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Objectives

At the end of this chapter you should be able to:

• Describe the structure of the Relational model, and explain why it provides
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a simple but well-founded approach to the storage and manipulation of
data.

• Explain basic concepts of the Relational model, such as primary and for-
eign keys, domains, null values, and entity and referential integrity.

• Be able to discuss in terms of business applications, the value of the above
concepts in helping to preserve the integrity of data across a range of
applications running on a corporate database system.

• Explain the operators used in Relational Algebra.

• Use Relational Algebra to express queries on Relational databases.

Introduction

In parallel with this chapter, you should read Chapter 3 and Chapter 4 of
Thomas Connolly and Carolyn Begg, “Database Systems A Practical Approach
to Design, Implementation, and Management”, (5th edn.).

The aim of this chapter is to explain in detail the ideas underlying the Relational
model of database systems. This model, developed through the ’70s and ’80s,
has grown to be by far the most commonly used approach for the storing and
manipulation of data. Currently all of the major suppliers of database systems,
such as Oracle, IBM with DB2, Sybase, Informix, etc, base their products on
the Relational model. Two of the key reasons for this are as follows.

Firstly, there is a widely understood set of concepts concerning what constitutes
a Relational database system. Though some of the details of how these ideas
should be implemented continue to vary between different database systems,
there is sufficient consensus concerning what a Relational database should pro-
vide that a significant skill base has developed in the design and implementation
of Relational systems. This means that organisations employing Relational tech-
nology are able to draw on this skill-base, as well as on the considerable literature
and consultancy know-how available in Relational systems development.

The second reason for the widespread adoption of the Relational model is ro-
bustness. The core technology of most major Relational products has been tried
and tested over the last 12 or so years. It is a major commitment for an organi-
sation to entrust the integrity, availability and security of its data to software.
The fact that Relational systems have proved themselves to be reliable and se-
cure over a significant period of time reduces the risk an organisation faces in
committing what is often its most valuable asset, its data, to a specific software
environment.

Relational Algebra is a procedural language which is a part of the Relational
model. It was originally developed by Dr E. F. Codd as a means of accessing data
in Relational databases. It is independent of any specific Relational database
product or vendor, and is therefore useful as an unbiased measure of the power
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of Relational languages. We shall see in a later chapter the further value of
Relational Algebra, in helping gain an understanding of how transactions are
processed internally within the database system.

Context

The Relational model underpins most of the major database systems in com-
mercial use today. As such, an understanding of the ideas described in this
chapter is fundamental to these systems. Most of the remaining chapters of
the module place a strong emphasis on the Relational approach, and even in
those that examine research issues that use a different approach, such as the
chapter on Object databases, an understanding of the Relational approach is
required in order to draw comparisons and comprehend what is different about
the new approach described. The material on Relational Algebra provides a
vendor-independent and standard approach to the manipulation of Relational
data. This information will have particular value when we move on to learn the
Structured Query Language (SQL), and also assist the understanding of how
database systems can alter the ways queries were originally specified to reduce
their execution time, a topic covered partially in the chapter called Database
Administration and Tuning.

Structure of the Relational model

Theoretical foundations

Much of the theory underpinning the Relational model of data is derived from
mathematical set theory. The seminal work on the theory of Relational database
systems was developed by Dr E. F. Codd, (Codd 1971). The theoretical devel-
opment of the model has continued to this day, but many of the core principles
were described in the papers of Codd and Date in the ’70s and ’80s.

The application of set theory to database systems provides a robust foundation
to both the structural and data-manipulation aspects of the Relational model.
The relations, or tables, of Relational databases, are based on the concepts of
mathematical sets. Sets in mathematics contain members, and these correspond
to the rows in a relational table. The members of a set are unique, i.e. duplicates
are not allowed. Also the members of a set are not considered to have any
order; therefore, in Relational theory, the rows of a relation or table cannot be
assumed to be stored in any specific order (note that some database systems
allow this restriction to be overridden at the physical level, as in some situations,
for example to improve the performance response of the database, it can be
desirable to ensure the ordering of records in physical storage).
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Uniform representation of data

We saw in the previous chapter, that the Relational model uses one simple data
structure, the table, to represent information. The rows in tables correspond
to specific instances of records, for example, a row of a customer table contains
information about a particular customer. Columns in a table contain informa-
tion about a particular aspect of a record, for example, a column in a customer
record might contain a customer’s contact telephone number.

