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Abstract

Effective use of the environment in making strategic decisions is an im-
portant aspect in the design of bots for computer games and is garnering
increased attention from game designers. Previously level designers have
created the illusion of environmental awareness through careful scripting
and the placement of ’hints’ on level maps. As games begin to use more dy-
namic and random maps, these carefully constructed means for instructing
bots become less effective and so adaptable systems need to be established
that can provide bots with similarly informative information calculated dy-
namically.

Using a basic spatial analysis framework developed by Simon Perkins [16]
this project aims to create bots that decide on actions by analysing such
spatial features as width and curvature in addition to normal contextual
game information. These bots operate in teams and implement pathfinding
as well as flocking. Their behaviour is presented to the user through a
graphical interface that allows for insights into the bots’ behaviour and hence
enables refinement of the rule system. The aim is to test the utility of
Perkins’ framework for developing simple rule-based bots such as one finds
in games.

Our experimentation found no statistically significant data to suggest
that knowledge of environmental variables is advantageous to bots in this
implementation. Nevertheless the inclusion of the environmental data shows
promise and further research should be done in this area to further explore
the possibilities.
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Chapter 1

Introduction

Many computer games involve a user playing against opponents that are
either controlled by another user or by the computer. Computer controlled
opponents are known as bots and these bots are required to perform such
that a human user is sufficiently challenged by them in the game. In order
for a bot to display some seemingly intelligent behaviour it needs to “know”
certain things about the world that it is playing in.

Games have previously been released with a finite set of maps repre-
senting the game worlds. These maps contain clues, placed by the map
designers, that give bots additional knowledge about the world. These clues
allow the bots to behave very convincingly on a particular map, but this
approach does not create a bot that performs convincingly on any map (i.e.
the bots are not level independent).

For many games with randomly generated, or user created maps the
above method is not effective as it requires expertise and is a time consuming
procedure. Hence it is important to create systems that can speedily gather
information about a game world without input from level designers. Some
other relevant points are raised in [22] respecting the need to develop more
dynamic bots.

Many types of information can be gathered from the game world and
one such example is spatial information, such as is described in [16]. The
outcome of this project is useful for game designers who may not want to use
predefined maps or want to use less storage for bot logic. As the framework
does not require a designer to explicitly specify the spatial properties on a
map it could conceivably provide level independent bots.

1.1 Problem Outline

The project as a whole is to develop a tool that will allow a user to design
and refine bots and maps that make use of environmental information from
a spatial analysis framework[16]. The tool presents all of the information
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necessary for the user to make informed alterations to the environment or
to the bots and allows the user to test the performance of their creations.

This part of the projects seeks to answer the following two questions:

1. Does awareness of spatial features (specifically width and curvature)
significantly improve the tactical behaviour of bots?

2. Is there some rule combination that is significantly more effective for
improving bots’ tactical behaviour than other similarly complex com-
binations?

Two key success factors are extracted from the above aims, these are
(numbered accordingly):

1. The awareness of spatial features (specifically width and curvature)
significantly improves the effectiveness of bots.

2. A specific rule set results in significantly more effective bots than other
similarly complex combinations.

These key success factors will be assessed by playing bots that use dif-
ferent rule sets (with and without environmental awareness) against each
other and recording how many times each rule set wins. The bots that win
the most will be deemed more effective and statistical analysis will be done
to determine if the differences between rule sets is significant.

1.2 Division of Work

This project was a collaborative effort between Wesley King, Michael Talbot
and myself. Each part is developed and tested independently prior to final
integration. Work is divided as follows:

Engine and Renderer - Wesley King The engine controls user interac-
tions as well as the rate at which the simulator and renderer update (i.e. the
game loop). The graphical user interface allows the user to observe the game
and make insights into the bots’ behaviour. This in turn enables refinement
of the rule system. The world is presented in an intuitive way such that a
user is provided with a lot of information that is suitable to the situation
and easy to use and understand.

Simulator and Bot Control - Michael Talbot The game simulator
keeps track of all elements within the game such as which team has the flag
and where all of the bots are. This section also implements low-level bot
actions such as the behaviours, field D* pathing and flocking. The simulator
interfaces with the Bot Logic component in order to update the behaviours
and targets of the bots.
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Bot Logic - Gina Morris The main aim of this section is to determine
whether the spatial awareness provided by [16] can result in more effec-
tive bot behaviour. The system implements bot planning using analysis of
spatial features such as width and curvature as well as normal contextual
game information. This module is responsable for calculating targets and
behaviours for bots using a simple rule-based system.

1.3 Report Outline

This report concerns the implementation of a testbed to determine the sig-
nificance of incorporating a spatial analysis framework[16] into the logic of
game bots. Chapter 2 is a literary investigation into existing approaches
to bot design and other environmental analysis frameworks used in games.
This is followed by Chapter 3 which describes and justifies the technological
design of the system. The implementation process is discussed in Chapter
4, followed by testing, and analysis and discussion of results in Chapter 5.

1.4 Ethical Considerations

As this project does not make use of user tests it was not necessary to get
ethical permissions.

A lot of code that is used in this project was written by Simon Perkins
and permission was granted to use and reproduce much of it in whole or in
part. Other such references have been acknowledged in the code where it,
or its algorithms, are used.

This work is my own and all sources have been referenced in the Bibli-
ography. Informal sources such as websites are given in footnotes.
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Chapter 2

Background and Theory

There is a shift of attention in the game development industry towards
the improvement of game bots [7]. This project was proposed in order to
test the utility of Simon Perkins’ spatial analysis framework[16] in computer
games. Specifically, to determine whether spatial information can be used for
developing effective yet simple, rule-based game bots for a scenario requiring
teams and strategy. The framework has previously only been tested in much
simpler cases; a racing scenario and a very basic war scenario.

To examine the utility of the framework it was proposed that a tool be
developed enabling a designer to incorporate spatial features into a bot’s rea-
soning process, and then observe the performance of the bot in a customiz-
able game world. This tool is a testbed, a platform with all the elements
necessary to conduct tests on the framework.

The remainder of this chapter looks at the relationship that current game
bots have with their environment as well as introducing terms and concepts
neccessary to understanding the project.

2.1 Bots in Games

The term bot is often used interchangeably with agent which has many in-
terpretations. Wooldridge and Jennings describe an agent as “autonomous,
proactive, reactive and socially able”[25]. Hayes-Roth states that ”Intelli-
gent agents continuously perform three functions: perception of dynamic
conditions in the environment; action to affect conditions in the environ-
ment; and reasoning to interpret perceptions, solve problems, draw infer-
ences, and determine actions.”[10]. As the term agent is rather loaded in
the artificial intelligence (AI) community we shall only be using the former
term bot.

The Bot Logic referred to throughout this report is the ‘thinking’ part of
the bot, it performs reasoning to determine actions from information about
the game world. The way a bot behaves is determined by the the state

8



it is in. Some common states that the bot could be in include defensive,
attacking or sneaking states.

In this report the term bot refers predominantly to the computer con-
trolled opponents in games of the ‘shooter’ genre (including tactical shooters,
first person shooters, etc) such as Quake1.

Types of games that are better to demonstrate the effects of enhanced
bots are such tactical shooters, deathmatch games and capture the flag
(CTF) style games. Tactical shooters require realistic combat and team sup-
port while agents in deathmatch games just aim to kill as many unfriendly
units as possible. Capture the flag is normally implemented following the
rules explained in [1] but could also be run with each team aiming to steal
the flag from their opponent’s base or aiming to possess a single central flag.

