Chapter 4. Intermediate SQL

Table of contents

Objectives
Introduction
Context
Grouping and summarising information
— A very common error with GROUP BY
— The HAVING clause
Writing queries on more than one table - JOIN
— Avoiding ambiguously named columns
— Outer JOINs
x+ LEFT OUTER JOIN
x+ RIGHT OUTER JOIN
x FULL OUTER JOIN
— Using table aliases
— SELF JOINS
— Summary of JOINs
Nested queries
— The depth and breadth of nested queries
The UNION operator
The INTERSECT operator
The MINUS operator
ANY or ALL operator
Correlated sub-queries
Interactive queries
Activities
— Activity 1: JOINs
— Activity 2: GROUP BY
— Activity 3: Nested queries
Review questions
Discussion topic
Additional content

Objectives

At the end of this chapter you should be able to:

Group and summarise data together.

Combine the grouping mechanisms with the aggregation functions covered
in the previous chapter to provide useful summarised reports of data.

Write queries that retrieve results by combining information from a num-

ber of tables.

e Combine the results of multiple queries in various ways.

Introduction

In parallel with this chapter, you should read Chapter 5 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter builds on the foundations laid in the previous chapter, which in-
troduced the SQL language. We examine a range of facilities for writing more
advanced queries of SQL databases, including queries on more than one table,
summarising data, and combining the results of multiple queries in various ways.

Context

This chapter forms the bridge between the chapter in which the SQL language
was introduced, and the coverage of the data definition language (DDL) and
data control language (DCL) provided in the next chapter called Advanced
SQL.

It is possible to express a range of complex queries using the data manipulation
language (DML) previously introduced. The earlier chapter showed how fairly
simple queries can be constructed using the select-list, the WHERE clause to
filter rows out of a query result, and the ORDER BY clause to sort information.
This chapter completes the coverage of the DML facilities of SQL, and will
considerably increase the range of queries you are able to write. The final SQL
chapter will then address aspects of SQL relating to the updating of data and
the manipulation of the logical structures, i.e. tables that contain data.

Grouping and summarising information

Information retrieved from an SQL query can very easily be placed into separate
groups or categories by use of the GROUP BY clause. The clause is similar in
format to ORDER BY, in that the specification of the words GROUP BY is
followed by the data item or items to be used for forming the groups. The
GROUP BY is optional. If it appears in the query, it must appear before the
ORDER BY if the ORDER BY is present.

Example: count the number of employees in each department

To answer this question, it is necessary to place the employees in the EMP
table into separate categories, one for each department. This can be done easily
enough through the use of the DEPTNO column in the EMP table as follows
(with the select-list temporarily omitted):

SELECT ...
FROM EMP
GROUP BY DEPTNO

As far as counting the employees is concerned, this is an example of something
that is seen very commonly with the GROUP BY clause; that is, the use of
an aggregation function, in this case the COUNT function, in conjunction with
GROUP BY. To complete the query, we simply need to include on the select-
list the DEPTNO column, so that we can see what we are grouping by, and the
COUNT function. The query then becomes:

SELECT DEPTNO,COUNT(EMPNO)
FROM EMP
GROUP BY DEPTNO;

DEPTNO | COUNT{EMPNO)
10 3
20 5
30 6

Comments: The query works in two steps. The first step is to group all
employees by DEPTNO. The second step is to count the number of employees
in each group. Of course, headings could be used to improve the clarity of the
results; for example, specifying that the second column is “no. of employees”.

COUNT (EMPNO) AS no. of employees

We have specified between the parentheses of the COUNT function that we
are counting EMPNOs, because we are indeed counting employees. We could
in fact have merely specified an asterisk, “*” in the parentheses of the COUNT
function, and the system would have worked out that we were counting instances
of records in the EMP table, which equates to counting employees. However, it
is more efficient to specify to the system what is being counted.

GROUP BY, like ORDER BY, can include more than one data item, so for
example if we specify:

GROUP BY DEPTNO, JOB

the results will be returned initially categorised within departments, and then
within that, categorised into employees who do the same job.