Much of the power and robustness of the Relational approach derives from the
use of simple tabular structures to represent data. To illustrate this, consider
the information that might typically be contained in part of the data dictionary
of a database. In a data dictionary, we will store the details of logical table
structures, the physical allocations of disk space to tables, security information,
etc. This data dictionary information will be stored in tables, in just the same
way that, for example, customer and other information relevant to the end users
of the system will be stored.

This consistency of data representation means that the same approach for data
querying and manipulation can be applied throughout the system.

Relation

A relation is a table with columns and tuples. A database can contain as many
tables as the designer wants. Each table is an implementation of a real-world
entity. For example, the university keeps information about students. A student
is represented as an entity during database design stage. When the design is
implemented, a student is represented as a table. You will learn about database
design is later modules.

Attribute

An attribute is a named column in the table. A table can contain as many
attributes as the designer wants. Entities identified during database design
may contain attributes/characteristics that describe the entity. For example, a
student has a student identification number and a name. Student identification
and name will be implemented as columns in the student table.

Domain

The domain is the allowable values for a column in the table. For example,
a name of a student can be made of a maximum of 30 lower and upper case
characters. Any combination of lower and upper case characters less or equal
to 30 is the domain for the name column.
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Tuple

A tuple is the row of the table. Each tuple represents an instance of an entity.
For example, a student table can contain a row holding information about Moses.
Moses is an instance of the student entity.

Degree

The degree of a relation/table is the number of columns it contains.

Cardinality

The cardinality of a relation/table is the number of rows it contains.

Primary key

In the previous chapter, we described the use of primary keys to identify each
of the rows of a table. The essential point to bear in mind when choosing a
primary key is that it must be guaranteed to be unique for each different row of
the table, and so the question you should always ask yourself is whether there
is any possibility that there could be duplicate values of the primary key under
consideration. If there is no natural candidate from the data items in the table
that may be used as the primary key, there is usually the option of using a
system-generated primary key. This will usually take the form of an ascending
sequence of numbers, a new number being allocated to each new instance of a
record as it is created. System-generated primary keys, such as this, are known
as surrogate keys. A drawback to the use of surrogate keys is that the unique
number generated by the system has no other meaning within the application,
other than serving as a unique identifier for a row in a table. Whenever the op-
tion exists therefore, it is better to choose a primary key from the available data
items in the rows of a table, rather than opting for an automatically generated
surrogate key.

Primary keys may consist of a single column, or a combination of columns. An
example of a single table column would be the use of a unique employee number
in a table containing information about employees.

As an example of using two columns to form a primary key, imagine a table in
which we wish to store details of project tasks. Typical data items we might
store in the columns of such a task table might be: the name of the task, date
the task was started, expected completion date, actual completion date, and
the employee number of the person responsible for ensuring the completion of
the task. There is a convenient, shorthand representation for the description of
a table as given above: we write the name of the table, followed by the name of
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the columns of the table in brackets, each column being separated by a comma.
For example:

TASK (TASK_NAME, START_DATE, EXPECTED_COMP_DATE,
COMP_DATE, EMPNO)

We shall use this convention for expressing the details of the columns of a table
in examples in this and later chapters. Choosing a primary key for the task table
is straightforward while we can assume that task names are unique. If that is
the case, then we may simply use task name as the primary key. However, if we
decide to store in the task table, the details of tasks for a number of different
projects, it is less likely that we can still be sure that task names will be unique.
For example, supposing we are storing the details of two projects, the first to
buy a new database system, and the second to move a business to new premises.
For each of these projects, we might have a task called ‘Evaluate alternatives’. If
we wish to store the details of both of these tasks in the same task table, we can
now no longer use TASK_NAME as a unique primary key, as it is duplicated
across these two tasks.

As a solution to this problem, we can combine the TASK_NAME column with
something further to add the additional context required to provide a unique
identifier for each task. In this case, the most sensible choice is the project name.
So we will use the combination of the PROJECT_NAME and TASK_NAME
data items in our task table in order to identify uniquely each of the tasks in
the table. The task table becomes:

TASK (PROJECT_NAME, TASK_NAME, START_DATE, EXPECTED_COMP_DATE,
COMP_DATE, EMPNO)

We may, on occasions, choose to employ more than two columns as a primary
key in a table, though where possible this should be avoided as it is both un-
wieldy to describe, and leads to relatively complicated expressions when it comes
to querying or updating data in the database. Notice also that we might have
used a system-generated surrogate key as the solution to the problem of pro-
viding a primary key for tasks, but the combination of PROJECT_NAME and
TASK_NAME is a much more meaningful key to users of the application, and
is therefore to be preferred.