In video games the best measure of how effective a bot is is ultimately
the level of enjoyment[9] or challenge experienced by the users playing the
game. This is sometimes acheived by making bots behave in realistically
human ways[21], this only requires that the bot “act humanly” and not
that it “think humanly”[19]. As this project is to develop a tool for testing
different rules, it is not necessary for users to ‘play’ against the bots. Bot
effectiveness is rather to be determined from the results of lower-level goals.
By pitting teams of bots against each other we can deem those that win
more frequently and in less time more effective.

2.2 Bot AI in Games

Bots do not need to use complicated artificial intelligence (AI) to appear
intelligent; in fact the simpler approaches seem to be preferred by many[15].
This is because they are easier to implement and do not necessarily appear
less intelligent in game. Infact, the increased complexity can sometimes
make characters behave worse from the human players’ perspective[14]. An-
other factor limiting bot design to simpler techniques is that bots need to
process information quickly, this is especially important in real-time games.
There are two distinct programming styles used for bots, namely dynamic
and static [18]. Bots can also be implemented as a hybrid of dynamic and
static styles.

Static bots constantly refer back to a pre-processed representation of the
world (usually using waypoints or pathnodes) that shows which areas are
suitable for which tasks and helps bots select good paths. Static bots are
commonly used as they require less computation and still provide a good
gameplay experience. The main disadvantage of using purely static bots is
that they cannot be used on all maps. An example of static bots are those
discussed in [24].

1http://www.idsoftware.com/games/quake/quake/
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Dynamic bots on the other hand, dynamically analyse and possibly even
learn the levels as they play [4]. The advantage of using dynamic bots is
that they can be used on any map. Dynamic bots are also more commonly
associated with emergent behaviour because they do not stick to the same
predictable patterns.

Reactive architectures are defined in [25] ”to be one that does not include
any kind of central symbolic world model, and does not use complex sym-
bolic reasoning”. Examples of this type of control mechanism are Brooks’
subsumption architecture [3] and Rosenschein and Kaelbling’s situated au-
tomata [13].

The simplest system that is suitable for the scope of this project is a
basic rule-based system derived from a traditional expert system[12] in that
it has a knowledge base (kb), a rule base(rb) and an inference engine. The
knowledge base holds information that is gathered by the bot from the game,
such as it’s own health level and which enemies it can see. The rule base
holds all of the rules that the bot will abide by, these rules represent possible
game situations and the resulting actions that the bot must take. The bot
uses an inference engine to infer from the knowledge base which rules are
true, it does this by finding a rule that is made up of only true pieces of
knowledge. This can be seen in Example 2.1.

If the kb contains:
cheese is visible
cat is visible

And the rb contains rules:
if cheese is visible and cat is notVisible then eat cheese
if cat is visible then hide

Then the inference engine will test each rule against the current knowledge
and will come to the conclusion that the mouse must hide because the cat
is visible.

Example 2.1: A simple rule-based system for a mouse

2.3 The Game Environment

Bots in games are all aware of the environment to some degree although it is
usually not in a way that bears any likeness to how a human player perceives
the game world. When talking about the environment we are referring to
the ‘physical’ properties of the game world. Relying more on information
about the environment can help bot developers in creating bots that are
“more adaptive to new situations, harder to game, less predictable, and

10



more variable”[8]. This “environmental awareness” could greatly enhance
the effectiveness and reusability of bots albeit at the cost of simplicity[9].

Agents are usually designed with access to perfect information because
limiting them to human-like perceptions would advantage human players
who are better able to ”fill in the blanks” from incomplete data[2]. Perfect
information means that the bots know everything about the game world and
hence designers need to be selective about what information they use.

There are a few common ways to provide bots with environmental infor-
mation, these methods can be classified as level independent (the information
is worked out dynamically, as the game progresses), or level dependent (the
information is determined beforehand and saved for use within a specific
world). level independent approaches are synonymous with dynamic bots
and level dependent methods with static bots. A prevalent level dependent
approach is the placement of “hints” in the world that cannot be seen by
human players, only by bots. These are placed by level designers to inform
a bot of where to go or what to do when it sees the hint. Pathfinding is a
simple example of level independent environmental information gathering[9].

Some environmental information and ways of gathering it are investi-
gated below. This project focuses on the spatial properties, width and cur-
vature.

Visibility There are two interpretations of visibility, one is ‘what an agent
can see’ and the other is ‘the degree to which an agent can be seen’.

Line of sight (LOS) is an efficient approach but does not always provide
optimal behaviour[5]. Another approach is the use of visibility graphs[6]
which represents intervisible locations as a graph (these are also commonly
used to perform pathfinding).

Increased awareness of how visible an agent is at point in the virtual
world would greatly assist their ability to sneak and hide making them more
efficient. This property can be calculated using Perkins’ spatial analysis
framework[16] which is discussed in more detail below.

Figure 2.1 shows where on the map the red dot is visible from (green
region), this is the same as the region that it can see.

Terrain More steeply sloped terrain often implies a slower path across
the terrain. This is commonly implemented by dividing the world up in
some manner (e.g. triangulating the world) and then weighting the nodes
to represent steepness. This deters pathfinding algorithms from choosing
a path through that terrain and so the bot would be displaying seemingly
intelligent behaviour. Pottinger notes that ”The simplest and most brute
force approach to terrain analysis is pathfinding”[17]. Waypoints are a level
dependent and frequently used way to implement pathing. They are like
virtual signposts erected by level designers and they tell bots where to go.
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Figure 2.1: Visibility at a point.

Waypoints provide a high level of control over the bots but adding them can
be “laborious, time consuming and error-prone”[9].

Pathfinding can also be used to determine connectivity of spaces. An
alternative for determining higher-order connectivity is proposed in [16] and
discussed in section 2.4.

Spatial properties An example of a useful spatial feature to consider
when strategising is that of a chokepoint or bottleneck[24] (Figure 2.2).
This is where a wide area narrows thereby possibly forcing a concentration
of players, hence it can provide a strong point of defence.

Figure 2.2: Example of a bottleneck: note how the red bots can spread out while
the blue bots are forced close together.

The above example is just one case where spatial properties of a map
can be useful to players (both human and bot). However, human players
are capable of instantaneously evaluating spaces due to an ability to piece
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together information[2] while bots rely on designer placed hints or embedded
frameworks.

Areas can be explicitly labeled as having certain spatial properties (ba-
sically these are hints as discussed already) but this requires a great deal of
work and understanding from the designer. Another approach discussed in
[24] demonstrates the use of existing waypoints, LOS and line-of-fire infor-
mation to analyse areas.

The approach of [16] differs from existing methods as it examines the
intrinsic properties of a space, namely width (the openness of a space) and
curvature (how sharply a space curves). These properties can potentially
be used to make bots’ behaviour vary to suit different types of spaces. For
example, running or checking behind oneself in wide open spaces or sneaking
close to walls in narrow spaces with sharp corners.

2.4 Spatial Analysis Framework

Figure 2.3: The Skeleton (red) is created from a Voronoi Tesselation (blue lines)
between polygons in the world

As this project primarily investigates the utility of Perkins’ framework it
is important that the framework be described in more detail. For a detailed
explanation of how the framework works see [16].

