
HONOURS PROJECT REPORT

Environmentally Aware Game
Bots

WESLEY KING

wking@cs.uct.ac.za
Computer Science Department

University of Cape Town

SUPERVISED BY:

PATRICK MARAIS

patrick@uct.ac.za
Computer Science Department

University of Cape Town

SIMON PERKINS

sperkins@cs.uct.ac.za
Computer Science Department

University of Cape Town

November 6, 2009

1

mailto:wking@cs.uct.ac.za
mailto:patrick@uct.ac.za
mailto:sperkins@cs.uct.ac.za

Contents

1 Introduction 1
1.1 Key Success factors . 2
1.2 Ethical Issues . 2

2 Background 3
2.1 Spatial Awareness Framework 3
2.2 Environment Representation 3
2.3 Level of Detail Rendering . 4
2.4 Shadow Techniques . 5
2.5 Simulation control . 6
2.6 User Interaction . 7
2.7 Data Visualisation . 7

3 Design 9
3.1 System Overview . 9

3.1.1 Base AI and Competition Simulation 9
3.1.2 High Level AI And Environment Querying 9
3.1.3 Rendering and Data Visualisation 9

3.2 Rendering and Data Visualisation Overview 10
3.3 Interaction With Other Project Components 10
3.4 Terrain Representation . 11
3.5 GUI Components . 12
3.6 Graphics Rendering and GUI Components 13
3.7 Shadows . 14
3.8 Level of Detail . 15
3.9 Miscellaneous Optimisations 15
3.10User Interaction . 16
3.11Data Visualisation . 17

4 Implementation 18
4.1 Developement . 18
4.2 Heightmap Rendering, Texturing, DIA Conversion and Ba-

sic User Interaction . 19
4.3 Shadow Mapping . 24

2

4.4 Simulation Control and GUI Components 27
4.5 Vertex Arrays and Chunking 29
4.6 Integrating Prototype Code Into Single Application With All

Features . 30
4.7 Integrating Code From This Part of The Project With The

Other Parts . 31
4.8 Visualisation, User Interaction and Additional Features . . 31

5 Testing and Evaluation 38
5.1 Introduction . 38
5.2 Required User Testing . 38

5.2.1 Rendering Efficiency Testing 38
5.2.2 Data Visualisation Testing 39

5.3 Expected outcomes . 40
5.4 Results And Analysis . 40

6 Conclusion 44

A User Test Presentation 47

B User Test Questionnaire 56

C User Test Results 58

3

List of Figures

2.1 2.5D Example: Mt. Saint Helens Rendered In Wireframe
https://visualization.hpc.mil/wiki/2.5D_Visualization 3

2.2 Hierarchical Triangulation 4
2.3 Chunking renders the terrain at different levels of detail,

depending how close a Chunk is to the camera 5
2.4 3D Graphics libraries do not provide shadow generation

and require the developer to implement their own shad-
owing system . 5

2.5 Demonstration of Shadow Mapping technique 6

3.1 Interface between Engine and Simulator 10
3.2 Example of a heightmap . 11
3.3 Advanced shadow implementation for a game 14
3.4 The camera can perform pitch and yaw rotations 16

4.1 Examples of possible mesh triangulations 19
4.2 A mesh triangulation that can make use of GL TRIANGLE STRIP

to reduce the number of vertices 19
4.3 2D example of normal averaging at vertices 20
4.4 3D render without and with normal averaging 21
4.5 Calculation of triangle primitive normals 21
4.6 Testing of different Gimp paintbrush configurations for

heightmap generation . 22
4.7 Converting a dia map to a heightmap 23
4.8 A heightmap and heightmap-texture 23
4.9 Textured heightmap . 24
4.10Example of multi-texturing: Dirt 24
4.11Example of multi-texturing: Rock 25
4.12Shadow Mapping without the second pass, which renders

the areas in shadow . 26
4.13A Shadow Map with its corresponding rendered terrain

with shadows . 26
4.14Comparison between scene rendered with and without shad-

ows . 27

4

https://visualization.hpc.mil/wiki/2.5D_Visualization

4.15Example of jumping over vertices to render at a lower level
of detail . 29

4.16Chunking in wireframe mode to show the change in detail
at different distances . 30

4.17Bot health and status icon. The icon pivots such that it is
always facing the camera . 32

4.18Status Icons for each state of the bots 32
4.19Before and after pictures of centering the camera on a

point without changing the orientation of the camera . . . 33
4.20Before and after pictures of centering the camera on a

point without moving the camera 34
4.21Controls for controlling the simulation 34
4.22Data and menu options which are displayed when a bot is

selected . 35
4.23Paths showing the routes which the bots plan to take to

get to the flag . 35
4.24Trail showing the the route taken by the bot as well as its

state at each point . 36
4.25The team menu. Only 2 of 4 bots are still alive and the

team currently has the flag 36
4.26Red areas are potentially dangerous as a bot has died

there. A Green area is possible advantageous since a bot
has been killed from that location 37

5.1 Graph showing the trade-off between Detail and Frames
per Second . 41

5.2 Paired t-test of the Scores achieved with data visualisa-
tions turned on and off . 42

5.3 Paired t-test of the Confidence experienced with data vi-
sualisations turned on and off 43

C.1 Data recorded during the user test 58

5

Abstract

This report details the design, implementation, and testing of a system
which provides efficient graphics rendering as well as rich data visual-
isations. The scene being rendered is a simulation of competing bots
within a virtual environment and requires users to be able to easily
identify features occurring within the simulation. Techniques to in-
crease realism and rendering performance are discussed and a level of
detail system, Chunking, is implemented. The methods used for dis-
playing the data to the user are tested via user testing and are found
to increase understanding of the simulation by 14%.

Chapter 1

Introduction

A Spatial Awareness Framework[14] system has (and still is) been de-
veloped by Simon Perkings. The framework allows for querying of en-
vironment specific information of a 2D virtual world. The utility of the
framework in the area of game bot design is to be tested. Bots compet-
ing within a virtual environment can make use of the framework and
use information about the surrounding environment to make more in-
formed decisions on what actions should be taken to beat their oppo-
nent. To test the utility of the framework an application wass to be
developed which allows a user to run a simulation with different rule
files and then make decisions based on the behaviour of the bots. The
project work has been split between three group members:

Gina Morris Developed the high level bot decision making, making use
of a rule file loaded from disk

Mike Talbot Developed the low level bot actions such as flocking and
pathing

Wesley King My section is responsible for the rendering of the simu-
lation and providing the user with data about the simulation in a
rich and interesting way

The bots within our simulation compete in a Capture The Flag type
game. The game consists of two teams of bots competing against each
other. Each team has a base and there is a flag somewhere on the map.
The game is won when a bot manages to pick up the flag and return it
to its base. The bots can shoot each other and if the flag carrier gets
killed, the flag gets dropped. Alternatively If a team manages to kill all
the bots on the opposing team, the game is also won. The rest of this
report is focused on the rendering and data visualisation component of
the overall project.

1

1.1 Key Success factors

The success factors for this section are designed to ensure that the
project can either be deemed a success or failure. Development of the
project is directed at fulfilling the following key success factors.

Key Success Factors:

1. Efficiently render the simulation - goal of at least 30 frames per
second on low-end hardware

2. Provide data visualisations that aid the user in understanding the
simulation for better decision making

1.2 Ethical Issues

The rendering component makes use of the open source library SDL
and does not infringe its license (GNU LGPL).

Code for mathematic operations on 4 × 4 matrices is taken from an
example in the OpenGL Super Bible [21] and is reference in the code.

For the user testing that was conducted, receipts of payment were
kept for reimbursement. The tests however remained completely anony-
mous as the a receipt cannot be tracked to a specific answer sheet.

2

Chapter 2

Background

2.1 Spatial Awareness Framework

The Spatial Awareness Framework[14], developed by Simon Perkins,
allows for the querying of environment information. The framework
can give information about width, curvature and connectivity within
a virtual environment. The Spatial Awareness Framework loads maps
stored in a DIA format. DIA is an xml file which holds vector graphics.
The environments which the framework uses are limited to 2D. The
framework uses the polygons of the map file to generate a skeleton
structure. The skeleton holds the environment information and can be
queried. The Spatial Awareness Framework could be used to provide
better rule systems for bots interacting within a virtual environment.

2.2 Environment Representation

Figure 2.1: 2.5D Example: Mt. Saint Helens Rendered In Wireframe
https://visualization.hpc.mil/wiki/2.5D_Visualization

3

https://visualization.hpc.mil/wiki/2.5D_Visualization

Virtual environments are represented in one of three ways: 2D, 2.5D
and 3D. In a 2D environment the world is represented as a grid. Each
cell of the grid holds information about the environment at that point.
2D environments cannot represent real world terrains as they are lim-
ited to only 2 Dimensions. A 2.5D environment also makes use of a
grid, but each cell has the addition of a height value. A 2.5D environ-
ment extends into all 3 dimensions but is limited to only having one
height value per cell of the grid (Figure 2.1). Although a 2.5D environ-
ment can represent many real life terrains, it cannot display features
such as caves. 3D environments allow for complete flexibility of what
types of terrains can be represented, however a 3D environment is diffi-
cult to define and work with. The grid type nature of 2.5D environments
makes them popular for use in games.