Foreign keys

Very often we wish to relate information stored in different tables. For example,
we may wish to link together the tasks stored in the task table described above,
with the details of the projects to which those tasks are related. The simplicity
by which this is achieved within the Relational model, is one of the model’s
major strengths. Suppose the Task and Project tables contain the following
attributes:
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TASKS (TASK_NAME, START_DATE, EXP_COMP_DATE, COMP_DATE,
EMPNO)

PROJECT (PROJECT_NAME, START_DATE, EXP_COMP_DATE,
COMP_DATE, PROJECT_LEADER)

We assume that TASK_NAME is an appropriate primary key for the TASK
table, and PROJECT_NAME is an appropriate primary key for the PROJECT
table.

In order to relate a record of a task in a task table to a record of a corresponding
project in a project table, we use a concept called a foreign key. A foreign key is
simply a piece of data that allows us to link two tables together. In the case of
the projects and tasks example, we will assume that each project is associated
with a number of tasks. To form the link between the two tables, we place the
primary key of the PROJECT table into the TASK table. The task table then
becomes:

TASK (TASK_NAME, START_DATE, EXP_COMP_DATE, COMP_DATE,
EMPNO, PROJECT_NAME)

Through the use of PROJECT_NAME as a foreign key, we are now able to see,
for any given task, the project to which it belongs. Specifically, the tasks associ-
ated with a particular project can now be identified simply by virtue of the fact
that they contain that project’s name as a data item as one of their attributes.
Thus, all tasks associated with a research project called GENOME RESEARCH,
will contain the value of GENOME RESEARCH in their PROJECT_NAME
attribute.

The beauty of this approach is that we are forming the link using a data item.
We are still able to maintain the tabular structure of the data in the database,
but can relate that data in whatever ways we choose. Prior to the development
of Relational systems, and still in many non-Relational systems today, rather
than using data items in this way to form the link between different entity types
within a database, special link items are used, which have to be created, altered
and removed. These activities are in addition to the natural insertions, updates
and deletions of the data itself. By using a uniform representation of data both
for the data values themselves, and the links between different entity types, we
achieve uniformity of expression of queries and updates on the data.

The need to link entity types in this way is a requirement of all, other than the
most trivial of, database applications. That it occurs so commonly, allied with
the simplicity of the mechanism for achieving it in Relational systems, has been
a major factor in the widespread adoption of Relational databases.

Below is the summary of the concepts we have covered so far:
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Integrity constraints

Integrity constraints are restrictions that affect all the instances of the database.

Nulls

There is a standard means of representing information that is not currently
known or unavailable within Relational database systems. We say that a column
for which the value is not currently known, or for which a value is not applicable,
is null. Null values have attracted a large amount of research within the database
community, and indeed for the developers and users of database systems they
can be an important consideration in the design and use of database applications
(as we shall see in the chapters on the SQL language).

An important point to grasp about null values is that they are a very specific way
of representing the fact that the data item in question literally is not currently
set to any value at all. Prior to the use of null values, and still in some systems
today, if it is desired to represent the fact that a data item is not currently set
to some value, an alternative value such as 0, or a blank space, will be given
to that data item. This is poor practice, as of course 0, or a blank space, are
perfectly legitimate values in their own right. Use of null values overcomes this
problem, in that null is a value whose meaning is simply that there is no value
currently allocated to the data item in question.

There are a number of situations in which the use of null values is appropriate.
In general we use it to indicate that a data item currently has no value allocated
to it. Examples of when this might happen are:

• When the value of the data item is not yet known.
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• When the value for that data item is yet to be entered into the system.

• When it is not appropriate that this particular instance of the data item
is given a value.

An example of this last situation might be where we are recording the details
of employees in a table, including their salary and commission. We would store
the salaries of employees in one table column, and the details of commission in
another. Supposing that only certain employees, for example sales staff, are paid
commission. This would mean that all employees who are not sales staff would
have the value of their commission column set to null, indicating that they are
not paid commission. The use of null in this situation enables us to represent
the fact that some commissions are not set to any specific value, because it is
not appropriate to pay commission to these staff.