The framework uses Voronoi Diagrams to create a skeleton in the centre
of the walkable part of the map (walkable means that there are no obstacles
there, the bot can literally walk in that region). Figure 2.3 shows the voronoi
tesselation drawn in blue and the resulting skeleton through the world (in
red). Using the skeleton, one can divide the walkable area of the map into
polygons (Figure 2.4) which are stored in a quad tree,allowing quick look-up
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of polygons containing a point. A skeleton can be extracted from any map
which makes it a level independent resource for gathering information.

Figure 2.4: Walkable world broken into Polygons

The framework has many possible uses and a few are outlined below.
The framework can be used for pathing and determining connectivity.

To do this one need only identify logical paths between points using the
skeleton. It can easily be determined if a space leads to a dead end because
the skeleton is folded in on itself (Figure 2.5).

Figure 2.5: Folded in section of a skeleton

Using a skeleton framework an agent can be implemented to recognize
areas of potentially higher traffic which may be ideal for “camping” (waiting
in an area for an opponent to come to you, rather than actively seeking
them out2). These areas would be points where a relatively large number
of skeleton intersections could be seen as more intersections mean a higher
probability that the enemy will pass within range.

The main use of the skeleton for the scope of this project is to determine
the width and curvature of spaces. The width of a space is defined as the

2http://en.wikipedia.org/wiki/Camping_(video_gaming)
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distance from one side of a space to the other and the curvature is defined
as the dgree to which the skeleton bends. The exact details of how width
and curvature are calculated are discussed in chapter 4.

2.5 Quadtrees

In order to use the spatial analysis framework it will be important to be able
to find a point in the space. An efficient way of doing this is with region
quadtrees[20].

A quadtree is a tree structure that partitions a rectangular, usually
square space. Each node represents a rectangular region and subdivides
this region into 4 equally sized subregions which are the children of the
node. This is a region quadtree because it is being used to partition space
occupied by structures (the obstacles in the world). Other quadtree’s may
hold buckets of objects (e.g. points) in their child nodes.

2.6 Summary

It is evident that designing bots to experience the world like people do
is overly complex and not required for computer games. Rather, creating
bots that appear to have human-like behaviour is all that is needed. Envi-
ronmental awareness will only be useful to bots if they can use it without
compromising their effectiveness hence allowing bots to ”cheat” is accept-
able.

Some environmental factors need not be made more complicated than
they already are while other factors are relatively unexplored. The chal-
lenge of creating bots that do not rely on level designers placing extra area
information into the map is going to be tackled here. Bots are to be able
to automatically extract information from the environment and use existing
game information to inform their actions. The spatial analysis framework
in [16] is to be tested.

A simple rule-based system is sufficient to implement for this project.
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Chapter 3

Design

This chapter discusses how the final solution was arrived at and offers mo-
tivations for design decisions made in terms of the ‘key success factors’.

This project component is tasked with the creation of some test to deter-
mine whether the use of spatial awareness values provided by [16] results in
more effective performances of game bots in a team-strategy scenario. The
system makes use of spatial features as well as the normal contextual game
information.

The key success factors for this section as proposed in the initial project
proposal are:

• The awareness of spatial features (specifically width and curvature)
significantly improves the effectiveness of bots. This is measured by
the proportion of games won by environmentally aware bots versus
similarly complex bots that do not make use of the spatial features
provided by [16].

• A specific rule set is found to result in significantly more effective
bots than other similarly complex combinations. This is measured by
analysing the results of all rule sets (with and without environmental
awareness), and determining if one wins a significantly large proportion
of the time.

The following design goals must be ensured in order to test the validity
of the ‘key success factors’.

Environmental Variables:

• Environmental variables must be recoverable from the spatial
analysis framework during the running of the program.
• Environmental variables must be incorporated into rules so that

they directly influence the inference process and result in envi-
ronmentally aware behaviour.
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Rules:

• New rules must be easy to create.

• Existing rules must be easy to change.

• Rules must be straightforward and easily understandable.

Analysis

• Rule sets must not be difficult to analyse to determine how effec-
tive they make bots.

3.1 Overview

The final project is a combination of three individual components which
each tackled different areas of the problem, these sections are Engine and
Renderer, Bot Simulation and Control and the Bot Logic. The problem is
separated this way so that each group member can focus on their section
without waiting for the other sections to be complete. Separation also allows
for independent testing and validation before final integration. Figure 3.1
shows an overview of the system architecture, more specifically, it highlights
the Bot Logic section which is the focus of this report.

3.2 Interfaces

The three components communicate at only two points as can be seen in
Figure 3.1, these points are:

• Between the Engine and the Simulator

• Between the Bot Control and the Bot Logic.

This means that only two interfaces are needed. This minimisation of
communication between sections allows less room for error and improves
performance. Sections are also more independent and able to be tested and
validated independently. Independent testing is necessary to determine if
the key succes factors have been met.

The Engine/Simulator interface is relatively simple with the engine pass-
ing all information relevant to that particular simulation when the simulator
is created. From there the engine simply calls the simulators update func-
tion for each update step and the information required by the engine and
renderer is available for reference in the simulator.

The Bot Control/Logic interface is also constantly accessed. Figure 3.2
illustrates the loop of the interface. Each bot queries the Bot Logic whenever
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Figure 3.1: System architecture overview

a relevant game event occurs (See Triggers). The bot sends game information
to the Bot logic which can determine a new target and behaviour for the
bot.

3.3 World Data Structures

3.3.1 Skeleton

One of the main aims of this project is to determine whether using the spatial
analysis framework developed by [16] can enhance the performance of game
bots. To do this the environmental variables need to be calculated using the
framework during the running of the program. This framework has previ-
ously been tested using a racing scenario and a simple war scenario. This
project examines the framework using a more complicated team-strategy
scenario and hence requires certain extensions and deviations from the pro-
vided framework.

The skeleton framework is explained in more detail in chapter 2 and in
[16]. The extraction of width and curvature from the spatial framework is
discussed in chapter 4.

[your comment: You need to say a bit mroe about waht tehse structures
contain and why they are useful, and how they are used, and comment on
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Figure 3.2: Flowchart showing logic processes

how this impacts on what you are trying to do. Ditto for Maps.
Information on the skeleton is provided in background chapter. should I
discuss more here anyway? ]

3.3.2 Maps

The game world is effectively two-dimensional (2D) but each map is con-
verted to a heightmap and rendered in 2.5D to give the appearance of a
three-dimensional (3D) world. This is used because it enriches the visual
appeal of the graphics without being computationally expensive.

The part of the world that the bots are able to walk on is represented as
2D in memory regardless of the heightmap because using a 3D world repre-
sentation is not relevant to the problem. A 2D world simplifies pathfinding
operations and is also more appropriate for the spatial framework (which
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(a) Existing game world (b) Polygons drawn from
world

(c) Polygon map

Figure 3.3: Example of how one could extract a polygon based map of obstacles
from an existing game world

currently only supports a 2D world).
The spatial analysis framework uses a skeleton file which stores the skele-

ton and other data associated with the skeleton. This skeleton file is created
from a map of polygons representing the obstacles in the environment which
makes it simple. Maps can also be created for existing game worlds, this is
demonstrated in Figure 3.3. (original image1)

3.4 Environmental Bot Logic

The Bot Logic is required to determine new targets and behaviours for bots
each time a game event (trigger) occurs. When calculating these targets
and behaviours the system will take into account all triggers that have oc-
curred and the current game context. Some rule sets will make use of extra
knowledge of spatial properties (width and curvature) at the bots position.
Testing rules that don’t use the environment is the control as it allows one
to observe the relative performance of environmentally aware bots.

