonas, 2009). By knowing the
exact sky model, we can easily create a perfect
image against which to test. A diagrammatic over-
view of the comparison process is shown in Fig. 3.

In order to compare the resulting image to a sky
model, we need to extract the candidate sources
from the deconvolved image. To do this, we run the
images through the Python Blob Detection and
Source Measurement (PyBDSM) (Mohan & Ra®-
erty, 2015) source detection software. This results in
a list of candidate sources, which we still need to
compare with our sky sources. This provides a re-
sidual RMS, �, that is, the RMS of the remaining
image after the sources have been extracted.

While it is sometimes possible to detect struc-
tures smaller than the restoring beam (which are
called super-resolution methods), such methods
often require the observed image to ¯t particular
constraints. We de¯ne that two sources are nearby
to each other if their restoring beams overlap.
In particular, we require that the Full-Width at

Half-Maximum (FWHM) of the restoring beams
overlap. We can then create a series of rules by
which sources are matched:

. First, we consider sources (in the sky model) that
are unresolvable due to a nearby, brighter source
(also in sky model). These sources are °agged and
will not be considered as matched or missing.

. We consider a source (from the sky model) as
successfully matched if there is an extracted
source (from the deconvolved image) nearby
whose intensity (in Jy/beam) di®ers by no more
than 3� (which was chosen experimentally, and
found to give good results for both CLEAN and
OMP). These sources are then °agged as mat-
ched. Any un°agged sources (from the sky model)
are then considered to be missing (a type II error).

. We also consider an extracted source (from the
deconvolved image) as spurious (a type I error) if
there is no nearby source whose intensity (in Jy/
beam) di®ers by no more than 3�.

. Since OMP and CLEAN have a di®erent �, we
also consider the case where the OMP sources are
matched to within a di®erence of CLEAN's 3�.

In order to ensure that the results are statistically
viable, we repeat this process on 100 di®erent sky
models.

There are around 30 sources of varying inten-
sity (0–1 Jy) in each model, some of which are
outside the 0:5	 observation window, resulting in
2660 total sources inside the observation window.

These sky models were run through a simulated
interferometer to produce a 1MP dirty image (in-
cluding some observation and instrumentation
noise). The resulting PSF has a FWHM of around 1 0.

7.2. Comparison to CLEAN

In order to appropriately test OMP's performance
for deconvolution, we will deconvolve synthetic
images using both OMP and CASA's H€ogbom
CLEAN, and compare the results.

Additionally, we are interested in the statistical
properties of the residual image after deconvolution
and source extraction.

Visual inspection of a single image is performed
to ensure that the algorithms are operating rea-
sonably, and to get an initial idea of what results to
expect. Figure 4 shows the resulting images. It is
clear that many of the fainter sources from the sky
model, (a), are more easily identi¯able in the OMP
image, (b), than in the CLEAN image, (d). In

Sky Model Simulated
Interferometer

Deconvolution
Implementation

CLEAN

OMP

Source Finder
(PyBDSM)

Comparison

Matched
Sources

Missing Sources Spurious
Sources

Fig. 3. A simpli¯ed diagrammatic overview of the synthetic
testing. The sky model is parsed into a simulated interferome-
ter, which produces the dirty image and PSF for that inter-
ferometer. Deconvolution is then performed using both CLEAN
and OMP, with each producing a deconvolved image. Each of
these images is then run through a source ¯nder, and the results
are compared with the initial sky model. This comparison will
tell us how each deconvolution implementation performed.
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addition we can see that far less structure remains
after deconvolution by OMP, (c), than after
CLEAN, (e).

The residual is signi¯cantly higher around the
edges in images (b) and (c). This is likely due to
gridding artifacts resulting in the dirty image not
being a perfect convolution of the true sky. These
can either be ignored (which may result in some low
intensity spurious sources), or they can be removed
by initially creating a larger image, which is then
cropped after deconvolution. They can also be re-
moved by re-gridding the deconvolved image, as is
done in CLEAN, at a signi¯cant performance cost.

It should be noted that, for this image, the ‘2
norm (which is often used for image comparisons)
produced similar results for CLEAN and OMP, with
CLEAN slightly outperforming OMP. From looking
at the images, however, the results of OMP appear

to match the sky model far better than those of
CLEAN, with less structure remaining in the re-
sidual. As such, we should consider that the ‘2 norm
might not be a good way to compare interferometric
images of point sources.

A more quantitative approach is as follows: 100
synthetic sky models are used to generate dirty
images which are then deconvolved using both
CLEAN and OMP.

After performing source extraction on both the
CLEAN and OMP images and using the comparison
described in Sec. 7.1, we get the results shown in
Table 4.