Another result of this characteristic of null values is that where two data items
both contain null, if you compare them with one another in a query language,
the system will not find them equal. Again, the logic behind this is that the
fact that each data item is null does not mean they are equal, it simply means
that they contain no value at all.

Entity integrity

As briefly discussed in Chapter 1, in Relational databases, we usually use each
table to store the details of particular entity types in a system. Therefore, we
may have a table for Customers, Orders, etc. We have also seen the importance
of primary keys in enabling us to distinguish between different instances of
entities that are stored in the different rows of a table.

Consider for the moment the possibility of having null values in primary keys.
What would be the consequences for the system?

Null values denote the fact that the data item is not currently set to any real
value. Imagine, however, that two rows in a table are the same, apart from the
fact that part of their primary keys are set to null. An attempt to test whether
these two entity instances are the same will find them not equal, but is this
really the case? What is really going on here is that the two entity instances
are the same, other than the fact that a part of their primary keys are as yet
unknown. Therefore, the occurrence of nulls in primary keys would stop us
being able to compare entity instances. For this reason, the column or columns
used to form a primary key are not allowed to contain null values. This rule is
known as the Entity Integrity Rule, and is a part of the Relational theory that
underpins the Relational model of data. The rule does not ensure that primary
keys will be unique, but by not allowing null values to be included in primary
keys, it does avoid a major source of confusion and failure of primary keys.

Referential integrity
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If a foreign key is present in a given table, it must either match some candidate
value in the home table or be set to null. For example, in our project and task
example above, every value of PROJECT_NAME in the task table must exist
as a value in the PROJECT_NAME column of the project table, or else it must
be set to null.

General constraints

These are additional rules specified by the users or database administrators of a
database, which define or constrain some aspect of the enterprise. For example,
a database administrator can contain the PROJECT_NAME column to have
a maximum of 30 characters for each value inserted.

Data manipulation: The Relational Algebra

Restrict

Restrict (also known as ‘select’) is used on a single relation, producing a new
relation by excluding (restricting) tuples in the original relation from the new
relation if they do not satisfy a condition; thus only the tuples required are
selected.

This operation has the effect of choosing certain tuples (rows) from the table,
as illustrated in the diagram below.

The use of the term ‘select’ here is quite specific as an operation in the Relational
Algebra. Note that in the database query language SQL, all queries are phrased
using the term ‘select’. The Relational Algebra ‘select’ means ‘extract tuples
which meet specific criteria’. The SQL ‘select’ is a command that means ‘produce
a table from existing relations using Relational Algebra operations’.
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Using the Relational Algebra, extract from the relation Singers those individuals
who are over 40 years of age, and create a new relation called Mature-Singers.

Relational Algebra operation: Restrict from Singers where age > 40 giving
Mature-Singers

We can see which tuples are chosen from the relation Singers, and these are
identified below:

The new relation, Mature-Singers, contains only those tuples for singers aged
over 40 extracted from the relation Singers. These were shown highlighted in
the relation above.

Note that Anne Freeman (age 40) is not shown. The query explicitly stated
those over 40, and therefore anyone aged exactly 40 is excluded.

If we wanted to include singers aged 40 and above, we could use either of the
following operations which would have the same effect.

Either:

Relational Algebra operation: Restrict from Singers where age >= 40 giving
Mature-Singers2
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or

Relational Algebra operation: Restrict from Singers where age > 39 giving
Mature-Singers2

The result of either of these operations would be as shown below:

Project

Project is used on a single relation, and produces a new relation that includes
only those attributes requested from the original relation. This operation has
the effect of choosing columns from the table, with duplicate entries removed.

The task here is to extract the names of the singers, without their ages or any
other information as shown in the diagram below. Note that if there were two
singers with the same name, they would be distinguished from one another in
the relation Singers by having different singer-id numbers. If only the names are
extracted, the information that there are singers with the same name will not
be preserved in the new relation, as only one copy of the name would appear.
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The column for the attribute singer-names is shown highlighted in the relation
above.

The following Relational Algebra operation creates a new relation with singer-
name as the only attribute.

Relational Algebra operation: Project Singer-name over Singers giving Singer-
names
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Union

Union (also called ‘append’) forms a new relation of all tuples from two or more
existing relations, with any duplicate tuples deleted. The participating relations
must be union compatible.