The rules that are used in each rule set should make sense in the context
of the game. This means that the rules should not tell bots to do counter-
productive things like attack their own team members or take the flag to the
enemy base. An example of a comprehensive rule set is given in Appendix
A.1.

[Patrick, I’m not quite sure what to do in this part. I’m really
struggling with linking it up to the goals and success factors. I
know why it links up but I can’t seem to get it on paper. Also,
the planning section below, you said I should ”present how I have
chosen to implement planning...” But I’m not really sure what
you mean.]

1http://www.onetonghost.com/irondukes/
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3.4.1 Planning

There are many AI methods available (e.g. neural networks, genetic al-
gorithms, production system, subsumption architectures, etc.) that could
be used to determine an appropriate behaviour, but for the scope of this
project it is not necessary to implement anything more than a simple rule-
based system. This is because the game world is very simple and because
games do not use the rigourous AI that is par for the course in academic
pursuits[9]. Behaviours are determined by rules that take into account vari-
ous environment variables and game triggers. The rules must be simple yet
lead to intelligent behaviour in the game world. Rules follow the form:
IF relationship AND relationship AND ... THEN [behaviour] [target]

Many rule sets have to be tested in order to determine a more effective
set, hence it is imperative that the rules can be read from a file at runtime.
As this is fundamentally a testbed it makes sense that the system uses strings
to represent rules. String comparisons are slower than comparing other data
types but the speed is sufficient for this project. String representations allow
users not only to write new rules, but also to extend the rule system quite
easily.

3.4.2 Triggers

Triggers are game events that possibly require the bot to change its be-
haviour. Each is chosen because it should represent a large shift of tact.
Triggers in the system are as follows:

A team captures the flag
When the flag is captured the bots will want to change their approach.
If the other tean has the flag the bots will want to try and steal the it
away while, if the bot’s team has the flag, they will need to return it
to their base in order to win the game.

The flag is dropped
This is important for similar reasons to above. In this case, when the
flag is dropped both teams will want to grab it as this is necessary to
win the game.

Visibility information changes
Information concerning which bots can see which other bots changes
throughout the pame, for example two bots of opposing teams come
within visibility range of each other and the visibility array changes.
This is important because when a bot sees it’s enemy it must take
action to kill or escape, otherwise the bot may itself be killed.

A bot reaches it’s target
When a bot reaches the target position specified by its previous call
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to the Bot Logic it has accomplished a “mini goal”. It then wants to
reassess the situation and decide what to do next.

A bot dies
The death of a bot is a necessary trigger as the rest of the bots can
reassess what they are doing. For instance, if a bot is shooting at an
opponent and that opponent dies the bot must not continue shooting
at the dead.

3.4.3 Behaviours

Behaviours are determined by the Bot Logic and implemented by the Bot
Control component thus maintaining a clear distinction between the logical
processes and implementation. The behaviours display sufficient variety
so that more outcomes are possible and the solution space can be more
comprehensively explored in order to acheive the second key success factor.
Behaviours are made whole by the use of a suitable target. Behaviours
implemented in the game are as follows:

Attack Pursue and attack a visible enemy.
Our game is not just a ‘race to the flag’ because it involves conflict.
Attacking is a common offensive conflict behaviour encountered in
games that implies a bot engaging with a specific opponent.

Flee Retreat towards a point, walking backwards.
When a player encounters an enemy and wants to get away it is not
sensible to turn away from the opponent to flee as they can then just
shoot you in the back. This is why fleeing bots will face the direction
they are moving from in order to continue shooting any opponents
that pursue. This can be interpreted as defensive conflict.

Move Walk towards a point.
The ability to move around the map taking no distinctive actions is
encountered in most games. The behaviour that emerges from using
Move is determined more by the target that the bot is moving towards.
Different targets (outlined in subsection 3.4.4) can change the result of
using Move from an exploring type action to a retreating action (like
Flee but walking forward)

Camp Scan the surrounding area from a point.
Camping is often frowned upon in games, perticularly in deathmatch-
type games. However, in CTF-type games it can be very useful for
players to camp and cover team members when attempting to get the
flag. Base camping is also a familiar practice where bots camp at a
base, be it their own or the enemy’s. Camping prevents a bot from
being snuck up on as it is always checking in other directions.
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Sneak Walk towards an enemy without shooting at them.
Sneaking can be used to approach an enemy without them detecting
you. An example is if an enemy is guarding the flag, instead of drawing
attention to itself and possibly being killed a bot can stealthily grab
the flag. Sneaking is only sensible if the bot has not already been seen
by the enemy.

Defend Protect an allied bot by keeping close and shooting enemies that
come within range, walk backwards.
Defending is also a common behaviour encountered in computer games
involving teams. It allows the team to rally around a member to
prevent harm coming to that member.

3.4.4 Targets

Bots are given targets that are relevant to the behaviour they have. A target
can either be a position on the map or a reference to another bot. The range
of target options is chosen to provide the above behaviours with the most
possible resulting actions. Possible targets are as follows:

Random Enemy A completely random bot from the enemy team.
Useful for Attack and Sneak behaviours

Random Ally A completely random bot from the current bot’s team.
Can be used for Defending or just for clumping a team together.

Flag Carrier The bot that is carrying the flag. Useful to either Attack the
flag carrier if it is an enemy or to Defend if they are in the same team.

Base position The position of this bot’s base. Useful for base camping or
retreating (Flee or Move).

Enemy Base Position The position of the enemy bot’s base. Useful for
base camping.

Current Position This bot’s current position in the world. This can be
used to ensure that a bot maintains it’s position in the world. A bot
can Camp at it’s current position to ensure it is not being snuck up
on.

Random Position A random position in the walkable part of the world.
This is for when a bot is exploring the world using Move. In some
cases bots may start off with knowledge of where the flag is but other
times it may be desireable for the bot to explore the world. Random
positions can also be used to make bots scatter in different directions.
(Move or Flee)
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Flag Position The position of the flag. This is used when a bot is aware
of where the flag is and can then Move directly towards it.
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Chapter 4

Implementation

This chapter discusses the project implementation. It examines the use
of data structures and algorithms, adaptations to existing code, as well as
describing problems and their solutions

4.1 Implementation Details

4.1.1 Platform

It was agreed that developing all of the components in the same environment
would allow simpler integration. Linux was the preferred Operating System
(OS) of all group members as it has many open source libraries that could be
used for development. Use of Linux also greatly simplified the integration of
Perkins’ framework[16] as the code supplied was developed in a very similar
environment.

The project was implemented and tested in Ubuntu 8.10.

Libraries used during implementation (directly and indirectly) were:
libqhull-dev; CGAL 3.4; Boost 1.35; bgl-python; libsdl1.2-dev; libsdl-image1.2-
dev; OpenGL; gtk+; gtkglext; libglade; libexpat

4.1.2 Language

C++ was the language chosen as it is stable, time efficient, allows openGL
(for the rendering component) and allows efficient interfacing between com-
ponents using pointers. Additionally, all group members are able to code
satisfactoraly in C++.