2.3 Level of Detail Rendering

Rendering large numbers of graphics primitives naively is computa-
tionally expensive. There is an overhead due to the large number of
API calls as well as a limitation on the bandwidth between the CPU and
GPU. Two faster solutions are proposed by Louis Bavoil [9]. The first
solution is a vertex array, which is an array of vertices which can be
sent to the API in one function call. The second solution is a display
list, which allows for precomputation on static graphics objects.

Figure 2.2: Hierarchical Triangulation

L. De Floriani and E. Puppo describe a level of detail method in
[9] which uses a Hierarchical Triangulation (shown in Figure 2.2) to
store triangle meshes. Level of detail systems allow for the detail of a
scene to be dynamic, resulting in less graphics primitives where they
are less needed. The hierarchy is designed such that greater detail
can be achieved by traversing deeper down the tree and using more

4

triangle primitives. The hierarchy is constructed to reduce the error
between the approximation and the original triangulation. This allows
for the detail of the terrain to be dynamic as more detail in a region
is required. Hierarchical Triangulation is complex and by using this
technique you can’t use display lists as the mesh is no longer static.

Figure 2.3: Chunking renders the terrain at different levels of detail,
depending how close a Chunk is to the camera

A simpler level of detail system is Chunking [15][12]. Chunking
divides the environment up into cells. Each cell holds its allocated
area at different levels of detail. To render the scene all the cells are
rendered, and the distance to each cell determines the level of detail
that the cell will be rendered at. Closer cells are rendered at greater
detail. This results in a greater number of triangle primitives closer to
the camera resulting in greater detail where it is needed (Figure 2.3).

2.4 Shadow Techniques

Figure 2.4: 3D Graphics libraries do not provide shadow generation
and require the developer to implement their own shadowing system

Realism can be added to a scene by adding shadows. A technique
sometimes used in video games is Fake Shadows [20], where only
shadows projected onto the floor are taken into consideration. This
technique increases efficiency because you only need to project onto a

5

plane. We could use fake shadows in our simulation because the Spa-
tial Awareness Framework assumes a 2-Dimensional environment. F.
Crow [8] suggests that the best way to do lighting is by using Shadow
Volumes. Shadow Volumes store shadow data as invisible 3D objects
in the object space. To determine if a point is in a shadow or not, a
shadow count is calculated from the camera source. When a shadow
volume is entered the count is incremented and when it is exited it is
decremented. If the final shadow count is 0, then the point is not in
any shadow.

P. Atherton, K. Weiler, and D. Greenberg [4] present a way in which
shadows can be generated using transformations and hidden surface
algorithms. In this method the scene is transformed to the view of
the light source. Using hidden surface algorithms, polygons which
are completely shadowed are removed. The remaining polygons are
added to the original scene and used for surface detail calculations.
This method is difficult to implement due to the hidden surface re-
moval, but provides great advantages where knowing shadowed and
illuminated areas is useful in a polygon form [20] [4]. Our project has
no use for knowing shadowed areas in a polygon form and both cal-
culating shadow volumes and doing hidden surface removal are com-
plex. A simple and practical solution to shadowing is Shadow Mapping
[20][17][5]. Shadow Mapping involves rendering the scene from the
light sources’ point of view. Data can then be extracted from the depth
buffer (z-buffer) and stored in a texture so that when the scene is ren-
dered from the camera’s point of view, points which are visible from the
light source can be illuminated.

Figure 2.5: Demonstration of Shadow Mapping technique

2.5 Simulation control

Various design models exist for the implementation of a simulation
loop[19]. The simulation loop is responsible for updating the simu-

6

lation to the next step in time, update(), and re-rendering the scene,
render(). Two models are presented by L. Valente, A. Conci and B.
Feijo [16], Coupled and Uncoupled. The Uncoupled Model differs from
Coupled by allowing for asynchronous execution of the update() and
render() methods. The advantage of the Uncoupled Model is that maxi-
mum frames per second can be reached, whilst keeping the simulation
running at a constant speed. This makes the simulation determinis-
tic. Determinism means that if the simulation is started with the same
initial starting state, it will follow the same behaviour [10]. To record
or playback a simulation, only the initial conditions need to be recoded
oppose to storing the data at each time step.

2.6 User Interaction

An easy way for the user to interact with the environment and the
agents is to follow the Real Time Strategy Game Paradigm described by
H. Jones, and M. Snyder[11]. This paradigm has the user as a superior
over autonomous agents. The view is usual 3-Dimensional and places
the user above the agents with a relatively large area of the environment
in view. Agents are represented by avatars and the user can click to
select single agents or click and drag to select multiple agents, in order
to interact with them. When an agent or agents are selected, the user is
provided with options for those agent(s) on the Heads Up Display. The
user can pan the environment by moving the mouse cursor to the edge
of the screen, in the direction they wish to pan. Users are much better
at navigating a 3-Dimensional interface when given a global overview
of the space [18]. This idea supports the need of a mini-map which is
often found in RTS games.

Jakob Nielsen’s Ten Usability Heuristics [13] suggests that a system
should include visibility of the system status and provide the user con-
trol and freedom. These heuristics are highly satisfied by the Real Time
Strategy Game paradigm [11].

2.7 Data Visualisation

Being able to transform raw data into a graphical format allows users to
better understand the data and often interpret unexpected results from
the data [7]. Real Time Strategy Games have very little information
which they need to show for the game agents. This information is
usually the agents current health and a symbol to represent the agent’s
state, on guard, attacking etc. This data is small enough to be shown
above each agent’s head. For our data visualisations we will mostly
want to show data that has some kind of space value. A user might

7

want to see what areas of the map a specific agent has covered, or
what areas of the map most of the kills have taken place etc.

The Visual Information Seeking Mantra is ”Overview first, zoom and
filter, then details-on-demand” (B. Shneiderman). By borrowing the
RTS paradigm, a lot of the mantra is achieved for the general interface.
An overview is presented to the user in the form of a minimap where
quick navigation can take place. The user if often able to control the
zoom of the camera and can choose to select only a certain type of unit
by double clicking one of that type. Details about a specific unit can
be accessed by selecting the unit. This mantra was extended in [6] to
include the steps Relate, History and Extract. The user needs to be
able to compare multiple pieces of data to find relations. An example
of this would be simultaneously visualising the areas which each team
has covered. History allows for data to be recorded and replayed at a
later stage and Extract allows the user to save data produced by the
system.

8

Chapter 3

Design

3.1 System Overview

The project has been split up into three components. Each component
is designed to stand on its own, allowing for its success to be evaluated
without relying on the other parts. This report is based and focused
on the Rendering and Data Visualisation component. These project
components are described below:

3.1.1 Base AI and Competition Simulation

This part of the project is responsible for running the competition be-
tween the two teams of Bots. It also provides the bots with low level AI
functionality. This includes path-finding and flocking.

3.1.2 High Level AI And Environment Querying

This part of the project provides a logical rule system for the agents.
It allows for different rules to be loaded into the bots for testing and
comparison. The high level rules govern how the low level behaviour
is carried out. This part is also be responsible for interfacing with
the Spatial Awareness Framework to allow for rules to be made which
include environment data.

3.1.3 Rendering and Data Visualisation

This part is responsible for the rendering of the environment and the
bots. It also needs to provide the user with functionality to access
information about the simulation.

9

3.2 Rendering and Data Visualisation Overview

There are four main modules making up this component of the project:

• Rendering of the terrain

• Rendering of GUI components

• User interaction

• Data visualization

This component has been broken down into these modules so that pro-
totypes of each can be developed and tested independently.

3.3 Interaction With Other Project Compo-
nents

The rendering component of the project needs to interact with the sim-
ulator. The game/simulation loop will be responsible for getting user
input, calling the simulator to update the simulation state, and finally
rendering the graphics. The loop controls these functions, such that
the simulation updates at a steady rate, and the rendering can be per-
formed at the maximum number of frames per second. It calls the
simulator’s update function, and queries the simulator so that it can
render the bots and flag as well as any additional information stored
by the bots.

Figure 3.1: Interface between Engine and Simulator

10

3.4 Terrain Representation

There are three ways in which the terrain can be represented. The
simplest is a 2-Dimensional representation which would consist of a 2D
grid. Each cell of the grid would hold information such as whether it is
walkable. A 2D environment can be rendered extremely efficiently, but
it is restricted in that it is not visually appealing and does not match a
real world environment. The lack of authenticity to real environments
could hinder the analysis of the bots behaviour. A 2.5D representation
also consists of a 2D grid, with the addition of a height value for each
cell. A 2.5D environment provides greater realism and can represent
many real world environments. A 2.5D environment however cannot
represent caves or overhangs because each cell only has one height
value. The grid nature of the 2.5D representation is beneficial to the
simulation as it provides a 2D co-ordinate system for the positioning of
objects within the environment. A 3D representation provides complete
flexibility with regards to what environments can be rendered, however
this method is complex in the way in which it is stored and interacted
with. Calculating collisions with terrain in 3D is too computational
expensive.