GROUP BY example

Find the average salary for each JOB in the company:
SELECT JOB, AVG(round(SAL,2))

FROM EMP

GROUP BY JOB;

JOB AVG(ROUND(SAL,2))
ANALYST | 3000

CLERK 1037.5

MANAGER | 2758.3333
PRESIDENT | 5000

SALESMAN | 1400

Comments: This is a fairly straightforward use of the GROUP BY clause,
once again in conjunction with an aggregate function, AVG.

A very common error with GROUP BY

All column names in the select-list must appear in the GROUP BY clause,
unless the name is used only in an aggregate function. Many people when first
starting to use the GROUP BY clause, fall into the trap of asking the system
to retrieve and display information at two different levels. This arises if, for
example, you GROUP BY a data item such as JOB, but then on the select-list,
include a data item at the individual employee level, such as HIREDATE, SAL,
ETC. You might think that we displayed salaries in the previous example, where
we listed the average salaries earned by employees doing the same job. It makes
all the difference, however, that these are average salaries, the averages being
calculated for each category that we are grouping by, in this case the average
salary for each job. It is fine to display average salaries, as these are averaged
across the group, and are therefore at the group level. However, if we had asked
to display individual salaries, we would have had the error message “not a group
by expression”, referring to the fact that SAL is an individual attribute of an
employee, and not in itself an item at the group level. Whenever you see the
“not a group by expression” message, the first thing to check is the possibility
that you have included a request on your select-list to view information at the
individual record level, rather than at the group level. The one individual level
item you can of course include on the select-list, is the item which is shared by

a number of individuals that you are in fact grouping by. So when we asked to
retrieve the average salaries for each JOB, it was of course fine to include the
JOB column in the select-list, because for that query, JOB is an item at the
group level, i.e. we were grouping by JOB.

The HAVING clause

The HAVING clause is used to filter out specific groups or categories of infor-
mation, exactly in the same way that the WHERE clause is used to filter out
individual rows. The HAVING clause always follows a GROUP BY clause, and
is used to test some property or properties of the grouped information.

For example, if we are grouping information at the department level, we might
use a HAVING clause in which to exclude departments with less than a certain
number of employees. This could be coded as follows:

SELECT DEPTNO,COUNT(EMPNO)
FROM EMP

GROUP BY DEPTNO

HAVING COUNT(EMPNO) > 4;

DEFTNO COUNT{EMPNO)
20 5
30 B

Comments: Department number 10 has four employees in our sample data set,
and has been excluded from the results through the use of the HAVING clause.

The properties that are tested in a HAVING clause must be properties of groups,
i.e. one must either test against individual values of the grouped-by item, such
as:

HAVING JOB = ‘SALESMAN’
OR
JOB = ‘ANALYST’

or test against some property of the group, i.e. the number of members in the
group (as in the example to exclude departments with less than five employees,
or, for instance, tests on aggregate functions of the group - for our data set these

could be properties such as the average or total salaries within the individual
groups).

The HAVING clause, when required, always follows immediately after the
GROUP BY clause to which it refers. It can contain compound conditions,
linked by the boolean operators AND or OR (as above), and parentheses may
be used to nest conditions.

Writing queries on more than one table - JOIN

It is not usually very long before a requirement arises to combine information
from more than one table, into one coherent query result. For example, using
the EMP and DEPT tables, we may wish to display the details of employee
numbers and names, alongside the name of the department in which employees
work. To do this, we will need to combine information from both the tables, as
the employee details are stored in the EMP table, while the department name
information is stored in the DEPT table (in the DNAME attribute).

The first point to note, is that this will mean listing both the EMP and DEPT
tables in the table-list, following the FROM keyword in the query. In general,
the table-list will contain all of the tables required to be accessed during the
execution of a query. So far, as our queries have only ever accessed one table,
the table-list has contained only one table. To list employee numbers and names
with department names, however, the FROM clause will read:

FROM EMP, DEPT

Note that from a purely logical point of view, the order in which the tables are
listed after the keyword FROM does not matter at all. In practice, however, if
we are dealing with larger tables, the order of tables in the table-list may make
a difference to the speed of execution of the query, as it may affect the order in
which data from the tables is loaded into main memory from disk. This will be
discussed further in the chapter on Advanced SQL.