It can be seen that the relations Singers and Actors have the same number of
attributes, and these attributes are of the same data types (the identification
numbers are numeric, the names are character fields, the address field is alphanu-
meric, and the ages are integer values). This means that the two relations are
union compatible. Note that it is not important whether the relations have the
same number of tuples.

The two relations Singers and Actors will be combined in order to produce a
new relation Performers, which will include details of all singers and all actors.
An individual who is a singer as well as an actor need only appear once in the
new relation. The Relational Algebra operation union (or append) will be used
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in order to generate this new relation.

The union operation will unite these two union-compatible relations to form a
new relation containing details of all singers and actors.

Relational Algebra operation: Union Singers and Actors giving Performers

We could also express this activity in the following way:

Relational Algebra operation: Union Actors and Singers giving Performers

These two operations would generate the same result; the order in which the
participating relations are given is unimportant. When an operation has this
property it is known as commutative - other examples of this include addition
and multiplication in arithmetic. Note that this does not apply to all Relational
Algebra operations.

The new relation Performers contains one tuple for every tuple that was in the
relation Singers or the relation Actors; if a tuple appeared in both Singers and
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Actors, it will appear only once in the new relation Performers. This is why
there is only one tuple in the relation Performers for each of the individuals
who are both actors and singers (Helen Drummond and Desmond Venables), as
they appear in both the original relations.

Intersection

Intersection creates a new relation containing tuples that are common to both
the existing relations. The participating relations must be union compatible.
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As before, it can be seen that the relations Singers and Actors are union compat-
ible as they have the same number of attributes, and corresponding attributes
are of the same data type.

We can see that there are some tuples that are common to both relations, as
illustrated in the diagram below. It is these tuples that will form the new
relation as a result of the intersection operation.
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The Relational Algebra operation intersection will extract the tuples common
to both relations, and use these tuples to create a new relation.

Relational Algebra operation: Actors Intersection Singers giving Actor-Singers

The intersection of Actors and Singers produces a new relation containing only
those tuples that occur in both of the original relations. If there are no tuples
that are common to both relations, the result of the intersection will be an
empty relation (i.e. there will be no tuples in the new relation).

Note that an empty relation is not the same as an error; it simply means that
there are no tuples in the relation. An error would occur if the two relations
were found not to be union compatible.

Difference

Difference (sometimes referred to as ‘remove’) forms a new relation by excluding
tuples from one relation that occur in another. The resulting relation contains
tuples that were present in the first relation only, but not those that occur in
both the first and the second relations, or those that occur in the second relation
alone. This operation can be regarded as ‘subtracting’ tuples in one relation
from another relation. The participating relations must be union compatible.
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If we want to find out which actors are not also singers, the following Relational
Algebra operation will achieve this:

Relational Algebra operation: Actors difference Singers giving Only-Actors

The result of this operation is to remove from the relation Actors those tuples
that also occur in the relation Singers. In effect, we are removing the tuples in
the intersection of Actors and Singers in order to create a new relation that con-
tains only actors. The diagram below shows which tuples are in both relations.
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The new relation Only-Actors contains tuples from the relation Actors only if
they were not also present in the relation Singers.

It can be seen that this operation produces a new relation Only-Actors contain-
ing all tuples in the relation Actors except those that also occur in the relation
Singers.
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If it is necessary to find out which singers are not also actors, this can be done
by the relational operation ‘remove Actors from Singers’, or ‘Singers difference
Actors’. This operation would not produce the same result as ‘Actors difference
Singers’ because the relational operation difference is not commutative (the
participating relations cannot be expressed in reverse order and achieve the
same result).

Relational Algebra operation: Singers difference Actors giving Only-Singers

The effect of this operation is to remove from the relation Singers those tuples
that are also present in the relation Actors. The intersection of the two relations
is removed from the relation Singers to create a new relation containing tuples of
those who are only singers. The intersection of the relations Singers and Actors
is, of course, the same as before.
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This operation produces a new relation Only-Singers containing all tuples in the
relation Singers except those that also occur in the relation Actors. The tuples
that are removed from one relation when the difference between two relations
is generated are those that are in the intersection of the two relations.

Cartesian product

If a relation called Relation-A has a certain number of tuples (call this number
N), this can be represented as NA (meaning the number of tuples in Relation-A).
Similarly, Relation-B may have a different number of tuples (call this number
M), which can be shown as MB (meaning the number of tuples in Relation-B).