OMP signi¯cantly outperformed CLEAN,
matching 70% (with a standard deviation across all
images of 
10%) of the 2660 sources contained in all
100 sky models, while CLEAN only matched 45%
(
10%) with almost twice an many missing sources.

(a) (b) (c)

(d) (e)

Fig. 4. Deconvolution of one synthesized sky model: (a) the sky model convolved with the restoring beam. This is what an ideal
interferometer and deconvolution algorithm would produce, (b) the deconvolved image using OMP, (c) the residual after decon-
volution using OMP, (d) the deconvolved image using CLEAN and (e) the residual after deconvolution using CLEAN. Images (a),
(b), and (d) are scaled to exclude the peak percentile from image (b), while images (c) and (e) are scaled to the full range of image (e).
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In addition, the residual RMS noise after sources
extraction was 2.7 (
0:8) times lower for OMP than
for CLEAN.

However, OMP produced almost ¯ve times the
number of spurious sources. A disproportionate
number of these spurious sources lie in the border
regions where OMP has an increased residual. By
cropping out 2% of the image from each side, we
reduce this number somewhat (down to 224 spuri-
ous sources from 261). This also eliminates three of
the spurious sources produced by CLEAN.

7.2.1. Thresholding OMP and CLEAN equally

Since OMP results in a signi¯cantly lower residual,
it also has a lower threshold for source extraction.
As such, the feature might result in an extracted
source on the OMP image, but not on the CLEAN
image. Thus, an important question is whether
these extra matched sources, as well as the spurious
sources, are purely a result of the lower residual.

As such, a second test was performed by ¯rst
¯ltering out any sources below 5� CLEAN's resid-
ual. This is around the level chosen for PyBDSM to
consider a feature as valid on the CLEAN images.
These results are shown in Table 5.

In this case, OMP still outperformed CLEAN
by around the same margin, matching 76% (
11%)
of the 1890 sources compared to CLEAN's 56%
(
10%). In addition, this still outperforms the
unthresholded CLEAN algorithm, matching 54% of
the initial 2660 sources.

In addition, this also eliminates most of the
spurious sources outside the border regions.

7.2.2. Extracted source accuracy

For this testing, we consider a source to have been
matched if its intensity is within a hard threshold,
and if the identi¯ed position is within a speci¯ed
distance from the true source. For some applica-
tions, it might be important to know how closely the
sources resulting from a deconvolution method
would match the actual sources.

As such, after matching the sources to the sky
model, we performed a test to determine how closely
the deconvolved source matches the source in the
sky model in both intensity (measured in Jy/beam
and in �s) and in distance (measured in restoring
beam widths). Given the de¯nitions of the residual
RMS and resolving power, we expected the imple-
mentations to vary in intensity by about 1� and in
distance by about one beam width.

OMP produced excellent results, with an in-
tensity di®erence of 0:0083 (with a standard devia-
tion across all matched sources of 
0:0078) Jy/
beam, or 0:75� (
0:61�) and a distance of 0:057�
(
0:103�) beam widths.

CLEAN, on the other hand, performed poorly
when measuring the intensity, with a di®erence of
about 0:040
 0:024 Jy/beam, or 1:57�
 1:06�,
while performing excellently when measuring the
distance, 0:068
 0:075 beam widths.

7.2.3. Two-to-one source matching

OMP (and, to a lesser extent, CLEAN) will, where
possible, optimize sparsity. This will often result in
two unresolvable sources in the sky model being
represented by a single source in the deconvolved
model. In this case, the resulting deconvolved source
will have an intensity close to the sum of the two
sources, resulting in it being °agged as a false pos-
itive, and the two sources in the sky model °agged
as unmatched sources.

As such, we modi¯ed the source-matching al-
gorithm to consider two sources a match if their

Table 4. Comparison of CLEAN and OMP. Source counts are
summed over all 100 sky models. OMP Relaxed refers to
matching sources if they di®er by no more than CLEAN's 3�
instead of OMP's.

CLEAN OMP OMP relaxed

Masked sources 378 378 378
Matched sources 1185 1837 1979
Missing sources 1475 823 681
Spurious sources 56 261 169
Spurious sources outside

borders
53 224 133

Residual RMS 0.0274 0.0101 0.0101

Table 5. Thresholding at CLEAN's 5�: comparison of CLEAN
and OMP. Source counts are summed over all 100 sky models.
OMP Relaxed refers to matching sources if they di®er by no
more than CLEAN's 3� instead of OMP's.

CLEAN OMP OMP relaxed

Matched sources 1165 1430 1559
Missing sources 725 460 331
Spurious sources 51 218 126
Spurious sources outside

borders
50 215 124
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intensities are within a factor of two. This will allow
for the possibility that up to two unresolvable
sources are deconvolved into a single source, or that
a single source is deconvolved into two unresolvable
sources. The results are summarized in Table 6.