Listing both the EMP and the DEPT tables after the FROM keyword, however,
is not sufficient to achieve the results we are seeking. We don’t merely wish
for the tables to be accessed in the query; we want the way in which they are
accessed to be coordinated in a particular way. We wish to relate the display of a
department name with the display of employee numbers and names of employees
who work in that department. So we require the query to relate employee records
in the EMP table with their corresponding department records in the DEPT
table. The way this is achieved in SQL is by the Relational operator JOIN. The
JOIN is an absolutely central concept in Relational databases, and therefore in
the SQL language. It is such a central concept because this logical combining or
relating of data from different tables is a common and important requirement in
almost all applications. The ability to relate information from different tables

in a uniform manner has been an important factor in the widespread adoption
of Relational database systems.

A curious feature of performing JOINSs, or relating information from different
tables in a logical way as required in the above query, is that although the process
is universally referred to as performing a JOIN, the way it is expressed in SQL
does not always involve the use of the word JOIN. This can be particularly
confusing for newcomers to JOINs. For example, to satisfy the query above, we
would code the WHERE clause as follows:

WHERE EMP.DEPTNO = DEPT.DEPTNO

What this is expressing is that we wish rows in the EMP table to be related to
rows in the DEPT table, by matching rows from the two tables whose depart-
ment numbers (DEPTNOs) are equal. So we are using the DEPTNO column
from each employee record in the EMP table, to link that employee record with
the department record for that employee in the DEPT table.

The full query would therefore be:

SELECT EMPNO,ENAME,DNAME

FROM EMP,DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO;

This gives the following results for our test data set:

EMPNO | ENAME DNAME

7369 SMITH RESEARCH
7499 ALLEN SALES

7521 WARD SALES

7566 JONES RESEARCH
7654 MARTIN SALES

7698 BLAKE SALES

7782 CLARK ACCOUNTING
7788 SCOTT RESEARCH
7839 KING ACCOUNTING

7844 TURNER SALES

7876 ADAMS RESEARCH
7900 JAMES SALES

79012 FORD RESEARCH
7934 MILLER ACCOUNTING

A few further points should be noted about the expression of the above query:

¢ Because we wish to display values of the DNAME attribute in the result,
it has, of course, to be included in the select-list.

¢ We need not include any mention of the DEPTNO attribute in the select-
list. We require the EMP.DEPTNO and DEPT.DEPTNO columns to
perform the JOIN, so we refer to these columns in the WHERE clause,
but we do not wish to display any DEPTNO information, therefore it is
not included in the select-list.

¢ Asmentioned above, the order in which the EMP and DEPT tables appear
after the FROM keyword is unimportant, at least assuming we can ignore
issues of performance response, which we certainly can for tables of this
size.

e Similarly, the order in which the columns involved in the JOIN operation
are expressed in the WHERE clause is also unimportant.

Example on joining two tables

List the names and jobs of employees, together with the locations in which they
work:

SELECT ENAME,JOB,LOC
FROM EMP,DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO;

ENAME JOB LOC
sMITH CLERK DALLAS
ALLEN SALESMAN | CHICAGO
VWARD SALESMAN | CHICAGO
JONES MANAGER | DALLAS
MARTIN SALESMAN | CHICAGO
BLAKE MANAGER | CHICAGOD
CLARK MANAGER | NEW YORK
SCOTT AMALYST DALLAS
KING PRESIDENT | NEW YORK
TURNER SALESMAN | CHICAGO
ADAMS CLERK DALLAS
JAMES CLERK CHICAGO
FORD AMALYST DALLAS
MILLER CLERK MEW YORK

Comments: The exercise requires a simple modification to our first JOIN exam-
ple — replacing EMPNO and DNAME in the select-list with the JOB and LOC
attributes. LOC, like DNAME, is stored in the DEPT table, and so requires
the coordination provided by a JOIN, in order to display employee information
along with the locations of the departments in which those employees work.

The SQL standard provides the following alternative ways to specify this join:
FROM EMP JOIN DEPT ON EMP.DEPTNO = DEPT.DEPTNO;

FROM EMP JOIN DEPT USING DEPTNO;
FROM EMP NATURAL JOIN DEPT;

In each case, the FROM clause replaces the original FROM and WHERE
clauses.