The resulting relation from the operation ‘Relation-A Cartesian product
Relation-B’ forms a new relation containing NA * MB tuples (meaning the
number of tuples in Relation-A times the number of tuples in Relation-B).
Each tuple in the new relation created as a result of this operation will consist
of each tuple from Relation-A paired with each tuple from Relation-B, which
includes all possible combinations.
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In order to create a new relation which pairs each singer with each role, we need
to use the relational operation Cartesian product.

Relational Algebra operation: Singers Cartesian product Roles giving Singers-
Roles
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The result of Singers Cartesian product Roles gives a new relation Singers-Roles,
showing each tuple from one relation with each tuple of the other, producing the
tuples in the new relation. Each singer is associated with all roles; this produces
a relation with 16 tuples, as there were 8 tuples in the relation Singers, and 2
tuples in the relation Roles.

What do you think would be the result of the following?

Relational Algebra operation: Singers Cartesian product Singers giving Singers-
Extra

Relational Algebra operation: Actors Cartesian product Roles giving Actors-
Roles

Division

The Relational Algebra operation ‘Relation-A divide by Relation-B giving
Relation-C’ requires that the attributes of Relation-B must be a subset of those
of Relation-A. The relations do not need to be union compatible, but they must
have some attributes in common. The attributes of the result, Relation-C, will
also be a subset of those of Relation-A. Division is the inverse of Cartesian
product; it is sometimes easier to think of the operation as similar to division
in simple algebra and arithmetic.

In arithmetic:
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If, for example:

Value-A = 2

Value-B = 3

Value-C = 6

then: Value-C is the result of Value-A times Value-B (i.e. 6 = 2 * 3) and: Value-
C divided by Value-A gives Value-B as a result(i.e. 6/2 = 3) and: Value-C
divided by Value-B gives Value-A as a result (i.e. 6/3 = 2)

In Relational Algebra:

If:

Relation-A = Singers

Relation-B = Roles

Relation-C = Singers-Roles

then: Relation-C is the result of Relation-A Cartesian product Relation-B and:
Relation-C divided by Relation-A gives Relation-B as a result

and: Relation-C divided by Relation-B gives Relation-A as a result.

If we start with two relations, Singers and Roles, we can create a new relation
Singers-Roles by performing the Cartesian product of Singers and Roles. This
new relation shows every role in turn with every singer.
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The new relation Singers-Roles has a special relationship with the relations
Singers and Roles from which it was created, as will be demonstrated below.

We can see that the attributes of the relation Singers are a subset of the at-
tributes of the relation Singers-Roles. Similarly, the attributes of the relation
Roles are also a subset (although a different subset) of the relation Singers-Roles.

If we now divide the relation Singers-Roles by the relation Roles, the resulting
relation will be the same as the relation Singers.

Relational Algebra operation: Singers-Roles divide by Roles giving Our-Singers
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Similarly, if we divide the relation Singers-Roles by the relation Singers, the
relation that results from this will be the same as the original Roles relation.

Relational Algebra operation: Singers-Roles divide by Singers giving Our-Roles

Note that there are only two tuples in this relation, although the attributes
role-id and role-name appeared eight times in the relation Singer-Roles, as each
role was associated with each singer in turn.

In the case where not all tuples in one relation have corresponding tuples in the
‘dividing’ relation, the resulting relation will only contain those tuples which
are represented in both the ‘dividing’ and ‘divided’ relations. In such a case it
would not be possible to recreate the ‘divided’ relation from a Cartesian product
of the ‘dividing’ and resulting relations. The next example demonstrates this.

Consider the relation Recordings shown below, which holds details of the songs
recorded by each of the singers.
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Three individuals, Chris, Mel and Sam, have each created two new relations
listing their favourite songs and their favourite singers. The use of the division
operation will enable Chris, Mel and Sam to find out which singers have recorded
their favourite songs, and also which songs their favourite singers have recorded.

The table above contains Chris’s favourite songs. In order to find out which
singers have made a recording of these songs, we need to divide this relation
into the Recordings relation. The result of this Relational Algebra operation is
a new relation containing the details of singers who have recorded all of Chris’s
favourite songs. Singers who have recorded some, but not all, of Chris’s favourite
songs are not included.

Relational Algebra operation: Recordings divide by Chris-Favourite-Songs giv-
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ing Chris-Singers-Songs

Note that the singers in this relation are not the same as those in the relation
Chris-Favourite-Singers. The reason for this is that Chris’s favourite singers
have not all recorded Chris’s favourite songs.