The terrain used in the Spatial Awareness Framework is all 2-Dimensional
and the framework only provides querying of 2-Dimensional environ-
ment data. A logical representation of the terrain for rendering is there-
fore either 2D or 2.5D. We will use a 2.5D representation for the ren-
dering, but the simulation will use the terrain as if it were in 2D.

Figure 3.2: Example of a heightmap

The Spatial Awareness Framework uses the terrain stored in a dia
file format. The format specifies the terrain as a collection of polygons,
each stored as a collection of points. The dia format is therefore a
vector format. Each polygon in the file defines an area which is non-
walkable by the bots. To convert the terrain to a 2.5D heightmap 3.2,

11

it needs to first be rasterized to a grid. Rasterization is the process of
converting vector graphics into a discretely defined format, generally
performed by sampling points. This can be done by parsing the dia
file and drawing the polygons into an image. The image then needs to
be manipulated to provide realistic elevation features. The height for
each cell can be calculated using an algorithm for terrain generation
or can be done by hand using an image editing program. There are
many terrain generation techniques which use things such as Perlin
noise and fractals. Such an algorithm would however need to take
into account the walkable and non-walkable parts of the terrain. This
would add a lot of complexity to the project and will rather be left as
an extension. The rasterized dia file will rather be edited manually to
create realistic height maps.

3.5 GUI Components

The interface for the application will require GUI components. These
components are required for controlling the simulation as well as for
moving around the virtual environment. The GUI components enable
the user to activate various data visualizations to find out more in-
formation about the simulation. The most basic GUI component will
be a button object. The object will be given callback functions which
will be called on specific events such as mouse-over, mouse-click and
mouse-release. The button will also require textures for each of its
states: released, mouse-over and pressed. The basic button object
can be extended to created checkboxs. A check box would have ad-
ditional states, and will be linked to a boolean variable for its cur-
rent checked/unchecked state. More advanced components may be
required such as scroll bars. These will be a bit more complex than a
basic button. All GUI components for a current window will be stored
in a menu object. The current menu object can therefore be changed
to change what controls are available to the user.

To determine whether an object has been interacted with, a linear
search over the objects on the current menu will take place. If the
mouse is over an object, its events will be called depending on what op-
erations the user is performing. This process can be optimized using a
quadtree for quick elimination of objects which are not being interacted
with. A quad tree recursively divides the screen area into 4 quads form-
ing a tree structure. All the GUI components are inserted into the quad
tree when they are created. The location of a component is determined
by which quads they are inside or overlap. To test what component
is being interacted with, the quadtree is traversed only following the
nodes which the mouse is lying in. The benefits of a quad tree will only
be gained for a large number of GUI objects, due to the overhead of
using a quadtree.

12

3.6 Graphics Rendering and GUI Components

Developing our own renderer gives us more freedom for customizations
and optimizations which can be implemented. For the rendering to be
a success it needs to run efficiently on basic hardware. The overhead
of a sophisticated engine could lead to slow rendering, poor customiza-
tion for data visualizations, and difficult integration with the Spatial
Awareness Framework. OpenGL[1] was chosen for the rendering of
the graphics in our application, using SDL[2] as a container. OpenGL
is cross platform and allows for easy compilation for different archi-
tectures if necessary. SDL was chosen over Freeglut[3], as it is more
advanced and provides external libraries for tasks such as image load-
ing.

Naive simulation loops make the simulation and rendering depen-
dent on the speed of hardware it is being executed on. With basic time
management, it is possible to achieve a loop that keeps the simulation
at a constant rate, however this fixes the render rate to the same fre-
quency. We will use a more advanced simulation loop that is designed
to get the maximum rendering frames per second, whilst keeping the
update rate of the simulation constant. Furthermore we will allow for
a cap on the maximum fps of the renderer. Rendering above a certain
fps will not add any benefit to the user.

To use vertex arrays we are required to build an array of the vertices
of the heightmap as well as building an index array for the ordering in
which they form the triangulation. Using indices also means there is
less redundancy where vertices are used by multiple triangles. This
reduces the number of vertices sent to the graphics card and increases
performance.

The normals of the triangles are needed for performing lighting cal-
culations by OpenGL. The normal at each point of the triangle mesh
will be taken as the average of the normals of its surrounding trian-
gles. This helps give the terrain a natural look as the edges between
triangles are not obvious due to different lighting conditions.

Multitexturing is used to allow for the merging of multiple textures
over the terrain to increase realism. The first layer provides a base
colour for each point. A one dimensional texture allows for a mapping
of a height onto a colour. This technique has been extended and also
takes into account the slope of the terrain at the given point. The height
and slope values are used to lookup a colour in a two dimensional
texture. Slight randomness to the position in the texture adds more
randomness to the terrain and increases authenticity. A high-detail
texture is overlayed over the basic colouring providing a sharper more
realistic and rugged terrain.

13

3.7 Shadows

Shadows on the terrain add realism and also allow for shadow informa-
tion to be queried by the bots as a possible extension. While OpenGL
does provide lighting functionality it does not provide shadows. With
lighting objects in the scene will not be darkened when they are ob-
scured from a light source.

Shadows can be implemented using either Shadow Mapping, ray-
casting, or generated by hand. Raycasting is computationally expen-
sive, but is a possible non-realtime solution for static objects in the
scene. For example the terrain. Raycasting projects a line from the
light source to each vertex. If the line reaches the vertex before hitting
any other geometry, the vertex is regarded as lit as there is nothing ob-
scuring it from the light source. The complexity of calculating the ge-
ometry intersection is undesirable, especially since the technique will
not function in real-time.

An easier technique is to generate the shadow file by hand and sim-
ple texture it onto the terrain using multitexturing. Generating the
shadows by hand can be slow and inaccurate, and also only provides
shadows for static objects in the scene.

Figure 3.3: Advanced shadow implementation for a game

We will implement a better technique known as Shadow Mapping,
which is efficient enough for realtime lighting on dynamic objects. Shadow
Mapping works by performing an additional rendering pass of the scene
from the point of view of the light source. This limits Shadow Mapping
to directed lighting. After the render of the scene, the depth buffer is
stored into a texture. During the render of the scene from the cam-
era’s point of view, the texture is used to determine whether a vertex
is lit or shadowed. If the distance from a vertex to the light source
is greater than the distance stored in the texture for that vertex, then
the light must have been obscured before reaching the fragment and is
therefore in shadow. This technique is similar to ray casting, but takes
advantage of being executed on the graphics card in parallel.

14

3.8 Level of Detail

Level Of Detail systems reduce the amount of polygons or quality of
texturing as the detail of the scene becomes less beneficial on the qual-
ity of the final rendered image. A classic example of this is for objects
which are far away. Using less vertices will have little or no effect on
the final rendered image, however as the object gets closer to the cam-
era more vertices should be used. The performance gained by using
fewer vertexes is achieved by minimizing the bandwidth used between
the CPU and GPU. A level of detail system can be easily implemented
if the nature of the geometry can be resembled as a fractal. The fractal
can be iterated deeper as more detail is needed. This could even be
done to an infinite depth. Our terrain however is generated by hand
and cannot exploit any fractal nature. Generating the terrain using an
algorithm has already been mentioned as an extension, and a further
extension would be making this algorithm produce a fractal landscape.

A level of detail scheme called Chunking can be used. Chunking
involves splitting the terrain up into a grid, with each cell, or Chunk,
being allocated an area of the terrain. The Chunk holds that section
of the terrain at different levels of detail. When rendering the terrain,
each Chunk will get rendered but it’s detail will be dependent on its
distance from the camera. An algorithm needs to be implemented to
down sample the terrain held by each chunk. This can be done by
using a blurring function such as a Gaussian Blur. We will use a more
privative method of skipping over vertices as there is a performance
gain which can be utilized. Only the indices of the vertex array need to
be different for different levels of detail. So for each level of detail the
same vertex array will be used, but with different indices.

A problem with chunking is the need for seams. If two adjacent
chunks are rendered at different qualities, the vertices at their common
edge will not align perfectly. The most common solution is the addition
of seams, which consist of additional geometry to patch up the gaps.

3.9 Miscellaneous Optimisations

Reducing the number of vertices reduces the bandwidth required be-
tween the CPU and GPU and increases performance. There is an ad-
vantage in removing vertices which will not affect the final rendered
image and not send them to the GPU at all. To do this you need to
know which areas of the terrain will not appear in the screen space af-
ter the transformations on the vertices. The splitting of the terrain into
Chunks makes this process a bit easier. The corners of the screen can
be projected onto the terrain producing a quadrilateral. Any chunks
which lie outside of the quad will not need to be rendered. This tech-
nique will have an overhead and may not be beneficial for some camera

15

angles. The most commonly used view for our application will be look-
ing down. This view will exploit this technique to its full potential and if
the camera angle is changed the technique can be automatically turned
off.