Avoiding ambiguously named columns

DEPTNO has been used as the data item to link records in the EMP and DEPT
tables in the above examples. For our EMP and DEPT data set, DEPTNO is
in fact the only semantically sensible possibility for use as the JOIN column. In
the DEPT table, DEPTNO acts as the primary key (and as such must have a
different value in every row within the DEPT table), while in the EMP table,
DEPTNO acts as a foreign key, linking each EMP record with the department
record in the DEPT table to which the employee record belongs. If we wish to
refer to DEPTNO in the select-list, we would need to be careful to specify which
instance of DEPTNO we are referring to: the one in the EMP table, or the one
in the DEPT table. Failure to do this will lead to an error message indicating
that the system is unable to identify which column we are referencing. The way
to be specific about which instance of DEPTNO we require is simply to prefix
the reference to the DEPTNO column with the table name containing that
DEPTNO instance, placing a full stop (.) character between the table name
and column name: for example, EMP.DEPTNO, or DEPT.DEPTNO. In this
way, the system can identify which instance of DEPTNO is being referenced.

In general, if there is any possible ambiguity about which column is being ref-
erenced in a query, because a column with that name appears in more than
one table, we use the table prefixing approach to clarify the reference. Note
that this was not necessary when referencing any of the columns in the example
JOIN queries above, as all of these appeared only once within either the EMP
table or the DEPT table.

Outer JOINSs

In addition to the basic form of the JOIN, also called a NATURAL JOIN and
used to relate rows in different tables, we sometimes require a little more syn-
tax than we have seen so far, in order to obtain all the information we require.
Supposing, for example, we wish to list all departments with the employee num-
bers and names of their employees, plus any departments that do not contain
employees.

As a first attempt, we might code:
SELECT DEPT.DEPTNO,DNAME,EMPNO,ENAME
FROM EMP,DEPT

10

WHERE EMP.DEPTNO = DEPT.DEPTNO
ORDER BY DEPT.DEPTNO;

DEPTNO | DNAME EMPNO | ENAME
10 ACCOUNTING | 7782 CLARK
10 ACCOUNTING | 7835 KING

10 ACCOUNTING | 7934 MILLER
20 RESEARCH 7369 SMITH
20 RESEARCH 7876 ADAMS
20 RESEARCH 79072 FORD
20 RESEARCH 7788 SCOTT
20 RESEARCH 7566 JONES
30 SALES 7499 ALLEN
30 SALES 7698 BLAKE
30 SALES 7654 MARTIN
30 SALES 7900 JAMES
30 SALES 7844 TURMNER
30 SALES 7521 VARD

Comments: Note the use of DEPT.DEPTNO to specify the instance of the
JOIN column unambiguously in the select-list. The ORDER BY clause is help-
ful in sorting the results into DEPT.DEPTNO order. In fact, ordering by
DEPTNO, EMPNO would have been even more helpful, particularly in a larger
data set. Incidentally, being clear which instance of DEPTNO we are referring
to is just as important in the ORDER BY clause as it is in the select-list.

The results of this first attempt are, however, not the complete answer to the
original query. Department number 40, called Operations, has no employees
currently assigned to it, but it does not appear in the results.

The problem here is that the basic form of the JOIN only extracts matching
instances of records from the joined tables. We need something further to force
in any record instances that do not match a record in the other table. To do this,

11

we use a construct called an OUTER JOIN. OUTER. JOINs are used precisely
in situations where we wish to force into our results set, rows that do and do not
match a usual JOIN condition. There are three types of OUTER JOIN: LEFT,
RIGHT, and FULL OUTER JOINS. To demonstrate the OUTER JOINs, we
will use the following tables.

Person table

D NAME ADDRESS CAR
100007 John Smith Pretoria ABC 56789
200008 Jabulani Dube Cape Town ACD 5900
704555 Ruth White Cape Town NULL

The person table holds the information of people. The ID is the primary key.
A person can own a car or not.

Car table
REG MODEL OWNER
ABC 56789 KIA 100007
ACD 5900 Nissan xTraal 200008
AZA 97 BMW x3 NULL

The car table holds information of cars. The REG is the primary key. A car
can have an owner or not.