The next relation shows Chris’s favourite singers. Chris wants to know which
songs these singers have recorded. If we divide the Recordings relation by this
relation, we will get a new relation that contains the songs that all these singers
have recorded; songs that have been recorded by some, but not all, of the singers
will not be included in the new relation.

The singers in this relation are not the same as those who sing Chris’s favourite
songs. The reason for this is that not all of Chris’s favourite singers have
recorded these songs.

In order to discover the songs recorded by Chris’s favourite singer, we need to
divide the relation Recordings by Chris-Favourite-Songs.

Relational Algebra operation: Recordings divide by Chris-Favourite-Songs giv-
ing Chris-Songs-by-Singers

The new relation created by this operation will provide us with the information
about which of Chris’s favourite singers has recorded all of Chris’s chosen songs.
Any singer who has recorded some, but not all, of Chris’s favourite songs will
be excluded from this new relation.
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We can see that the relation created to identify the songs recorded by Chris’s
favourite singers is not the same as Chris’s list of favourite songs, because these
singers have not all recorded the songs listed as Chris’s favourites.

In this example, we have been able to generate two new relations by dividing
into the Recordings relation. These two new relations do not correspond with
the other two relations that were divided into the relation Recordings, because
there is no direct match. This means that we could not recreate the Record-
ings relation by performing a Cartesian product operation on the two relations
containing Chris’s favourite songs and singers.

In the next example, we will identify the songs recorded by Mel’s favourite
singers, and which singers have recorded Mel’s favourite songs. In common
with Chris’s choice, we will find that the singers and the songs do not match
as not all singers have recorded all songs. If all singers had recorded all songs,
the relation Recordings would be the result of Singers Cartesian product Songs,
but this is not the case.

Mel’s favourite songs include all those that have been recorded, but not all
singers have recorded all songs. Mel wants to find out who has recorded these
songs, but the result will only include those singers who have recorded all the
songs.

There are no other songs that have been recorded from the list available; Mel
has indicated that all of these are favourites.

The relational operation below will produce a new relation, Mel-Singers-Songs,
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which will contain details of those singers who have recorded all of Mel’s
favourite songs.

Relational Algebra operation: Recordings divide by Mel-Favourite-Songs giving
Mel-Singers-Songs

We can see from this relation, and the one below, that none of Mel’s favourite
singers has recorded all of the songs selected as Mel’s favourites.

We can use the relation Mel-Favourite-Singers to find out which songs have been
recorded by both these performers.

Relational Algebra operation: Recordings divide by Mel-Favourite-Singers giv-
ing Mel-Songs-by-Singers

There is only one song that has been recorded by the singers Mel has chosen, as
shown in the relation below.

We can now turn our attention to Sam’s selection of songs and singers. It
happens that Sam’s favourite song is the same one that Mel’s favourite singers
have recorded.
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If we now perform the reverse query to find out who has recorded this song, we
find that there are more singers who have recorded this song than the two who
were Mel’s favourites. The reason for this difference is that Mel’s query was
to find out which song had been recorded by particular singers. This contrasts
with Sam’s search for any singer who has recorded this song.

Relational Algebra operation: Recordings divide by Sam-Favourite-Songs giving
Sam-Singer-Songs

Here we can see that Mel’s favourite singers include the performers who have
recorded Sam’s favourite song, but there are many other singers who have also
made a recording of the same song. Indeed, there are only two singers who have
not recorded this song (Desmond Venables and Swee Hor Tan). This could be
considered unfortunate for Sam, as these are the only two singers named as
Sam’s favourites.

32



We know that the only two singers who have not recorded Sam’s favourite song
are in fact Sam’s favourite singers. It is now our task to discover which songs
these two singers have recorded.

Relation Algebra operation: Recordings divide by Sam-Favourite-Singers giving
Sam-Songs-by-Singers

This operation creates a new relation that reveals the identity of the song that
has been recorded by all of Sam’s favourite singers.

There is only one song that these two singers have recorded. Indeed, Swee Hor
Tan has only recorded this song, and therefore whatever other songs had been
recorded by Desmond Venables, this song is the only one that fulfils the criteria
of being recorded by both these performers.

Join

Join forms a new relation with all tuples from two relations that meet a condition.
The relations might happen to be union compatible, but they do not have to
be.