A problem with this technique is that it assumes 2-dimensional data
is being rendered. It is possible that the base of a hill is not within the
quadrilateral, but the top of the hill is within the view frustum. The hill
will therefore not be rendered when it is suppose to be. This may not
be a problem since the actual simulation is taking place in 2D. The hill
can be seen as being removed for obscuring the important areas of the
terrain.

3.10 User Interaction

The user needs to be able to easily move around the environment to
analyse the behaviour of the bots. Movement can be either done using
the traditional real time strategy paradigm where the user can pan
around the terrain using the keyboard or moving the mouse to the
edge of the screen where they wish to move to. Movement can also be
done in flying type style where moving the mouse changes the camera
direction. Pushing keys then moves the camera forward or backwards.

The camera position and orientation is defined by 3 values for posi-
tion (x,y,z) and two for orientation (theta, phi). The theta angle is the
rotation of the camera around the z-axis, or yaw. Phi is the angle be-
tween the environment plane and the camera direction, or pitch. The
system is simplistic, but allows for all possible camera positions and
orientations that will be required. A more advanced technique would
be to use quaternions. This would allow for an additional camera move-
ment, a roll. The added complexity of quaternions is unnecessary for
the camera orientations required for this project.

Figure 3.4: The camera can perform pitch and yaw rotations

The user needs to be able to select bots or at least be able to select a

16

single bot. The position of the mouse in world space can be calculated
by unprojecting the position with the model-view matrix. The closest
bot is then selected. A quad tree can increase the performance of se-
lecting a single bot. For selecting multiple bots, both the start position
of the click and the current position of the click need to be unprojected.
These two points in world space along with the camera orientation will
define a quadrilateral. All bots within the quadrilateral are selected.

3.11 Data Visualisation

Information about the bots needs to be displayed to the user. This
is done by overlaying the terrain with information which has a space
value. An example would be to mark areas in red where bots have been
killed. To do this a texture of the information needs to be overlaid onto
the terrain. Modifying the texture will require texture pixel access.
OpenGL does not support this, but SDL can be used to modify the
texture which will then be used by OpenGL. Pathing data relating to
the bots can be shown as a series of connected lines on the terrain.
Two types of paths need to be shown:

1. The path which a bot is planning on taking

2. The path which a bot has taken

Displaying the path that a bot wishes to take, provides extra informa-
tion to the user and assist in the process of determining which rules
produce better strategies. A bots path may indicate that it is avoiding
a certain area of the map. Displaying the path which a bot took assists
the user in determining what areas of the environment the bot was in
the most. It also shows where bots changed their tactic. By viewing
the path taken, the user can get an understanding of what the bot was
doing over a period of time. When a bot is attacking another bot, a red
line between the bots is drawn. This is a simple yet commonly used
technique in games. Without this visualization it would be difficult to
identify who a bot is attacking when they are in an attacking state.

Each bots status and health is indicated above their heads. The
health is indicated by a green and red ring. Green represents current
health and red represents lost health. The health indicator assists the
user in seeing how a bots behavior changes depending on the bots
current health. The bots state is indicated as an icon directly above its
head and is rotated so that it is always visible to the user.

When a bot is selected addition information about the bot is dis-
played. A percentage bar for each state indicates how frequently the
bot was in each state. Addition buttons are displayed to allow for the
turning on and off of path rendering for the selected bot.

17

Chapter 4

Implementation

4.1 Developement

This part of the project was implemented using a prototype develop-
ment model. The work which was meant to be completed was split
up into sections. Each section has a main focus. The first few steps
of development involved developing these sections of work into mini
stand alone prototypes. The motivation for this is that the techniques
required by each section can be tested and experimented on indepen-
dently. This is advantageous since developing a single prototype would
make it difficult to determine where errors are being generated.

The 4 prototypes are:

1. Heightmap Rendering, Texturing, Dia Conversion and Basic User
Interaction

2. Shadow Mapping

3. Simulation Control and GUI Components

4. Vertex Arrays and Chunking

Once the code for each section is developed, It can supposedly eas-
ily be integrated into one application which has all of the required fea-
tures. This can be done since the techniques will now be familiar and
a ”best way forward” established. The code from the prototypes serves
as a reference and most code can be copied straight. The code from
this part of the project then needs to be merged with the code from the
other parts being developed separately.

The final 3 steps of developement are:

5. Integrating prototype code into single application with all features

6. Integrating code from this part of the project with the other parts

7. Visualization, User Interaction and Additional Features

18

4.2 Heightmap Rendering, Texturing, DIA Con-
version and Basic User Interaction

Triangles are a common primitive used for rendering by graphics APIs.
To render the heightmap the area needs to be divided into triangles
to form a triangle mesh. It would make sense that each vertex of the
triangle mesh represents a height found in the heightmap. The triangle
mesh can be generated in multiple ways.

Figure 4.1: Examples of possible mesh triangulations

Instead of drawing each triangle individually (using GL TRIANGLES)
OpenGL provides a GL TRIANGLE STRIP API call. This enables the
drawing of multiple triangles where the last 3 given vertices form a tri-
angle. This reduces the number of API calls and makes using certain
triangulations beneficial.

Figure 4.2: A mesh triangulation that can make use of
GL TRIANGLE STRIP to reduce the number of vertices

19

Each vertex is to be given a height value to represent the desired
terrain. From the above triangulation it can be seen that vertices have
common height values (2 and 10 for example). The height values are
therefore read into a 2d array of the desired terrain dimensions. When
the triangle vertices are created, their height is looked up in the array.
The SDL Image library is used for loading the height values. First a
heightmap image is loaded into memory. The height array dimensions
are determined using the dimension of the image, such that each pixel
represents one height value. The pixels are then iterated over and the
height for each (x,y) coordinate is stored. The height is determined by
how light/dark a pixel is. The lighter the pixel the higher the value.
This requires the image to be in grey-scale so a conversion is first cal-
culated using the formula:

grey = (red*11 + green*16 + blue*5)/32

This gives a height value in the range [0,255]. Further operations
can be formed on the height such as scaling, where the height is mul-
tiplied by a constant, and inversion where the height is set to the
maximum value minus the loaded value. For this iteration I used
a Display List to render the terrain. This was easily implemented
by encapsulating the rendering of the terrain within the required API
calls to compile the geometry for faster rendering. For lighting opera-
tions on geometry OpenGL needs to know the normal for each triangle.
The normals can be, and are by default, calculated automatically us-
ing GL AUTO NORMAL. Using the automatic normal generation gives
each triangle one normal which is used for all three of its vertices.
This makes the triangle boundaries obvious as each triangle is being
coloured differently by the lighting operations.

Figure 4.3: 2D example of normal averaging at vertices

20

Figure 4.4: 3D render without and with normal averaging

A more continuous look can be achieved by ensuring that vertices
at common points have the same normal (Figures 4.3 & 4.4). A 2d
normal array can be used much like the array used to store a single
height value for each (x,y) co-ordinate. To calculate the normal at each
vertex of the triangulation mesh, the average of the normals of the
surrounding triangles is used. The normal for each triangle therefore
needs to be calculated manually, which is easily done by taking the
cross product of the unit vectors −→ac and

−→
ab (Figure 4.5). The cross

product is an expensive operation but only needs to be calculated once
when the heightmap is loaded and then the normals are stored.

Figure 4.5: Calculation of triangle primitive normals

The terrain is generated from a heightmap image, however the map
format used for the skeleton structure is a dia file and the pathing
makes use of a similar dia file containing a triangulation of the walk-

21

Figure 4.6: Testing of different Gimp paintbrush configurations for
heightmap generation

able area. To get these into a rasterized image format, such as png, a
python script making use of qt was developed. The script parses the dia
file, identifies the polygons, and draws them into an image of desired
dimensions. The final image is then saved as a png. The png contains a
black and white image showing the walkable and non-walkable areas of
the terrain. This image is then edited using an image editing program,
such as Gimp (examples 4.6), to construct a realistic heightmap (Fig-
ure 4.7). The script requires two passes as the dia file does not specify
a boundary for the terrain. The first pass calculates the top-left most
and bottom-right most co-ordinates. All points are then taken relative
to those co-ordinates and scaled to the desired dimensions.

Heightmaps are commonly textured using a 1d texture, where the
height of the point determines the position in the texture. The ad-
vantage of this method is that it can be used for any heightmap that
is loaded, where as a 2d texture overlayed on the terrain might not
make sense. Example: A lake in one position might make sense on one
heightmap but not for another. The problem with 1d textures is that
it leaves the terrain looking bland and cartoon-like due to the low level
of detail. To add more interest to the terrain, we used a 2d texture in
a similar way in which a 1d texture would be used. The height of the
point determines the y co-ordinate in the texture, and the x co-ordinate
is calculated at random. More interest is created by perturbing the y
co-ordinate slightly by a random amount and clamping the value to

22

Figure 4.7: Converting a dia map to a heightmap

ensure it does not overflow.