LEFT OUTER JOIN

The syntax of the LEFT OUTER JOIN involves including the LEFT JOIN key-
word in the query. Here’s an example: List all persons together with their car’s
registration and model, including any person without any car. The requirement
is to force into the result set any person that does not have a car. To satisfy
the requirement, we would write our query as such:

SELECT ID,NAME,REG,MODEL
FROM Person LEFT JOIN car ON Person.ID = Car.OWNER;

ID MNAME REG MODEL
100007 John Smith ABC 56789 KIA

200008 JabulaniDubee ACD 5900 Missan xTrail
704555 Ruth White

Comment: The query returns all the persons with cars, plus the one instance
of a person (ID 704555) having no car.

12

RIGHT OUTER JOIN

Like a LEFT JOIN, the syntax of the RIGHT OUTER JOIN involves including
the RIGHT JOIN keyword in the query. An example would be: List all cars
together with their owner’s identification and name, including any car not owned
by anyone.

SELECT REG,MODEL,ID,NAME
FROM Person RIGHT JOIN car ON Person.ID = Car.OWNER;

REG MODEL ID MAME
ABC 56739 KIA 100007 John Smith

ACD 5900 Missan xTrail 200008 Jabulani Dubee
ATA 97 BMW %3

Comment: The query returns all the cars that are owned, plus the one instance
of a car not owned by anyone.

FULL OUTER JOIN

If you wish to show both person records of those that don’t own any car and
car records that don’t have any owner, then you need to use the FULL OUTER
JOIN:

SELECT REG,MODEL,ID,NAME
FROM Person FULL JOIN car ON Person.ID = Car.OWNER;

REG MODEL D NAME
ABC 56783 KIA 100007 John Smith
ACD 5900 Missan xTrail 200008 Jabulani Dubee
AZA 97 BMWY X3
704555 Ruth White

Using table aliases

Table aliasing involves specifying aliases, or alternative names, that can be used
to refer to the table during the processing of a query. The table aliases are
specified in the table-list, following the FROM keyword. For example, the above
FULL OUTER JOIN query can be written using aliases:

SELECT REG,MODEL,ID,NAME

13

FROM Person p FULL JOIN car ¢ ON p.ID = ¢.OWNER;

SELF JOINS

Sometimes it is necessary to JOIN a table to itself in order to compare records
from the same table. An example of this might be if we wish to compare values
of salary on an individual basis between employees.

Example: find all employees who are paid more than “JONES”

What is required here is to compare the salaries of employees with the salary
paid to JONES. A way of doing this, involves JOINing the EMP table with
itself, so that we can carry out salary comparisons in the WHERE clause of an
SQL query. However, if we wish to JOIN a table to itself, we need a mechanism
for referring to the different rows being compared.

In order to specify the query to find out which employees are paid more than
JONES, we shall use two table aliases, X and Y for the EMP table. We shall use
X to denote employees whom we are comparing with JONES, and Y to denote
JONES’ record specifically. This leads to the following query specification:

SELECT X.EMPNO,X.ENAME,X.SAL,Y.EMPNO,Y.ENAME,Y.SAL
FROM EMP X,EMP Y

WHERE X.SAL > Y.SAL

AND Y.ENAME = ‘JONES’

EMPNO | ENAME | SAL | EMPNO | ENAME | SAL
7788 SCOTT | 3000 | 7566 JONES | 2975
7839 KING 5000 | 7566 JONES | 2975
7902 FORD 3000 | 7566 JONES | 2975

Comments: Note the use of the aliases for each of the column specifications
in the select-list. We ensure that the alias Y is associated with the employee
JONES through the second condition in the WHERE clause, “AND Y.ENAME
= ‘JONES’”. The first condition in the WHERE clause, comparing salaries,
ensures that apart from JONES’ record, which is listed in the result as a check
on the query results, only the details of employees who are paid more than
JONES are retrieved.