The following two relations have a conceptual link, as the stationery orders have
been made by some of the singers. Invoices can now be generated for each singer
who placed an order. (Note that we would not wish to use Cartesian product
here, as not all singers have placed an order, and not all orders are the same.)

The relation Orders identifies the stationery items (from the Stationery relation)
that have been requested, and shows which customer ordered each item (here
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the customer-id matches the singer-id).

The Singers relation contains the names and addresses of all singers (who are
the customers), allowing invoices to be prepared by matching the customers who
have placed orders with individuals in the Singers relation.

Relational Algebra operation: Join Singers to Orders where Singers Singer-id =
Orders Customer-id giving Invoices

The relation Singers is joined to the relation Orders where the attribute Singer-
id in Singers has the same value as the attribute Customer-id in Orders, to form
a new relation Invoices.
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The attribute which links together the two relations (the identification number)
occurs in both original relations, and thus is found twice in the resulting new
relation; the additional occurrence can be removed by means of a project oper-
ation. A version of the join operation, in which such a project is assumed to
occur automatically, is known as a natural join.

The types of join operation that we have used so far, and that are in fact by far
most commonly in use, are called equi-joins. This is because the two attributes
to be compared in the process of evaluating the join operation are compared for
equality with one another. It is possible, however, to have variations on the join
operation using operators other than equality. Therefore it is possible to have
a GREATER THAN (>) JOIN, or a LESS THAN (<) JOIN.

It would have been possible to create the relation Invoices by producing the
Cartesian product of Singers and Orders, and then selecting only those tuples
where the Singer-id attribute from Singers and the Customer-id attribute from
Orders has the same value. The join operation enables two relations which
are not union compatible to be linked together to form a new relation without
generating a Cartesian product, and then extracting only those tuples which
are required.

Activities

Activity 1: Relational Algebra I

Let X be the set of student tuples for students studying databases, and Y the
set of students who started university in 1995. Using this information, what
would be the result of:

1. X union Y

2. X intersect Y

3. X difference Y
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Activity 2: Relational Algebra II

Describe, using examples, the characteristics of an equi-join and a natural join.

Activity 3: Relational Algebra III

Consider the following relation A with attributes X and Y,

and a relation B with only one attribute (attribute Y). Assume that attribute Y
of relation A and the attribute of relation B are defined on a common domain.
What would be the result of A divided by B if:

1. B = Attribute Y C1

2. B = Attribute Y C2 C3

Review questions

1. Briefly describe the theoretical foundations of Relational database sys-
tems.

2. Describe what is meant if a data item contains the value ‘null’.

3. Why is it necessary sometimes to have a primary key that consists of more
than one attribute?
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4. What happens if you test two attributes, each of which contains the value
null, to find out if they are equal?

5. What is the Entity Integrity Rule?

6. How are tables linked together in the Relational model?

7. What is Relational Algebra?

8. Explain the concept of union compatibility.

9. Describe the operation of the Relational Algebra operators RESTRICT,
PROJECT, JOIN and DIVIDE.

Discussion topics

1. Now that you have been introduced to the structure of the Relational
model, and having seen important mechanisms such as primary keys, do-
mains, foreign keys and the use of null values, discuss what you feel at
this point to be the strengths and weaknesses of the model. Bear in mind
that, although the Relational Algebra is a part of the Relational model,
it is not generally the language used for manipulating data in commer-
cial database products. That language is SQL, which will be covered in
subsequent chapters.

2. Consider the operations of Relational Algebra. Why do you think Rela-
tional Algebra is not used as a general approach to querying and manip-
ulating data in Relational databases? Given that it is not used as such,
what value can you see in the availability of a language for manipulating
data which is not specific to any one developer of database systems?

Additional content and activities

As we have seen, the Relational Algebra is a useful, vendor-independent, stan-
dard mechanism for discussing the manipulation of data. We have seen, however,
that the Relational Algebra is rather procedural and manipulates data one step
at a time. Another vendor-independent means of manipulating data has been
developed, known as Relational Calculus. For students interested in investigat-
ing the language aspect of the Relational model further, it would be valuable to
compare what we have seen so far of the Relational Algebra, with the approach
used in Relational Calculus. Indeed, it possible to map expressions between
the Algebra and the Calculus, and it has also been shown that it is possible to
convert any expression in one language to an equivalent expression in the other.
In this sense, the Algebra and Calculus are formally equivalent.
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