Some python code was provided by Simon Perkins and this was used in
it’s original form wherever reasonable to save time.

25



4.2 World Data Structures

The data structures that make up the spatial analysis framework are encap-
sulated in the Environment class. The Environment class also contains other
information and methods necessary for creating and interfacing with the spa-
tial framework. This class is instantiated once by the simulator during the
program’s initialization. The retrieval and use of these data structures is
expanded below.

4.2.1 Raw Map Files

The different components of the system all use maps to acheive their key
success factors.

• The spatial analysis framework requires a Skeleton file which is ex-
tracted from polygon representations of the obstacles of the world
(This is explained in detail in the following section)

• The pathing implementation requires a .dia file representing the walk-
able regions of the map as triangulated polygons.

• The renderer uses a heightmap in order to render the world in 2.5D.
The darker a pixel in the image is, the higher that point is in the
rendered world

Each of these maps is required to be a different format and so a process
was developed that allows the creation of input files from a singular initial
map file (Figure 4.1). This is automated by using the python script in
Appendix B.1 but sometimes additional changes need to be made manually.

Using this process ensures that data is consistent between components.
The biggest problem encountered when regulating the maps was the dis-

crepancies of the coodinate systems used. The renderer uses the dimensions
of the heightmap image while the bot components both use the dia map
coordinates. This was solved by converting all points that pass between the
engine and simulator to the correct value. The bot logic component is not
required to perform and point conversions as it communicates only with the
simulater component which uses the same coordinates.
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Figure 4.1: The pathing triangulation map (a) is stripped by colour to only contain higher order polygons representing the obstacles in
the world (b). The height map (e) is created by shading obstacles which are then rendered (f). The skeleton of the world (c) is extracted
from the stripped polygon map and a skeleton file (d) is created. The skeleton file is the input necessary to build the spatial framework
(g).
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4.2.2 Extracting the Skeleton

The code used to extract the skeleton from the stripped map was provided
by Perkins. It is written in python and makes use of many of the libraries
mentioned previously. This program can also produce visibility information
such as that shown in figure 2.1 but this information was not used because
of the limited scope of the project due to time constraints.

Initially the code would not compile on any available machine but this
was eventually corrected. There were a few slight changes to the format
of the output skeleton file throughout the implementation. These changes
generally only required slight alterations to the code used for parsing the
skeleton file, this is covered in the next section.

4.2.3 Creating the Spatial Analysis Framework

The framework code provided was written in python by Simon Perkins who
was unwilling to code a suitable interface between the python and the C++.

The reasons for this were:

1. He is not a full resource on this project.

2. Interfacing to the python code would have created even more depen-
dencies on python libraries.

It was decided that the required framework code be rewritten in C++.
In addition to simpler integration, rewriting the code increases familiar-

ity with the data structures and allows customizations that are more suitable
for the scenario. Environmental information is also accessed more efficiently
when the data structures are more readily accessable.

C++ is somewhat more sophisticated and less intuitive or forgiving than
Python and so the C++ implementation requires thought despite primarily
consisting of converted code.

The skeleton data is read from the skeleton file at the start of the pro-
gram and parsed into a series of data structures. These data structures are
maintained in memory and are fundamentally the basis of the framework.

The following objects are used to construct the framework.

CollatedMappingData A vector of these objects make up the game world.
CollatedMappingData objects contain a ParameterisedLine represent-
ing the skeleton and another representing the boundary; an ordered
list of linear mappings and a list of OppositeMappingData objects
associated with this CollatedMappingData object.

BoundaryToSkeletonSection BoundaryToSkeletonSection objects are lin-
ear mappings that map a section of skeleton to a section of the bound-
ary.
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OppositeMappingData This object associates a section of the skeleton
with a section of skeleton from an opposite CollatedMappingData ob-
ject.

ParameterisedLine Parameterised lines are list of points defining a piece-
wise linear manifold.

4.2.4 Mapping a Point to the Skeleton

The environmental information at a point needs to be accessable throughout
the running of the program. In order to get the environmental data at
point P, one needs to know which objects in the spatial analysis framework
are associated with P. To make this possible, the linear mappings of the
framework are converted to polygons. The polygons are inserted into a
quadtree based on their position in the world and then the point in question
is checked against the polygons.

The following objects are used to find points in the framework:

QuadTree Holds the root node of the quad tree.

QuadTreeNode Contains a list of QuadTreeItem objects that fit into the
space represented by this node, links to up to four children nodes that
further divide the space.

QuadTreeItem Encapsulates a Polygon object and also maintains its bound-
ing box.

Polygon A polygon chunk of the world represented by an ordered list of
points that make up the boundary of the polygon. All Polygon ob-
jects have references back to the CollatedMappingData and Bound-
aryToSkeletonSection objects that they are associated with.

pick(node , point):

item_list = []

for items in node do

if item.bounding_box.contains(point):

item_list.add(item)

end if

end for

for child in node do

pick(child , point)

end for

return item_list

Listing 4.1: Pseudocode of algorithm used to find the polygons that contain a point
within their bounding boxes

29



(a) Outside the bounding box (b) Inside the bounding box but out-
side the polygon

(c) Inside the polygon

Figure 4.2: Determining if a point is inside a polygon using a bounding box.

Figure 4.3: A point on the boundary of a Polygon

bool onEdge = false;

if (( prev_point.y == next_point.y) &&

(test_point.y == prev_point.y) {

onEdge = true;

}

return onEdge;

Listing 4.2: Code to check if point is on horizontal edge

To locate a point in the world one begins by querying the quad tree using the
pick() method. This recursive method outlined in Listing 4.1 returns a list
of QuadTreeItems where the point is within the bounding box (see figure
4.2b and figure 4.2c). The point is then checked against the Polygons in
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the returned QuadTreeItems using the Polygon’s containsPoint() method.
containsPoint() is an implementation of the winding number point in
polygon strategy[11]. The point can technically only be in one Polygon so
when one is found the program stops looking.

A problem encountered when checking if a Polygon contains a point was
if the point lay directly on a horizontal edge of the polygon as in figure 4.3.
To combat this a check was added to containsPoint() to see if a point lies
on any horizontal boundaries the polygon may have (Listing 4.2.

Once the correct Polygon has been found it is possible to map the point
onto the appropriate skeleton using the associated linear mapping.

To debug the framework,we required a visualisation of the world structure.
We wrote a method (makeOff(), Appendix B.2)to write a list of Polygons
to an off file which can then be viewed using GeomView1. GeomView This
not only simplified debugging, but also allowed detailed exploration of the
behaviour of the spatial framework and enhanced our understanding of it.

4.2.5 Mapping a point to the Linear Mapping

It is also necessary to be able to map a point on the skeleton to a point on
the linear mapping.

As per the original work a linear mapping is established between a section
of skeleton and boundary. This mapping allows us to obtain a parameterised
value on the boundary given a parameterised value on the skeleton, and vice-
versa. In this sense, a linear mapping can be viewed as defining a set of lines
over the space between the skeleton and boundary. Given a point within
this space, we minimise the distance between the point and a line defined
by a particular skeleton parameter value.

A line is obtained from a given skeleton parameter value, t, by using the
the linear mapping to determine a boundary parameter value s. The point
on the skeleton at t and the point on the boundary at s form the endpoints
of the line.