14

Summary of JOINs

We have seen three forms of the JOIN condition. The basic JOIN, also called
a NATURAL JOIN, is used to combine or coordinate the results of a query
in a logical way across more than one table. In our examples, we have seen
that JOINing two tables together involves one JOIN condition and, in general,
JOINing N tables together requires the specification of N-1 JOIN conditions.
A lot of work has gone into the development of efficient algorithms for the
execution of JOINs in all the major database systems, with the result being
that the overall performance of Relational database systems has seen a very
considerable improvement since their introduction in the early ’80s. In spite of
this, JOINs are still an expensive operation in terms of query processing, and
there can be situations where we seek ways of reducing the number of JOINs
required to perform specific transactions.

Two further variants we have seen on the basic JOIN operation are the OUTER
JOIN and the SELF JOIN. The OUTER JOIN is used to force non-matching
records from one side of a JOIN into the set of retrieved results. The SELF
JOIN is used where it is required to compare rows in a table with other rows
from the same table. This comparison is facilitated through the use of aliases,
alternative names which are associated with the table, and so can be used to
reference the table on different sides of a JOIN specification.

Nested queries

The power of the SQL language is increased considerably through the ability to
include one query within another. This is known as nesting queries, or writing
sub-queries.

Nested query example
Find all employees who are paid more than JONES:
This might be considered a two-stage task:

1. Find Jones’ salary.

2. Find all those employees who are paid more than the salary found in step
1.

We might code step 1 as follows:
SELECT SAL

FROM EMP

WHERE ENAME = ‘JONES’

The nested query mechanism allows us to enclose this query within another one,
which we might use to perform step 2:

15

SELECT EMPNO,ENAME,SAL
FROM EMP
WHERE SAL > ...

We simply need the syntax to enclose the query to implement step 1 in such a
way that is provides its result to the query which implements step 2.

This is done by enclosing the query for step 1 in parentheses, and linking it to
the query for step 2 as follows:

SELECT EMPNO,ENAME,SAL

FROM EMP

WHERE SAL >

(SELECT SAL FROM EMP WHERE ENAME = ‘JONES’);

This gives the following results:

EMPNO | ENAME | SAL
/788 SCOTT | 3000
7839 KING 5000
7902 FORD 3000

These are indeed the employees who earn more than JONES (who earns 2975).

Whenever a query appears to fall into a succession of natural steps such as the
one above, it is a likely candidate to be coded as a nested query.

An important point has to be kept in mind when testing for equality of values
across inner and outer queries.

If the inner query returns just one value, then we can use the equal sign, e.g.
SELECT ... FROM ...

WHERE ATTRIBUTE 1 = (SELECT ...

FROM)

If, however, the inner query might return more than one row, we must use the
keyword IN, so that we can check whether the value of the attribute being tested
in the WHERE clause of the outer query is IN the set of values returned by the
inner query. Sub-queries can be included linked to a HAVING clause, i.e. they
can retrieve a result which forms part of the condition in the evaluation of a
HAVING clause. In this situation the format of the HAVING clause is:

16

HAVING ...
(SELECT .. FROM .. WHERE)

The inner query may of course itself have inner queries, with WHERE, GROUP
BY and HAVING clauses.

The depth and breadth of nested queries

The number of queries that can be nested varies from one database system to
another, but there is support for this SQL construct in all the leading databases
such that there is no practical limit to the number of queries that can be nested.

In a similar way, a number of queries can be included at the same level of
nesting, their results being combined together using the AND or OR keywords,
according to the following syntax:

SELECT ... FROM ...

WHERE CONDITION 1 (SELECT ...

FROM WHERE)

AND/OR (SELECT ... FROM ... WHERE)
AND/OR

The UNION operator

To find the details of any employees receiving the same salaries as either SCOTT
or WARD, we could code:

SELECT EMPNO,ENAME SAL

FROM EMP

WHERE SAL IN

(SELECT SAL FROM EMP

WHERE ENAME = ‘WARD’

OR

ENAME = ‘SCOTT’);

But suppose SCOTT and WARD are in different tables. If this is the case, we
need to use the UNION operator in order to combine the results of queries on
two different tables as follows:

SELECT EMPNO,ENAME,SAL

17

FROM EMP

WHERE SAL IN

(SELECT SAL

FROM EMP1

WHERE ENAME = ‘WARD’
UNION

SELECT SAL

FROM EMP2

WHERE ENAME = ‘SCOTT’);

Comments: We are assuming here that WARD is in a table called EMP1, and
SCOTT in EMP2. The two salary values retrieved from these sub-queries are
combined into a single results set, which is retrieved for comparison with all
salary values in the EMP table in the outer query. Because there is more than
one salary returned from the combined inner query, the IN keyword is used to
make the comparison. Note that as with the Relational Algebra equivalent, the
results of the SQL UNION operator must be union compatible, as we see they
are in this case, as they both return single salary columns.