Figure 4.8: A heightmap and heightmap-texture

Multitexturing allows for adding additional textures to the terrain. It
can greatly increase the realism of the terrain by adding high level de-
tail features such as dirt, or rock features. Textures in multitexturing
can be combined in different ways to give different results. GL BLEND
may be used to place a semi-transparent texture over the current ter-

23

Figure 4.9: Textured heightmap

rain, or GL DECAL can be used to completely replace the underlying
texture with the current one. GL BLEND can be used to overlay fea-
tures such as dirt, rock or sand which cover the entire terrain and are
not specific to a single heightmap. GL DECAL can be used to overwrite
areas of the terrain to add additional features which are specific to that
terrain for example: rivers and lakes.

Figure 4.10: Example of multi-texturing: Dirt

4.3 Shadow Mapping

Shadow Mapping was implemented with reference to the Shadow Map-
ping example in the OpenGL SuperBible [21]. The code from the OpenGL
SuperBible was first ported to SDL for easier referencing before being

24

Figure 4.11: Example of multi-texturing: Rock

implemented. The code for mathematic operations on 4 × 4 matrices
has been used directly and is referenced in the code. There are three
rendering passes required to generate one render which the user will
see:

1. Calculates the distance from the light source to each point in the
scene that it illuminates

2. Renders the entire scene from the cameras point of view using a
low ambient light. This is to render the parts of the scene which
are in shadow.

3. Renders the scene again from the cameras point of view, but uses
the distance of each point to the light to determine whether it is
to be rendered. This render uses a brighter lighting configuration
and overwrites shadowed areas which should be lit.

The scene first needs to be rendered from the light source’s point of
view. The difficulty with this is that you need to ensure that the scene
fits entirely into the view frustum. If the scene is too small however,
it will result in the shadows being at a low resolution since there will
be a smaller area per pixel. To ensure that the scene fills the frustum
optimally, the best frustum size is calculated using the details of the
distance of the light source as well as the bounding radius of the scene.
The viewport can theoretically be increased to increase the detail of the
shadows however experimentation showed that the viewport gets lim-
ited to the SDL window size. When the scene is rendered only the depth
information is needed and all texturing and lighting can be turned off.
After the render is completed, the depth buffer (distance to the geome-
try for each pixel) is saved into a texture using glCopyTexImage2D(). A
texture matrix is then calculated using the light sources position and

25

orientation to allow for projection of the depth texture back onto the
scene in a later render.

Figure 4.12: Shadow Mapping without the second pass, which renders
the areas in shadow

The second pass is simply a render from the cameras point of view
with a low ambient lighting condition as well as texturing turned on.
Without this pass, areas in shadow would not be rendered and will ap-
pear as holes in the terrain. Hardware which supports the GL ARB shadow ambient
extension can skip this pass and incorporate it into the next pass. This
extension was not supported on any of the development hardware and
is therefore not used.

Figure 4.13: A Shadow Map with its corresponding rendered terrain
with shadows

The final pass renders the scene again, but overwrites areas which
are to be lit. The texture holding the depth information from the first
pass is used to determine if a pixel is to be lit or not (Figure 4.13). For
each pixel in the rendered scene its distance to the light source (B) is
compared to the distance stored in the texture (A). If B is greater than
A, there must be geometry obscuring the pixel from the light source
and the pixel is not rendered. If B is not greater than A the pixel is

26

”lit” and is therefore rendered. The comparison to the texture is done
using GL COMPARE R TO TEXTURE. The texture is projected onto
the scene for the comparison and the scene is finally rendered using
the ”lit” lighting conditions.

For better performance shadowing can be turned off. Without shad-
ows only one rendering pass needs to be done, where the entire scene
is rendered once with the ”lit” lighting conditions. If only static geome-
try is to cause shadows and the light position is static, an optimisation
can be made. During each render from the light source, the terrain
won’t be changing. This render is therefore only performed once at the
beginning of the application. The shadow map texture is still used,
but does not change during its execution. for the initial generation of
the shadow map, the bots are not rendered else their shadows will be
shown in their starting positions even after the bots have moved.

Figure 4.14: Comparison between scene rendered with and without
shadows

4.4 Simulation Control and GUI Components

A difficulty encountered is that there are 3 processes happening in the
application at different rates and with different conditions. Rendering
needs to happen as fast as possible, The engine needs to update at a
steady rate, and the simulation needs to update at a steady rate which
is different from the engine and must also be dynamic. The rendering
process is naturally dynamic since it will be happening as fast as possi-
ble. The engine needs to be at a constant speed to ensure that camera
movement, user interaction, etc. remains consistent regardless of the
hardware or speed at which the simulation is executing. The simula-
tion speed needs to be consistent to ensure that it is not dependent on
the hardware, and also needs to be dynamic so that the user can speed
up and slow down the simulation.

These features where achieved by having timing related variables
for the engine and simulation update processes. The time for the next

27

call of the process is stored and on each iteration of the game loop, the
process is called if the time has been reached. if a process is called,
the next update time is recalculated. On every iteration of the loop the
rendering process is called.

A problem however occurs when rendering is slow, as a lag effect is
carried over onto the engine update and simulation update processes.
The solution implemented to get around this is to allow for multiple
updates of the processes during a single game loop iteration. The func-
tions are called until they have caught up to their required time.

double next_sim_update = SDL_GetTicks();
double next_engine_update = SDL_GetTicks();
double current_time = SDL_GetTicks();
while (running)
{

current_time = SDL_GetTicks();
if (current_time > next_sim_update)
{

sim->update();
next_sim_update += SIM_UPDATE_RATE;

}
if (current_time > next_engine_update)
{

update();
next_engine_update += ENGINE_UPDATE_RATE;

}
render();

}

For the implementation of the GUI Components is was easier to
have independent, specialized classes than to use inheritance. The
finer details for the different components makes the implementation
using inheritance difficult. A problem encountered is the co-ordinate
system to use. the screen space co-ordinate system would make sense
however problems occur due to the fact that it is dependent on the
window size, which is dynamic.

The solution implemented is to give the GUI Components their own
co-ordinate system. The co-ordinate system is x = [0,1] and y = [0,1].
When mouse commands are passes to the components the mouse co-
ordinates are transformed into the new space from the screen space by
dividing by the screen width and height. Using a different size window
or resizing the window during execution, results in the components
scaling by the correct amount.

Button components are placed at the edges of the screen and their
mouse-over callback functions are set to the required camera move-
ment functions. This provides panning of the camera by moving the
mouse to the edge of the screen.

28

4.5 Vertex Arrays and Chunking

A Vertex Array requires a 1d array holding the vertices of the trian-
gles from the triangle mesh. The array therefore needs to hold width ×
height×2×3×3 values as each grid block is subdivided into two triangles.
The original implementation was modified to pack a vertex array with
the vertices instead of performing the calls to glV ertex3f(). Drawing the
triangle mesh is then achieved by calling glDrawArrays(GL TRIANGLES, 0, 3).

This method was then improved upon by using the fact that many
of the triangle vertices are common in the triangle mesh. OpenGL pro-
vides functionality where a set of vertices can be given and then when
the geometry needs to be rendered, the indices of the required vertices
is given. This is done by calling
glDrawElements(GL TRIANGLES, number of vertices,GL UNSIGNED INT, indices)
where indices is an integer array of indicies of the required vertices.
This increases performance as less vertices need to be uploaded to the
graphics card. Example: For a 100 × 100 heightmap, 180000 (100 ×
100 × 2 × 3 × 3) values need to be sent to the graphics card for the
glDrawArrays() method, and only 20000 (100 × 100 + 100 × 100) would
need to be sent using the glDrawElements() call.

Sending texture co-ordinates and normal vectors for the vertices is
done similarly. The values are stored in a 1d array, of size width ×
heights, and is then indexed by an index array. The index array for
the texture co-ordinates and normals are the same, requiring only one
array to be stored for both.

Figure 4.15: Example of jumping over vertices to render at a lower level
of detail

29

Chunking is achieved by splitting the terrain into cells. Each cell
is then able to be rendered at different levels of quality. An advanced
technique would involve down sampling the area covered by the cell
and creating multiple vertex arrays. We implemented a simpler yet
more memory efficient method. Instead of recreating a vertex array for
each level of detail, only a different index array is used. The index array
is smaller and skips over vertices stored within the array of vertices. A
difficulty experienced in the chunking implementation is gaps between
the chunks. The chunks need to be extended over their required area
and then clamped back to ensure there are no gaps.

Figure 4.16: Chunking in wireframe mode to show the change in detail
at different distances

The level of detail at which a chunk is to be rendered is determined
by the distance of the chunk to the camera position. The closer the
distance, the greater the detail. The level of detail system is used for all
three passes of rendering, this allows for better quality shadows closer
to the camera position.

The level of detail used for different distances could be made dy-
namic such that a given frame rate is guaranteed, however this is com-
plicated and is rather left as an extension.

4.6 Integrating Prototype Code Into Single Ap-
plication With All Features

The prototype from iteration 4 (vertex arrays and chunking) was mod-
ified to include all the features of the other prototypes including shad-
ows, GUI components and user interaction.

30

4.7 Integrating Code From This Part of The
Project With The Other Parts

The rendering and visualization only needs to interact with the Sim-
ulator. The Simulator first needs to be initialized with the simulation
settings and then an update function gets called from within the game
loop. The renderer accesses the simulator to get the arrays of bots and
their information.