Thus given a search point, p, and a skeleton parameter value, t, we define
a function f(t,p) to obtain the distance between p and the line defined by
skeleton parameter t. We minimise f(t,p) using x iterations of the golden
section search to determine the line that p lies on and thereby, the skeleton
parameter t defining the line. [16]

4.2.6 Extracting Width and Curvature

At this point it is possible to work out the width and curvature using the
knowledge of the position on the skeleton.

1http://www.geomview.org/
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Figure 4.4: Calculating width using average width

Both width and curvature are calculated as mean values over a length of
skeleton making the values more representative of the space. For example,
in figure 4.4 the width at the marked position is 4. However this is not an
accurate representation of the space because it as a sudden narrowing which
then widens again. If one calculates the average with a few samples one gets
a better representation:

width =
sum of widths

number of samples

=
7 + 6.2 + 4 + 6.4 + 6

5

=
29.6

5
= 5.92

Width
The width at a point on the skeleton is calculated by finding the point
on it’s associated boundary and also the point on the opposite boundary.
The point on the opposite boundary can be found by finding the boundary
point of the OppositeMappingData object associated with that point on the
skeleton. The width is the sum of the distances from each boundary point
to the skeleton point.

Figure 4.5: Width

Dead-ends, or sections of skeleton that end in an end-point (see Figure
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2.5) do not have any associated OppositeMappingData as they are disconti-
nuities on the skeleton. In these cases, the width is set to be twice the value
of distance between the boundary and the skeleton. This is an appropri-
ate solution since as the skeleton approaches the dead-end the width tends
towards this value as the end-point of the skeleton is equidistant from all
points on the boundary.

Curvature
Curvature is assentially the degree to which a space curves. It is possible

(a) Angles (b) Normals

Figure 4.6: Curvature can either be determined using angles between adjacent line
segments (a) or using the dot product of adjacent surface normals(b).

to estimate the curvature of a space by examining how the skeleton bends,
this is because the skeleton is literally the backbone of the space.

Initially attempts were made to calculate curvature as the average of
the angles between the line segments of the skeleton (Figure 4.6a). This
provided a sub-optimal measure of curvature since it only describes discrete
changes in skeleton direction rather than an averaged measure of curvature
over a section of skeleton.

2D surface normals were eventually implemented as an improvement over
the angles method (Figure 4.6b). The curvature is calculated as the average
k where k is calculated as follows:

Suppose α is the unit normal vector of line segment AB, and β is the
unit normal vector of line segment BC.
Therefore, k at vertex B is 1.0− α · β.

Figure 4.7 shows how the dot product works and this shows that tighter
curves would have higher k and flatter curves would have lower k as demon-
strated in Figure 4.8.

4.3 Environmental Bot Logic

The Brain class encapsulates the objects required for the functioning of the
bot logic. Each team of bots in the game has one brain associated with it
because all bots in a team use the same set of rules. The brain has methods
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Figure 4.7: |a · b| = |a||b| cos θ; hence, if a and b are both unit vectors then:
|a · b| = cos θ. This means that acute angles will have |a · b| > 0, right angles will
have |a · b| = 0 and obtuse angles will have |a · b| < 0

Figure 4.8: Example k values

for gathering information about the game (getKnowledge()), reading rules
in from a file (readInRules()) and for updating the behaviour and target
of a bot (updatePlan()).

4.3.1 Accessing Game Information

In order for the Bot Logic to determine behaviour modes and targets from
rules it first needs to gather raw information about the environment and
the game. The game information is sent from the simulator to the brain
as a parameter of the updatePlan() method which is called for each bot
whenever a trigger occurs. The game information is sent in a PlanningData
struct (Listing 4.3) and contains all necessary data for the bot logic. En-
vironmental information is gathered by querying the bot’s position in the
world as described in section 4.2.6.

The PlanningData struct was easy to adapt whenever new data became
available in the simulator or required by the brain.
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struct PlanningData{

Bot* thisBot;

const vector <Bot*>* bots; // this bot’s team

const vector <Bot*>* enemyBots; // enemy bot team

Bot* flagCarrier; // bot carrying flag

int teamSize;

const Point flagPos;

const Point basePos;

const Point enemyBasePos;

// Visibility arrays representing which bots can see each

other

bool *** visibility;

int teamWithFlag; // -1 if no team

// phases change between neutral and captured

bool gamePhaseChange;

bool flagMove; // has the flag moved

bool beenShot; // has thisBot been shot

// a pointer to the environment so that width and curvature

can be extracted.

Environment* environment;

};

Listing 4.3: PlanningData struct

4.3.2 The Bot Logic Rule System

The rule system is made up of a rulebase (rb), a knowledgebase (kb) and
an inference engine (ie). The use of these components to create a working
rule-based system is explained below.

Relationships and the KnowledgeBase
Relationships are ‘pieces of information’ about the game world. They are
represented by strings in this implementation as it permits straightforward
changes. Relationships look like this: thisBot is carryingFlag. The
three parts are classified A="thisBot", relation="is" and B="carryingFlag".

Knowledge Relationships are created from the data gathered about the
game world and placed inside a KnowledgeBase object (kb). The kb uses
the stl map container to store Relationships because it implements the use
of keys, like a dictionary. The Efficient look-up of relationships in the kb is
improved by using a special RelationKey (A, relation) rather than just a
single valued key.

In order to use the map container I had to overload the <operator but
there is no definitive ordering for Relationships and so I implemented it
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as just a string comparison of the As and then a string comparison of the
relations.

If the kb contains:
gouda is cheese
cheese is yellow
gouda is hard

Then using deduction will result in an extra rule being added to the kb:
gouda is cheese
cheese is yellow
gouda is yellow
gouda is hard

Example 4.1: KnowledgeBase Deduction

The kb also is able to perform deduction in order to deduce any relation-
ships that might not be explicitely stated, example 4.1 demonstrates this.
This is not used in the project so far but it could possible be incorporated
into more complex systems.

Rules and the Rulebase
Rules are designed in the form
IF [Relationship] AND [Relationship] AND ... THEN [behaviour] [target].
Rules are read in from a rule file, the Relationships are parsed and added
to a set, the behaviour is read and converted to a behaviours enum and the
target is used to determine the thenRule. The Rules are stored in a rulebase
(rb) which is an stl set container of Rules. Using the set container was the
best choice as it uses the elements themselves as the key for look-up and
doesn’t allow duplicate entries.

The Relationships are the conditions that need to be true in order for
the entire Rule to be true.

The THEN part of the rule was difficult to implement because changing
the behaviour and targets of a bot required access to the bot as well as
access to certain environmental data. To solve this the THEN part was stored
in the rule as a function pointer RuleFunction. A RuleFunction is a void
function pointer that takes the desired behaviour and a PlanningData struct
as parameters.

The RuleFunction is set by the target variable and so a finite collection
of targets are permitted as described in section 3.4.2. In these functions the
target being set is either a target position on the map, a target enemy bot
or a target ally bot. When one of these variables is set the other two are
set to NULL so that there is no confusion when the behaviours are being
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interpreted by the bots. One of these functions is demonstrated in Listing
4.4.

void target_basePoint(Bot:: behaviours behaviour ,

PlanningData* planningData)

{

planningData ->thisBot ->plan = behaviour;

planningData ->thisBot ->targetPos = planningData ->basePos;

// clear the other target variables

planningData ->thisBot ->targetEnemy = NULL;

planningData ->thisBot ->targetAlly = NULL;

}

Listing 4.4: Rulefunction to set the target position to this bot’s base

One of the target positions is a random position. To calculate this, it
is desirable to find a point that is on the walkable part of the map and
secondly, not change target position too frequently. Changing the target
position too randomly results in the bots walking in random directions and
they take considerably longer to achieve anything in the game. It has been
implemented in such a way that there is about a 30% chance of a bot re-
ceiving a new random point, other times the bot keeps it’s existing target
position.