In this case, OMP now outperforms CLEAN by
a larger margin, matching 82% (
 9%) of the 2660
sources compared to CLEAN's 61% (
11%). In
particular, both algorithms now produce far fewer
spurious sources, with CLEAN producing only 10
(7 of which lie outside the border region), and
OMP producing 50, only 14 of which lie outside the
border region.

If we again ¯lter out sources below 5�
CLEAN's threshold, OMP matches 92% (
8%) of
the 1890 sources compared with CLEAN's 84%
(
9%). OMP now only produces slightly more
spurious sources than CLEAN, producing 7 spuri-
ous sources (5 of which lie outside the border re-
gion), compared with CLEAN's 5 spurious sources
(4 of which lie outside the border region). These
results are summarized in Table 7.

If we also loosen the beam width constraints
(such that we consider two sources a match if they
are within 1.5 beam widths, instead of 1 beam
width), OMP will produce fewer spurious sources
than CLEAN. This implies that, for the most part,
there is at least a feature near the spurious sources
produced by OMP.

7.3. Runtime performance

Due to the increasing resolution of interferometers
and, in particular, the SKA's large leap in required
image size, it is important to accelerate all parts of
the interferometry pipeline. Furthermore, near real-
time image synthesis allows for more experimenta-
tion on the part of the astronomer. Thus, speedup
measures form an important part of evaluating a
system.

One important consideration is the °oating
point precision of the program. In particular, Kepler
GPUs support two levels of precision, a 32-bit single
precision °oating point type (°oat), and a 64-bit
double precision °oating point type (double). Since
the e®ect of precision was not known beforehand,
both options were implemented. However, on the
test dataset, the di®erence between the resulting
image under the two precision types was negligible.
As such, single precision was chosen as it executes
signi¯cantly faster.

Figure 5 shows the base runtime for a single-
threaded execution of the implementation for 100
iterations on various image sizes. We can see that
the 0.25MP and 1MP image take considerably less
than a minute to complete execution, with the 4MP
image only requiring slightly more than a minute.
The 16MP and 64MP images take much longer,
with the 64MP image requiring about 38min to
complete.

In order to improve on this performance, we can
make use of multi-core CPUs. As we can see from
Fig. 6, a 4-core CPU achieves around a 3:5 times

Table 6. Allowing for two-to-one source matching:
comparison of CLEAN and OMP. Source counts are
summed over all 100 sky models.

CLEAN OMP

Matched sources 1594 2139
Missing sources 1066 521
Spurious sources 10 50
Spurious sources outside borders 7 14

Table 7. Allowing for two-to-one source matching
and as thresholding at CLEAN's 5�: comparison of
CLEAN and OMP. Source counts are summed over
all 100 sky models.

CLEAN OMP

Matched sources 1571 1717
Missing sources 319 173
Spurious sources 5 7
Spurious sources outside borders 4 5

0.25MP 1MP 4MP 16MP 64MP

1

10

100

1,000

Image Size

R
un

ti
m

e
[s

]

1T Runtime 2T Runtime 3T Runtime 4T Runtime GPU Runtime

Fig. 5. Runtime for 100 iterations on various image sizes using
an Intel i7-4770 and a NVIDIA GTX 770. Note that the axes
are logarithmic.
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speedup for a su±ciently large image. There is no
GPU datapoint for 64MP due to the limited GPU
memory of the test system (2GB).

The speedup for smaller images (smaller than
4MP) is only relevant if a large number of images
need to be processed at once, as their execution time
is already su±ciently quick. However, in the case of
a large number of simultaneous images, the images
can be deconvolved in parallel, allowing for even
greater parallelism.

Furthermore, as is shown in Fig. 7, with a
NVIDIA GTX770, we can obtain up to an 83 times
speedup for a 16MP image over the single-threaded
CPU implementation. This means that a 16MP

image on a GPU only requires around 5 s to
deconvolve, compared with the CPU's 400 s.

Figure 8 shows the time spent calculating the
inverse matrix. Initially, the inverse matrix is small
enough that the update requires almost no work. As
such the GPU implementation initially su®ers due
to the relatively large kernel execution overhead.
However, as the workload increases, this overhead
becomes less signi¯cant, and the GPU implemen-
tation exhibits slower growth than the CPU
implementation.

Since the time taken to compute the inverse
matrix is independent of the image size, its contri-
bution to the total runtime becomes insigni¯cant for
larger images. When deconvolving a 16MP image,
this contribution is less than 1% after 1000 iterations.