A difficulty encountered with interfacing the two sections was that
the co-ordinate systems do not match. The renderer uses the raster-
ized map with user specified dimensions, whereas the simulator uses
the original dia file. The co-ordinate system of the dia file can be ar-
bitrary and start and end at any position and be of any scale. A fur-
ther problem is that the dia and world co-ordinates reflect each other
across the y axis. The solution implemented was for the simulator to
store the starting x and y co-ordinate as well as the width and height
of the map, when it is loaded. These values are retrieved from the sim-
ulator after initialization and are used for transforming between the
two co-ordinate systems. Basic bots were rendered to ensure that the
co-ordinates were correct and for testing of the simulator.

Conversion to DIA co-ordinates

dia_x = world_x* dia_width/world_width - dia_x_offset
dia_y = (world_height - world_x)* dia_height/world_height+dia_y_offset

Conversion to world co-ordinates

world_x = (dia_x - dia_x_offset)* world_width/dia_width
world_y = world_height-(dia_y - dia_y_offset)* world_height/dia_height

4.8 Visualisation, User Interaction and Addi-
tional Features

In this iteration the bot models were improved to look more realistic.
They are rendered as a frustum for the body, a sphere for the head and
a cloak indicates the direction the bot is facing. The bots can be in
one of six states: Attack, Flee, Explore, Camp, Sneak and Defend. This
state is indicated to the user as an icon above the bots head. To ensure
the icon is visible, it is rotated firstly around the z-axis and then the
x-axis such that is always faces the camera.

A bots health is indicates as a coloured ring around its status icon.
Green indicates health that the bot has, and Red indicates health that

31

Figure 4.17: Bot health and status icon. The icon pivots such that it is
always facing the camera

the bot has lost. The ring needs to be rendered as a series of trian-
gles with an inner and outer radius. For semi transparent objects in
OpenGL they are required to be rendered in the order from furthest to
closest to the camera to ensure the correct blending. Since the status
icon is semi transparent and the health indicator wraps around the
icon, the health indicator is split into two halves. First the back half
is rendered, then the status icon, and finally the front half. The paths
which the bots are planning on taking are rendered using GL LINES,
as well as the trace of where the bots have been. All of the indicators
which are rendered in the world space are not rendered during the first
pass (building the shadow map) of the rendering process. This ensures
that there are no unwanted shadows cast in the environment.

Figure 4.18: Status Icons for each state of the bots

For simplicity the user is only able to select a single bot at a time.
Bot selecting is done by double left clicking near the bot you want
to select. If there are bots within a set distance, the closest bot will

32

be selected. If no bots fall within the threshold, no selection will be
done. The position of the click in world space is calculated using the
gluUnproject() function. Using the function a vector can be calculated
that represents the mouse within the view frustum. The position on the
terrain is calculated by intersecting the vector with the environment
plane.

Double clicks are determined by having a timestamp for each button
which can double click. Whenever a click is made, the timestamp is
checked to see if it lies within a set interval. If it is within the interval
it is counted as a double click, else it is counted as a single click and
the timestamp is reset.

Figure 4.19: Before and after pictures of centering the camera on a
point without changing the orientation of the camera

Some more advanced interaction features for camera movement were
added. The first is that double right clicking pans the camera, keep-
ing its angle constant, such that it is viewing the world point that was
clicked (Figure 4.19). This is achieved again by using the gluUnproject()
function to find both the point that the camera is currently facing and
the point that was clicked. The vector between these two points is then
recorded and the camera is moved along the vector over a set time
period. At the end of the camera movement the camera is facing the
clicked point.

Another method for looking at a point can be done by double middle
clicking. This method changes the camera angle, and not the camera
position (Figure 4.20). It is done using trigonometry and the horizontal
and vertical distances between the camera and clicked position.

A camera movement that allows the user to circle strafe around a
point was also implement. When the user clicks and drags with middle
mouse button the camera will rotate around the point which it was
originally looking at. The distance from the point remains constant
and the camera is always looking at the point. The position of the
camera is determined using the horizontal distance to the point and
which direction the mouse was dragged. The theta angle of the camera

33

Figure 4.20: Before and after pictures of centering the camera on a
point without moving the camera

is determined using the horizontal vector from the camera to the point
of focus, and the phi angle remains constant.

During camera movement, the speed at which the camera moves is
dynamic. Movement is initially slow and speeds up as you continuously
move. When movement stops the movement speed slows down to its
initial speed again. This was implemented by having a speed variable
that increases every time a move happens, and decrements every en-
gine update. The value is clamped to a maximum and minimum speed,
and the speed increase and decrease rates are set for easy movement
control.

The state of the simulation can be seen and interacted with using
controls often associated with media players.

Figure 4.21: Controls for controlling the simulation

34

Figure 4.22: Data and menu options which are displayed when a bot is
selected

When a bot is selected, additional data and menu items are made
available to the user (Figure 4.23). A larger health bar for the bot is
displayed in screen space for easier reading. The bot’s status is also
displayed in screen space both as an icon as well as in text. The inter-
face for the bot displays the percentage if time the bot has been in each
state. Menu buttons are made available for turning on data visualisa-
tions pertaining to that specific bot.

Figure 4.23: Paths showing the routes which the bots plan to take to
get to the flag

The visualisations that can be turned on are for the rendering of the
bots current desired path (Figure 4.23) and a trace of where the bot has
moved (Figure 4.24). The trace is colorised depeneding on the state of

35

Figure 4.24: Trail showing the the route taken by the bot as well as its
state at each point

the bot at each point. This helps with the interpretting of the data as
the user can easily identify what states the bot has been in and where.

Figure 4.25: The team menu. Only 2 of 4 bots are still alive and the
team currently has the flag

Each team also has a team menu which is always visible (Figure
4.25). It displays information and buttons which apply to the whole
team. The team menu indicates how many bots are still alive and
whether the team is in possession of the flag.

Two important types of data which have a spacial component are
areas of the map where bots have been killed and have killed from.
This data is shown to the user via multi-texturing the information onto
the terrain surface. Different colours represent different locations. Red
was used for locations where bots were killed and green was used for
locations where kills took place from 4.26. OpenGL does not provide
functionality to write to the pixels of a texture. For this reason SDL
was used for modifying a surface object which can then be converted
into a texture when needed and then reuploaded to the graphics card
for use by OpenGL.

A bots intention to attack someone is shown as a line from the at-
tacker to the bot they wish to attack4.26.

36

Figure 4.26: Red areas are potentially dangerous as a bot has died
there. A Green area is possible advantageous since a bot has been
killed from that location

37

Chapter 5

Testing and Evaluation

5.1 Introduction

The components which need to be tested for this project are the effi-
ciency of the renderer and the benefit gained for the user from the data
visualisations. The renderer needs to be able to render at a minimum
of 30 frames per second on low end hardware with the only require-
ment being a graphics card. Shadows can be turned off to increase
performance where necessary. The application being developed would
be used by people who are interested in developing rule systems for
virtual environments or games. Another potential user is someone who
is interested in developing maps for games which produce a desired be-
haviour in the players. An example would be the design of a map which
benefits a camping strategy. The data visualisations need to inform the
user about what is happing during the simulation. This includes infor-
mation about each bot specifically as well as information related to an
entire team.

5.2 Required User Testing

5.2.1 Rendering Efficiency Testing

A frame counter was implemented such that the frame rate can be
recorded while the simulation is running. It records the amount of
time in milliseconds between the last 100 frames and then calculates
an average to give the current frame rate. The frame rate is output to
the terminal at a much lower rate to ensure that writing to the output
stream does not slow down the rendering. The level of detail system
reduces the number of vertices which are to be rendered for a relatively
larger increase in frame rate. The increase in frame rate can accurately
be recorded however the amount of detail lost is highly subjective. To

38

measure the amount of detail lost, user testing was used. The users
were shown an image rendered at full detail and then have to decide
at what percentage detail other images were rendered at. The other
images include the terrain rendered at different detail levels as well as
using the dynamic level of detail system.

5.2.2 Data Visualisation Testing

To measure the benefit gained from the data visualisations, user test-
ing needs to be implemented. The target user for the application would
not posses any special skills for reading the data visualisations. The
data visualisations should also be simple and clear enough such that
no special skills are required. It was therefore decided that we can per-
form user testing on average people. The goal of the test is to find out
whether the data visualisations help the user in acquiring information
about the simulation. For that reason the user testing needs to test
the use of the system both with and without the data visualisations.
The test with out the visualisations serves as a control to see if any
significant benefit is added.

If no data visualisations are displayed it would be impossible to
make any decisions, so some basic elements are provided for the con-
trol. Health bars and status icons have been included. These ele-
ments are the traditional elements which are expected to be seen in
real time strategy games and cannot be seen as ”new” or adding benefit
to the user. The test provides a series of tasks for the user to perform.
They include identifying positions as well as state information about
the bots. For each test an average score can be calculated which re-
flects the users ability to use the system both with and without extra
visualisations.