Inference

for (rules in rb) {

bool allTrue = true;

// iterate through relationships in rule. break if one is not

true.

for (relationships in rule) {

if(relationship is not in kb) {

allTrue = false;

break;

}

}

if (allTrue) {

fire RuleFunction;

return; // only want to fire one rule

}

// does nothing if no rule is true

}

Listing 4.5: Infer() method pseudocode

Once a KnowledgeBase has been built, the InferenceEngine is used to work
out which Rule from the rulebase should be selected. This is done in the
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inference method ( infer() ) which is outlined in listing 4.5. The appropri-
ate RuleFunction will be fired when a true rule is found and this will change
the behaviour to an appropriate one.

4.3.3 Writing Rulesets

When writing rulesets it is important to write the relationships correctly so
that the parsers create rules that have actual outcomes and also so that the
KnowledgeBase relationships will have counterparts in the rulebase. The
strings need to be exact in order to equate relationships. The options for
each ‘A is’ are shown in Listing 4.6:

*A* *relation* *B*

width is [ narrow | wide | open ]

curvature is [ tight | normal | loose ]

teamWithFlag is [ thisTeam | otherTeam | noTeam ]

enemyBot is [ visible | notVisible ]

enemyBot is [ shooting | notShooting ]

thisBot is [ carryingFlag | notCarryingFlag ]

thisBot is [ healthy | weak ]

flagBot is [ visible | notVisible ]

Listing 4.6: Relationships variables

In order to make sure that the variables were always consistently named
I created a spreadsheet that only allows the entry of valid strings. Addi-
tionally a text editor syntax file for our rule system was created to assist in
finding errors during the creation of rule files.

Rulesets can be easily debugged by running the simulation with the
renderer enabled, the visualisations are very informative when trying to
determine what bots are doing. A screenshot of the visualiser is presented
in figure 4.9
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Figure 4.9: Screenshot of visualisation with walked and planned paths showing
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Chapter 5

Testing & Results

The Key success factors of the project specify the metric that is used for
each:

• The awareness of spatial features (specifically width and curvature)
significantly improves the effectiveness of bots. This is measured by
the proportion of games won by environmentally aware bots versus
similarly complex bots that do not make use of the spatial features
provided by [16].

• A specific rule set is found to result in significantly more effective
bots than other similarly complex combinations. This is measured by
analysing the results of all rule sets (with and without environmental
awareness), and determining if one wins a significantly large propor-
tion of the time.

To test their validity (or invalidity) one needs to design an experiment
to gather results as specified by the metric. The results of these experiments
are then analysed and discussed.

5.1 Experiment Design

Each experiment will consist of a set of games between bot teams with each
team using a different ruleset. Experiment variables are detailed below.

Dependent variables
The dependent variables in each game are

• The winning team.

• The number of gameloops before a winner is determined (This
times the game).

• The number of bots still alive in each team at the end of a game.
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Independent variables
The independent variables are:

• Rulesets used by each team.

• The game map.

• Flocking settings.

• Random number seed.

• Flag and base positions.

Controls
The game map, random number seed, flag position, base positions and
flocking options all remain constant for each experiment to ensure that
the results pertain to only the rulesets.

The matches will include games between two teams using the same
ruleset as the control. This will prove that the ruleset is capable of
finishing a game against an equally matched opponent.

Possible rule combinations
As there are too many combinations of rules to test all possible rulesets
we use a subset of rules that make logical sense. As we do not want
rules that are too similar we can choose approximately 10 rules for
each experiment and make sure that they are different.

Making observations
The games were run in batches without a renderer so as to minimize
the run time. Results were output to a csv file in the form:

mapfile, rulefile[0], rulefile[1], winners index, gameloop count, bots alive[0],
bots alive[1]

Example 5.1: Abridged representation format of scores

The output holds all dependant variable information for generating
scores and analysing. Scores are calculated and then plotted in the
form demonstrated in example 5.1.
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Score = + 1 for each enemy bot killed,
+ 1 for each bot still alive on your team,
+ 5 for winning the game.

Rulesets can be divided into two high-level bins, rulesets with environ-
mental relationships and rulesets without environmental relationships. Each
ruleset can also be placed into an individual bin to allow one to compare
performance.

5.2 Testing

Raw experimentation output is available in Appendix C. Also available is
mean and standard-deviation data for each ruleset and group ( with or
without environmental data). The experimentation was done using particle
flocking and ’Map5’ as shown in figure 5.1.

The random number is constantly seeded as 0 so that the results can be
exactly reproduced. Seeding the random number also reduces the variation
of a singular rulesets performance over one run. A more rigorous experiment
would be to run the same inputs with different seeds so as to receive more
data on each ruleset.

81 independant games were played between nine rulesets for this experi-
ment, five using the environment and four using only the game information.

Figure 5.1: Map used for experiments with red and blue bases marked and flag
position marked by a pink ‘x’

5.3 Discussion of Results

The determination of a winner in a game appears to be quite reliant on
the starting position of the teams. This is apparent from the bar graph in
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Figure 5.2: Table showing Scores awarded to team[0] in each game.

Figure 5.3: Table showing Scores awarded to team[1] in each game.

figure 5.4 where most rules have higher scores when starting as team [1].
The average cumulative score for a team starting at [0] in this scenario is
only 58.89 while it is 76.11 for teams starting at [1]. As the starting points
are positioned symmetrically on a symmetric map it is reasonable to assume
that the cause of the discrepency is in the order of game play. This could
be solved by implementing a multithreaded version of the game.

The distribution of the scores between the environmentally aware group
and the not-environmentally aware group appears to be normal and so we
can use the one-way between groups ANOVA test. This test is relatively
stable so it will be able to handle any outliying data points that may be
encountered. The ANOVA one-way between groups analysis determines if
there is a statistical significance of variance between groups.

The results of the ANOVA test are shown in Figure 5.5. If the signif-
icance (p) value is less than 0.05 then it means that there is a significant
difference between the groups[23]. As can be seen from the results in figure
5.5 the two groups tested have a p value of 0.44, therefore the difference
in scores between the bots is not significant. This invalidates our first key
success factor of determining that the bots are improved by adding environ-
mental data from Perkins’[16] framework.

However this is most likely as a result of other shortcomings in the im-
plementation of the project as a whole and so further testing is encouraged.

43



Figure 5.4: This graph shows the score a ruleset acheives when starting from
position [0] compared to that when starting from position [1].

Figure 5.5: ANOVA test to show variance between the environmentally aware bots
and the not environmentally aware bots.

The relationship between the complexity of a ruleset and its mean score
is plotted in Figure 5.6. The regression analysis shows that as rulesets
become longer and more complex (i.e. more relationships per rule), the mean
score increases implying that the most complex rules may lead to more
effective behaviour and higher scores, however, there may be a point where
too complex a file is very inefficient. It is apparent from the graph that the
environmentally aware bots improve at a faster rate than the normal bots.
This may be because they have more variables available to them but it may
be because the environmental information creates better gameplay.