The INTERSECT operator

Again, like its Relational Algebra equivalent, the SQL INTERSECT operator
can be used to extract the rows in common between two sets of query results:

SELECT JOB

FROM EMP

WHERE SAL > 2000 INTERSECT
SELECT JOB

FROM SHOPFLOORDETAILS;

Here the INTERSECT operator is used to find all jobs in common between
the two queries. The first query returns all jobs that are paid more than 2000,
whereas the second returns all jobs from a separate table called SHOPFLO-
ORDETAILS. The final result, therefore, will be a list of all jobs in the
SHOPFLOORDETAILS table that are paid more than 2000. Again, note that
the sets of results compared with one another using the INTERSECT operator
must be union compatible.

18

The MINUS operator

MINUS is used, like the DIFFERENCE operator of Relational Algebra, to sub-
tract one set of results from another, where those results are derived from dif-
ferent tables.

For example:

SELECT EMPNO,ENAME,SAL
FROM EMP

WHERE ENAME IN

(SELECT ENAME

FROM EMP1

MINUS

SELECT ENAME

FROM EMP2);

Comments: The result of this query lists the details for employees whose names
are the same as employees in table EMP1, with the exception of any names that
are the same as employees in table EMP2.

ANY or ALL operator

The ANY or ALL operators may be used for sub-queries that return more than
one row. They are used on the WHERE or HAVING clause in conjunction with
the logical operators (=, |=, >, >=, <=, <). ANY compares a value to each
value returned by a sub-query.

To display employees who earn more than the lowest salary in Department 30,
enter:

SELECT ENAME, SAL, JOB, DEPTNO
FROM EMP

WHERE SAL >>

ANY

(SELECT DISTINCT SAL

FROM EMP

WHERE DEPTNO = 30)

ORDER BY SAL DESC;

19

ENAME | SAL | JOB DEPTNO
KING 5000 | PRESIDENT | 10
SCOTT | 3000 [ANALYST 20
FORD 3000 | ANALYST 20
JONES 2975 | MANAGER | 20
BLAKE 2850 [MANAGER | 30
CLARK 2450 [MANAGER | 10
ALLEN 1600 | SALESMAN | 30
TURNER | 1500 | SALESMAN | 30
MILLER | 1300 | CLERK 10
VARD 1250 | SALESMAN | 30
MARTIN | 1250 | SALESMAN | 30
ADAMS | 1100 | CLERK 20

Comments: Note the use of the double >> sign, which is the syntax used
in conjunction with the ANY and ALL operators to denote the fact that the
comparison is carried out repeatedly during query execution. “= ANY” is equiv-
alent to the keyword IN. With ANY, the DISTINCT keyword is often used in
the sub-query to avoid the same values being selected several times. Clearly the

lowest salary in department 30 is below 1100.

ALL compares a value to every value returned by a sub-query.

The following query finds employees who earn more than every employee in

Department 30:

SELECT ENAME, SAL, JOB, DEPTNO

FROM EMP

WHERE SAL >>ALL
(SELECT DISTINCT SAL

FROM EMP

WHERE DEPTNO = 30)

20

ORDER BY SAL DESC;

ENAME | SAL | JOB DEPTNO
KING 5000 | PRESIDENT | 10
SCOTT | 3000 [ANALYST 20
FORD 3000 | ANALYST 20
JONES | 2975 | MANAGER | 20

Comments: The inner query retrieves the salaries for Department 30. The
outer query, using the All keyword, ensures that the salaries retrieved are higher
than all of those in department 30. Clearly the highest salary in department 30
is below 2975.

Note that the NOT operator can be used with IN, ANY or ALL.

Correlated sub-queries

A correlated sub-query is a nested sub-query that is executed once for each
‘candidate row’ considered by the main query, and which on execution uses a
value from a column in the outer query. This causes the correlated sub-query
to be processed in a different way from the ordinary nested sub-query.