Another factor which is being tested is the users confidence with
their answers. A user may have gotten an answer correct, but only
because they had a free guess.

It was decided that each user would perform tests with and without
the extra visualisations. This greatly increased the complexity of user
testing as the ordering in which they do the tests could affect the out-
come. Another potential problem is when performing the second test,
the user would have the advantage of already seeing the simulation
scenario. To get around these problems two scenarios are tested and
the order of whether it is with or without visualisations is alternated.
The result is that four versions of the test need to be implemented.

A user’s ability to interact with the application can have an effect on
their ability to read the information about the simulation. For example
a user with gaming skills could potentially move around the map easier
and therefore get a better score. For this reason the affects of user
interaction was removed, by making use of videos and images oppose

39

to the use of the application.
The final user test which was carried out was constructed as a pre-

sentation. It was split into two sections, Data Visualisation and Ren-
dering Efficiency. The user was required to view the presentation and
complete the necessary tasks on a printed answer sheet. The presenta-
tion displayed the instructions as well as any images which needed to
be viewed for the test. Videos for the test were linked to from within the
presentation. A total of 12 people took part in the user test ensuring
an equal number of sample points for each varying factor as wells as
for a statistically relevant analysis of results.

5.3 Expected outcomes

The relationship between the detail observed in an image to the number
of frames per second achieved would be expected to be linear and in-
versely proportional. i.e. As the detail decreases the frame rate should
increase in a linear fashion. The result for the level of detail system
should however not follow this pattern as it theoretically provides a
better trade of between detail and performance.

For the data visualisation testing, it is expected that the additional
data visualisations would give the users an improved average score.
The amount of improvement, however is not known. There should also
be an increase in the confidence experienced by the users when using
the visualisations. The amount of this improvement is also unknown.

5.4 Results And Analysis

To test the efficiency of the rendering, the application was run on a
Pentium 4 with a nVidia 9800GT graphics card. A larger than standard
size map of 900 by 900 pixels was used. The average number of frames
per second was recorded as 86 frames per second. This is much higher
than the required 30 frames per second for a standard map size of 300
by 300 pixels. The renderer is also capable of running on a PC with no
graphics card, but at a relatively slow 10 frames per second.

The full set of captured results from the user testing is provided
as an appendix (C.1) and this section will focus on the analysis of the
data.

The results of the trade-off between detail and performance for the
Level of Detail scheme were unfavorable. The graph of detail vs perfor-
mance is as expected, however the Chunking system doesn’t manage
to show extraordinary performance for a given detail level. The reason
for this could be that the frame rates recorded for the comparison were
recorded on a computer graphics card. It is more likely that the prob-
lem is that the terrain size is just not big enough to see a significant

40

Figure 5.1: Graph showing the trade-off between Detail and Frames
per Second

performance increase. A larger terrain favors level of detail systems as
there is more geometry for the system to cut out, which would other-
wise be rendered.

To test if the users score improved during when doing the test with
the data visualisations it needs to be compared to their score when they
had no data visualisations. If users performed better when using the
visualisations, the mean score value of the test with visualisation will
be larger than that of the mean from the test without visualisations.
It is not good enough for the mean to just be larger. It needs to be
statistically significantly larger. ie. There needs to be a less than 5%
chance that the mean was larger just by pure chance. The test used
to compare two sets of data, which follow a normal distribution, for
similarity is called a t-test. There are two varieties of the t-test.

Unpaired There are no associations between samples of the first data
set with those of the second

Paired Each sample of the first data set has an association with a
sample in the second data set

The data being compared for our user testing is paired as each user
is performing both versions of the test. To prove that the data visuali-
sations benefited the users in making decisions about the simulation,

41

we disprove the that they performed equally well with and without the
visualisations. The null hypothesis is therefore: Users perform equally
well at making decisions about the simulation regardless of whether they
have extra data visualisations.

Figure 5.2: Paired t-test of the Scores achieved with data visualisations
turned on and off

The results of the t-test (5.2) show that the two data sets are not sta-
tistically significantly close enough to each other for them to be similar.
This disproves the null hypothesis, and the data visualisations did in
fact benefit the users when tying to identify features of the simulation.
A ”P Value” of 0.0367 states that it can be said with 99.6% certainty
that the data visualisation improved the users performance in the test.
The ”95% confidence interval” implies that on average 95% of the the
time a users score will be between 10% and 27.3% better than their
score without the visualisations. The difference between the two data
sets means is 14.2%.

42

The confidence the user had in their answer is expected to increase
when aided with the data visualisations. To compare the two data sets
of confidence with and without the data visualisations another t-test
is performed. The test is again a paired t-test. The null hypothesis is:
Users are equally confident in their ability to identify features within the
simulation regardless of whether they have extra data visualisations.

Figure 5.3: Paired t-test of the Confidence experienced with data visu-
alisations turned on and off

The results of the t-test (5.3) show that the two data sets are not sta-
tistically significantly close enough to each other for them to be similar.
This disproves the null hypothesis, and proves that the data visuali-
sations increase the users confidence when trying to identify features
within the simulation. The ”P Value” for the confidence t-test is 0.0005
implying that the users were more confident due to the data visualisa-
tions. 95% of user can expect to see an increase in confidence within
the range of 9.5% to 25%. The difference in mean values for the two
data sets is 17.1%

After completing the user test both with and without the additional
visualisation, the users were asked to express how useful they thought
the visualizations were. The mean value out of 10 (with 10 being the
maximum) was 9.08.

43

Chapter 6

Conclusion

In this paper a lightweight rendering engine was developed to ensure
easy interfacing with the Spatial Awareness Framework and allow for
full customisation to implement data visualisations. A requirement of
any renderer is to be computationally efficient and achieve high frame
rate. The renderer implemented achieves this goal and is also able to
run on low end hardware. The renderer implements advanced tech-
niques such as Shadow Mapping and Chunking to achieve greater re-
alism and faster frame rates.

The Chunking was shown to not provide a significant increase in
performance due to the small size of the environments. The Chunking
functionality does however allow for some scalability of the system if
larger terrains are required.

User testing showed that the data visualisations helped users of the
system to make accurate decisions about what is happening within the
simulation. The confidence of the user was also shown to increase
when the visualisations are included. The visualisations would help
potential users of the system to develop and analyse rules for sets of
bots. This analysis will help with developing a desired behaviour of the
bots within the environment. The system could also be used to build
environments that require bots to implement desired strategies in order
to win.

44

Bibliography

[1] OpenGL - The Industry Standard for High Performance Graphics.
http://www.opengl.org/.

[2] Simple DirectMedia Layer. http://www.libsdl.org/.

[3] The freeglut Project. http://freeglut.sourceforge.net/.

[4] P. Atherton, K. Weiler, and D. Greenberg. Polygon shadow genera-
tion. ACM SIGGRAPH Computer Graphics, 12(3):275–281, 1978.

[5] P. Baker. Paul’s Projects - Shadow Mapping Tutorial. http://
www.paulsprojects.net/tutorials/smt/smt.html.

[6] S. Ben. The eyes have it: A task by data type taxonomy for in-
formation visualizations. In Proc. Of the 1996 IEEE Symposium on
Visual Languages, IEEE Computer Society, Washington, DC, pages
336–343, 1996.

[7] P. Buono, M. Costabile, and F. Lisi. Supporting data analysis
through visualizations. In Proceedings of the International Work-
shop on Visual Data Mining. Citeseer, 2001.

[8] F. Crow. Shadow algorithms for computer graphics. ACM SIG-
GRAPH Computer Graphics, 11(2):248, 1977.

[9] L. De Floriani and E. Puppo. Hierarchical triangulation for mul-
tiresolution surface description. ACM Transactions on Graphics
(TOG), 14(4):363–411, 1995.

[10] P. Dickinson. Instant Replay : Building a Game Engine with
Reproducible Behavior, 2001. http://www.gamasutra.com/
features/20010713/dickinson$_$01.html.

[11] H. Jones and M. Snyder. Supervisory control of multiple robots
based on a real-time strategy game interaction paradigm. In IEEE
INTERNATIONAL CONFERENCE ON SYSTEMS MAN AND CYBER-
NETICS, volume 1, pages 383–388, 2001.

45

http://www.opengl.org/
http://freeglut.sourceforge.net/
http://www.paulsprojects.net/tutorials/smt/smt.html
http://www.paulsprojects.net/tutorials/smt/smt.html
http://www.gamasutra.com/features/20010713/dickinson$_$01.html
http://www.gamasutra.com/features/20010713/dickinson$_$01.html

[12] B. Larsen and N. Christensen. Real-time terrain rendering us-
ing smooth hardware optimized level of detail. Journal of WSCG,
11(2):282–9, 2003.

[13] J. Nielsen. Ten Usability Heuristics. http://www.useit.com/
papers/heuristic/heuristic_list.html.

[14] S. Perkins, D. Jacka, J. Gain, and P. Marais. A spatial awareness
framework for enhancing game agent behaviour. In Proceedings
of the 2008 ACM SIGGRAPH symposium on Video games, pages
15–22. ACM New York, NY, USA, 2008.