Nevertheless, this information leads us to the conclusion that with more
time for testing an ‘elite’ ruleset can be written that makes use of the envi-
ronment.
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Figure 5.6: Regression analysis of rule complexity.
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Chapter 6

Conclusion

This project was proposed in order to develop a tool that can test the utility
of Perkins’ spatial analysis framework in a game world scenario involving
more complex bots than have been tested with his framework before. This
concept is relevant to the game world today as a shift is occurring towards
more dynamic worlds and an increase in user created content.

The chosen ‘bots playing capture the flag’ scenario is a good one as it
allows bots to engage in a larger variety of behaviours in order to acheive
a win (either by killing all of the enemy or ‘capturing’ the flag). This is
compared to a deathmatch where the bots would only be aiming to kill
without being killed.

It was shown that environmental data for use in the game world can eas-
ily be extracted from the skeleton despite initially seeming a near impossible
task. The environmental data is suitably efficient in terms of both time and
space. In fact, the program’s running speed is only slowed by the expensive
pathing that is implemented.

The questions posed in the introduction and repeated here for conve-
nience were the key to maintaining focus on the right aims of the project.

1. Does awareness of spatial features (specifically width and curvature)
significantly improve the tactical behaviour of bots? and,

2. Is there some rule combination that is significantly more effective for
improving bots’ tactical behaviour than other similarly complex com-
binations?

These questions have yet to be answered as the results from the testing
are inconclusive, likely as a result of other shortcomings in the implementa-
tion of the project as a whole. Despite not being able to gather conclusive
results, we are confident that the spatial framework can be a viable and
effective tool for use in game worlds and so further testing in this direction
should continue.
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Appendix A

Rules

IF teamWithFlag is noTeam AND enemyBot is notVisible AND enemyBot is notShooting THEN Move randomPoint

IF teamWithFlag is noTeam AND enemyBot is notVisible AND enemyBot is shooting THEN Camp currentPoint

IF teamWithFlag is noTeam AND enemyBot is visible AND enemyBot is shooting THEN Attack randomEnemy

IF teamWithFlag is noTeam AND enemyBot is visible AND enemyBot is notShooting THEN Attack randomEnemy

IF teamWithFlag is thisTeam AND thisBot is notCarryingFlag AND enemyBot is notVisible THEN Defend

flagCarrier

IF teamWithFlag is thisTeam AND thisBot is notCarryingFlag AND enemyBot is visible THEN Attack myBase

IF teamWithFlag is thisTeam AND thisBot is carryingFlag THEN Flee myBase

IF teamWithFlag is otherTeam AND flagBot is visible THEN Attack flagCarrier

IF teamWithFlag is otherTeam AND flagBot is notVisible AND enemyBot is visible THEN randomEnemy

IF teamWithFlag is otherTeam AND enemyBot is notVisible AND enemyBot is shooting THEN Camp currentPoint

IF teamWithFlag is otherTeam AND enemyBot is notVisible AND enemyBot is notShooting THEN Camp enemyBase

Listing A.1: <rules1>- Ruleset that doesn’t use environmental variables
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Appendix B

Maps

B.1 Dia file splitter

import sys

from xml.dom import minidom

import xml

class DiaXmlParser:

def __init__(self , filename , inner_colour):

self.filename = filename

self.inner_colour = inner_colour

def removePolys(self , newfilename):

xmldoc = minidom.parse(self.filename)

print xmldoc.toxml()

self.recurse(xmldoc.firstChild)

nf = open(newfilename , ’w’)

nf.write(xmldoc.toxml ())

print xmldoc.toxml()

def isPolygonNode(self , node):

if node.nodeType != xml.dom.Node.ELEMENT_NODE:

return False

if not node.tagName == ’dia:object ’:

return False

if node.hasAttribute(’type’) and node.getAttribute(’type’)

== ’Standard - Polygon ’:

return True

return False

def isValidNode(self , node):
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if not self.isPolygonNode(node):

return True

if self.getInnerColour(node) == self.inner_colour:

return False

return True

def getInnerColour(self , node):

for child_node in node.getElementsByTagName(’dia:attribute ’

):

if not child_node.hasAttribute(’name’) or child_node.

attributes[’name’].value != ’inner_color ’:

continue

for child_child_node in child_node.getElementsByTagName(’

dia:color’):

if child_child_node.hasAttribute(’val’):

return child_child_node.attributes[’val’].value

return None

def recurse(self , node):

if not node.hasChildNodes ():

return

for child_node in node.childNodes:

if self.isValidNode(child_node):

self.recurse(child_node)

else:

node.removeChild(child_node)

if __name__ == "__main__":

inner_colour = infile = outfile = None

print len(sys.argv)

if len(sys.argv) < 3:

print "Usage: python dia_poly_splitter.py <infile > <outfile

> <inner_color_val >"

sys.exit()

infile = sys.argv [1]

outfile = sys.argv [2]

if len(sys.argv) >= 4:

inner_colour = sys.argv [3]

print inner_colour

xml_parser = DiaXmlParser(infile , inner_colour)

xml_parser.removePolys(outfile)

Listing B.1: <dia poly splitter.py>- S. Perkins

52



(a) before (b) after

Figure B.1: A map triangulation (a) is stripped of all walkable polygons leaving
only the obstacles (b). Obstacles can then be made into higher-level polygons which
are used as input to the skeleton framework.

B.2 makeOff() method

Figure B.2: Example of MakeOff() output
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// Outputs polygons to an .off file which can then be viewed in

GeomView See: (http ://www.geomview.org/)

void Environment :: makeOff(const char* filename , vector <Polygon

*> popo) {

ofstream off( filename , ofstream ::out );

int totpoints = 0;

for (int i = 0; i<popo.size();i++)

totpoints = totpoints + popo[i]->point_list.size();

off <<"OFF"<<endl;

off <<totpoints <<" "<<popo.size()<<" "<<popo.size()<<endl <<

endl;

for (int i = 0; i<popo.size();i++) {

off <<"# points for polygon "<<i<<endl;

for (int j = 0; j < popo[i]->point_list.size(); j++) {

off << popo[i]->point_list[j].x <<"\t"<<popo[i]->

point_list[j].y<<"\t0.0<<endl;

}

}

int cum = 0;

float r=1.0, g=0.0, b=0.0,a=0.75;

//now sorting out the vertices

for (int i = 0; i<popo.size();i++) {

off <<popo[i]->point_list.size();

for(int j = 0; j<popo[i]->point_list.size(); j++) {

off <<" "<<cum;

cum ++;

}

off <<" "<< r <<" "<< g <<" "<< b << " " << a << endl;

// switches the colour between red , green and blue

int grr = i%3;

if( grr == 0) {

r=1.0, g=0.0, b=0.0,a=0.75;

}

else if( grr == 1) {

r=0.0, g=1.0, b=0.0,a=0.75;

}

else if( grr == 2) {

r=0.0, g=0.0, b=1.0,a=0.75;

}

}

}

Listing B.2: makeOff() method for writing polygons to a more graphical format
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Appendix C

Experiment Data

Figure C.1: These are the mean scores for the environmentally aware rules (w)
and the other rules.
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Figure C.2: These are the mean scores per ruleset.
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Figure C.3: Raw Results
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