8. Conclusion

Observing the radio sky with a radio interferometer
results in an image of the sky that is convolved with
the PSF. Deconvolution algorithms attempt to re-
cover the true sky from this convolved image. Radio
astronomers typically use a variant of the CLEAN
algorithm for this purpose.

Based on the assumption of a sparse sky model,
we instead consider Compressed Sensing techniques
for deconvolution. In particular, we adapt the OMP
algorithm for deconvolution.

Since a radio interferometer measures points on
the 2D Fourier plane, we can adapt OMP to use

0.25MP 1MP 4MP 16MP 64MP
0
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3

4

Image Size [MP]
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ee

du
p

2 Threads 3 Threads 4 Threads

Fig. 6. Speedup obtained on a 4-core CPU (Intel Core i7-
4770) for 2, 3 and 4 threads.
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Fig. 7. Speedup obtained on a GTX 770, compared with the
single-threaded and 4-threaded CPU implementation running
on an Intel Core i7-4770.
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Fig. 8. Time taken to re-weight the selected pixels (matrix
inverse update), as a proportion of the total runtime for that
implementation.
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FFTs instead of DFT matrices. This allows us to
reduce the complexity of OMP, which allows for a
feasible runtime for standard image sizes.

In order to evaluate the e®ectiveness of OMP
for deconvolution, we generate synthetic sky models
and run them through a simulated interferometer.
We can then deconvolve the resulting images with
both OMP and CLEAN, and compare the results to
the initial sky model.

In terms of image quality, we ¯nd that OMP
extracts signi¯cantly more sources than CLEAN,
extracting up to 82% of the sources over the 100 sky
models, compared with CLEAN's 61%. In addition,
the residual after source extraction is 2.7 times
lower for OMP than for CLEAN.

For OMP, the residual is elevated around the
edges of the image, resulting in occasional spurious
sources in this region. As such, a wider image should
be used, which can be cropped after deconvolution.
Due to the lower residuals, there are also some low-
intensity spurious sources which would be lost in the
noise of the CLEAN image.

Since future radio interferometers, the Square
Kilometer Array in particular, expect to have sig-
ni¯cantly larger images to deconvolve. Deconvolu-
tion of these larger images thus requires faster
deconvolution implementations.

As such, we adapt our OMP implementation to
make use of parallel architectures. In particular, we
create a multi-core CPU implementation using
OpenMP, and aGPU implementation using nVidia's
CUDA.

Our GPU implementation achieves an 83�
speedup over the single-threaded implementation,
and a 23� speedup over the 4-threaded CPU imple-
mentation (that is, our parallel CPU implementation
achieves a near-linear speedup at 4 CPU cores).

9. Future Work

OMP, like CLEAN, is designed to deconvolve point
sources. However, CLEAN can still prove surpris-
ingly e®ective at resolving extended structures.
It would be bene¯cial to evaluate how OMP per-
forms when tasked with deconvolving an extended
emission.

Additionally, there are several variants of
CLEAN that increase its e®ectiveness when decon-
volving extended structures transforming the image
into a sparser basis, such as multi-scale CLEAN or

wavelet CLEAN. In this, a transform of the PSF is
subtracted from the transform of the dirty image to
produce a transform of the deconvolved image.

A similar approach could prove bene¯cial to
OMP for deconvolving extended structures, how-
ever the algorithmic optimizations will need to be
reworked using the new sensing matrix. In particu-
lar, some of the optimizations might become im-
possible under some transforms (particularly those
which cannot be expressed as a matrix transform),
which would result in infeasible execution times.

OMP perfectly optimizes the intensity of all
selected sources in each iteration. However, bad
positioning of a source might never be corrected
throughout the algorithm execution. It might fur-
ther reduce the residual if an OMP algorithm was
developed which also optimized the source position.
This might be achieved by also adding several pixels
near each source when performing the least-squares
optimization. The pixel with the maximum result-
ing intensity should be the best candidate for a
source.

Additionally, if the maximal intensities diverge
in two or more directions from the initial source,
this could indicate that multiple sources are within
the resolving ability of the interferometer, and could
be a method to achieve super-resolution. Alterna-
tively, this could be set o® by noise, resulting in
many more spurious sources and reducing the image
sparsity.

The constant improvement of technology,
particularly graphics hardware, makes writing
future-proof high-performing software a challenge.
In order to combat this, our OMP implementation
abstracts the speci¯c hardware by using libraries
likely to be frequently updated to make use of the
latest hardware optimizations. Thus, so long as the
library interfaces remain consistent, this imple-
mentation should retain good performance on future
hardware. As such, this implementation should be
tested on newer hardware and larger data sets in the
future.
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