[15] T. Ulrich. Rendering massive terrains using chunked level of detail
control. SIGGRAPH Course Notes, 3(5), 2002.

[16] L. Valente, A. Conci, and B. Feijó. Real time game loop models for
single-player computer games. In Proceedings of the IV Brazilian
Symposium on Computer Games and Digital Entertainment, pages
89–99. Citeseer, 2005.

[17] L. Williams. Casting curved shadows on curved surfaces. ACM
SIGGRAPH Computer Graphics, 12(3):270–274, 1978.

[18] U. Wiss and D. Carr. An empirical study of task support in 3d
information visualizations. In Proceedings of the International Con-
ference on Information Visualisation (IV), pages 392–399, 1999.

[19] K. Witters. deWiTTERS Game Loop Article. http://dewitters.
koonsolo.com/gameloop.html.

[20] A. Woo, P. Poulin, and A. Fournier. A survey of shadow algorithms.
IEEE Computer Graphics and Applications, 10(6):13–32, 1990.

[21] R. Wright and B. Lipchak. OpenGL superbible. Sams Indianapolis,
IN, USA, 2004.

46

http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html
http://dewitters.koonsolo.com/gameloop.html
http://dewitters.koonsolo.com/gameloop.html

Appendix A

User Test Presentation

47

User Test

 This user test has two sections:
 Data Visualisation
 Rendering Efficiency

 You are required to go through the slide show and
answer the questions on the provided answer sheet.

 When you are finished call me and I will pay you.
You may then leave.

Data Visualisatioin

 For this section you will be shown multiple videos
and you will have to identify certain things within
the videos.

 Each video is shown twice
 During the first time you may not answer the questions
 During the second time (and afterwards) you may answer

the questions

 The videos consist of competing bots within a
virtual environment

Data Visualisation

 The videos may or may not include additional data
visualisation to aid the answering of the questions

 Pay careful attention to the video during the first
viewing so that during the second viewing the
questions are easier to answer

Video 1

 In this video you need to identify the following:
 Two places where bots are killed
 Two places where bots are killed from

 Finally you must give a rating of how confident you
feel with the answers you have given

 Mark the locations on the answer sheet
 Cross for a location where a bot was killed
 Circle for a location where a bot was killed from

Video 1 – with visualisations

 Red is drawn on the map where bots have been
killed and green is drawn where bots have been
killed from

 First viewing
 Rember not to answer
 Click to begin

 Second viewing
 You may answer during and after this viewing
 Click to begin

Video 1 – without visualisations

 You need to watch and remember the locations
where the bots are killed and killed from.

 First viewing
 Rember not to answer
 Click to begin

 Second viewing
 You may answer during and after this viewing
 Click to begin

Video 2

 For this video you need to perform the following:
 Draw the path that the bot follows
 Identify whether the bot is in the Attacking or Moving

state more often
 Write out the order of the states of the bot

 Finally you must give a rating of how confident you
feel with the answers you have given

Video 2

 The states of the bot is identifiable by the icon above
its head

 Move Attack Defend Flee Camp Sneak

(You may refer to this slide at any time)

Video 2 – with visualisations

 The path is traced out by the bot and is colourised
depending on the state. The percentage of time a bot
was in each state is shown at the side

 First viewing
 Rember not to answer
 Click to begin

 Second viewing
 You may answer during and after this viewing
 Click to begin

Video 2 – without visualisations

 You need to rember the path as well as the states the
bot was in, in order to answer the questions

 First viewing
 Rember not to answer
 Click to begin

 Second viewing
 You may answer during and after this viewing
 Click to begin

Image 1 – without visualisation

 For this image you need to perform the following:
 Identify who a bot is attacking
 Identify whether a bot is attacking or moving towards the

flag
 Draw the path that a bot is planning on taking to get to

the flag

 Finally you must give a rating of how confident you
feel with the answers you have given

Image 1 – with visualisation

 For this image you need to perform the following:
 Identify who a bot is attacking
 Identify whether a bot is attacking or moving towards the

flag
 Draw the path that a bot is planning on taking to get to

the flag

 Finally you must give a rating of how confident you
feel with the answers you have given

Additional questions

 You have seen the system with and without
visualisations

 How useful would you say the visualisations are for
identifying features within the simulation?

 Any comments??

Rendering Efficiency

 For this section you will be shown a series of
images. Each image will show a rendered
environment rendered at different amounts of detail.

 The image which was rendered at full detail (100%)
will be identified for you. You need to say at what
percentage detail you think the others were rendered
at (0­100%)

Image 1 – Detail 1

Full Detail (100%) ?

Image 1 – Detail 2

Full Detail (100%) ?

Image 1 – Detail 3

Full Detail (100%) ?

Image 1 – Detail 4

Full Detail (100%) ?

Image 1 – Detail 5

Full Detail (100%) ?

Image 2 – Detail 1

Full Detail (100%) ?

Image 2 – Detail 2

Full Detail (100%) ?

Image 2 – Detail 3

Full Detail (100%) ?

Image 2 – Detail 4

Full Detail (100%) ?

Image 2 – Detail 5

Full Detail (100%) ?

Image 3 – Detail 1

Full Detail (100%) ?

Image 3 – Detail 2

Full Detail (100%) ?

Image 3 – Detail 3

Full Detail (100%) ?

Image 3 – Detail 4

Full Detail (100%) ?

Image 3 – Detail 5

Full Detail (100%) ?

THE END

 Call me so I can collect your answers and pay you
 Thank you for your time

Appendix B

User Test Questionnaire

56

User Test Questionnaire

Video 1:

a) Indicate two locations on the map where bots are killed and two where
bots are killed from. Draw an “x” where they were killed, and a “o” for
where they were killed from.

How confident are you with your answers? (1-10) :

b) Indicate two locations on the map where bots are killed and two where
bots are killed from. Draw an “x” where they were killed, and a “o” for
where they were killed from.

How confident are you with your answers? (1-10) :

Video 2:

a) Draw the path taken by the bot that is being followed.

b) Is the bot being followed in an Attacking or Moving state more
often?

 Attacking Moving (circle one)

c) Write out (in order) the states which the bot goes through

How confident are you with your answers? (1-10) :

d) Draw the the path taken by the bot that is being followed.

e) Is the bot being followed in an Attacking or Moving state more often?

 Attacking Moving (circle one)

f) Write out (in order) the states which the bot goes through

How confident are you with your answers? (1-10) :

Image 1 :

a) Who is bot 1 attacking? 1 2 3 4 5 nobody (circle one)

b) Is bot 2 Attacking or Moving? Attacking Moving (circle one)

c) Draw the path the bot 5 plans to take to get to the flag

How confident are you with your answers? (1-10) :

d) Who is bot 1 attacking? 1 2 3 4 5 nobody (circle one)

e) Is bot 2 Attacking or Moving? Attacking Moving (circle one)

f) Draw the path the bot 5 plans to take to get to the flag

How confident are you with your answers? (1-10) :

Additional:

In the range from 1 to 10, how useful would you say the visualisations are
for identifying features within the simulation? (10 being the most useful
and 0 being useless)

Any Comments??

Image 1:

Detail 1: _______ %
Detail 2: _______ %
Detail 3: _______ %
Detail 4: _______ %
Detail 5: _______ %

Image 2:

Detail 1: _______ %
Detail 2: _______ %
Detail 3: _______ %
Detail 4: _______ %
Detail 5: _______ %

Image 3:

Detail 1: _______ %
Detail 2: _______ %
Detail 3: _______ %
Detail 4: _______ %
Detail 5: _______ %

_

I have been paid R20 for participating in Wesley King's user test for his
honours project.

First Name: _______________ Surname: __________________

 Date: _______________ Signature: __________________

Appendix C

User Test Results

Figure C.1: Data recorded during the user test

58

	Introduction
	Key Success factors
	Ethical Issues

	Background
	Spatial Awareness Framework
	Environment Representation
	Level of Detail Rendering
	Shadow Techniques
	Simulation control
	User Interaction
	Data Visualisation

	Design
	System Overview
	Base AI and Competition Simulation
	High Level AI And Environment Querying
	Rendering and Data Visualisation

	Rendering and Data Visualisation Overview
	Interaction With Other Project Components
	Terrain Representation
	GUI Components
	Graphics Rendering and GUI Components
	Shadows
	Level of Detail
	Miscellaneous Optimisations
	User Interaction
	Data Visualisation

	Implementation
	Developement
	Heightmap Rendering, Texturing, DIA Conversion and Basic User Interaction
	Shadow Mapping
	Simulation Control and GUI Components
	Vertex Arrays and Chunking
	Integrating Prototype Code Into Single Application With All Features
	Integrating Code From This Part of The Project With The Other Parts
	Visualisation, User Interaction and Additional Features

	Testing and Evaluation
	Introduction
	Required User Testing
	Rendering Efficiency Testing
	Data Visualisation Testing

	Expected outcomes
	Results And Analysis

	Conclusion
	User Test Presentation
	User Test Questionnaire
	User Test Results