With a normal nested sub-query, the inner select runs first and it executes once,
returning values to be used by the main query. A correlated sub-query, on the
other hand, executes once for each candidate row to be considered by the outer
query. The inner query is driven by the outer query.

Steps to execute a correlated sub-query:
1. The outer query fetches a candidate row.

2. The inner query is executed, using the value from the candidate row
fetched by the outer query.

3. Whether the candidate row is retained depends on the values returned by
the execution of the inner query.

4. Repeat until no candidate row remains.
Example

We can use a correlated sub-query to find employees who earn a salary greater
than the average salary for their department:

21

SELECT EMPNO,ENAME,SAL,DEPTNO
FROM EMP E

WHERE SAL >> (SELECT AVG(SAL)
FROM EMP

WHERE DEPTNO = E.DEPTNO)
ORDER BY DEPTNO;

Giving the results:

EMPNO | ENAME | SAL | DEPTNO
7839 KING 5000 | 10
7566 JONES | 2975 | 20
7788 SCOTT | 3000 | 20
7902 FORD 3000 | 20
7499 ALLEN | 1800 | 30
7698 BLAKE | 2850 [30

Comments: We can see immediately that this is a correlated sub-query since
we have used a column from the outer select in the WHERE clause of the inner
select. Note that the alias is necessary only to avoid ambiguity in column names.

Interactive queries

A very useful facility is provided to enable users to run the same query again,
entering a different value of a parameter to a WHERE or HAVING clause. This
is done by prefixing the column specification for which different values are to be
supplied by the “&” sign.

Example

Find the number of clerks based in department 10. Find the number of clerks
in other departments by running the same query, in each case entering the value
of the department number interactively.

SELECT COUNT(EMPNO) “NUMBER OF CLERKS”
FROM EMP

22

WHERE JOB = ‘CLERK’
AND DEPTNO = &DEPTNO

The user will be asked to enter a value for DEPTNO. The result for entering 10
is:

NUMEER OF CLERKS
1

This syntax provides a limited amount of interactivity with SQL queries, which
can avoid the need to recode in order to vary the values of interactively specified
parameters.

Activities

The following individual activities will provide practice by focusing on specific
SQL constructs in each activity. These will be supplemented by the succeeding
review questions, which will draw on all of the SQL material covered in this and
the introductory chapter to SQL. This first activity will concentrate on various
types of SQL JOIN.

Activity 1: JOINs

1. Find all employees located in Dallas.

2. List the total annual pay for the Sales department (remember salary and
commission data are provided as monthly figures).

3. List any departments that do not contain any employees.

4. Which workers earn more than their managers (hint: remember that the
MGR attribute stores the EMPNO of an employee’s manager).

Activity 2: GROUP BY

1. List the total monthly pay for each department.
2. List the number of employees located in Chicago and New York.

3. Find all jobs with more than two employees.

23

Activity 3: Nested queries

1. List the details of the highest-paid employee.
2. Find whether anyone in department 30 has the same job as JONES.
3. Find the job with the most employees.

Review questions

1. Why is the JOIN operation such a core concept in Relational database
systems? Describe how JOINs are expressed in SQL.

2. How can we express in SQL where it is required to JOIN more than two
tables together?

3. Differentiate between the terms SELF JOIN and OUTER JOIN, and give
a practical example of the use of each (you need not necessarily restrict
yourself to the use of the data tables used in earlier examples).

4. Describe the use of the GROUP BY clause for categorising data in SQL.

5. What restrictions exist on the contents of a select-list which appears in
the same query as a GROUP BY clause?

6. It is sometimes said that the HAVING keyword relates to the GROUP BY
clause, in the same way that the WHERE keyword relates to SELECT.
Explain the meaning of this statement, and draw parallels between the
SELECT....WHERE and the GROUP BY ... HAVING constructs in SQL.

7. Describe the use of nested queries within the SQL language.

Discussion topic

JOINSs versus nested queries

In general, Relational database systems are optimised to perform JOIN opera-
tions very efficiently. It is also true that many SQL queries can be expressed
either as a JOIN or as a nested query. Consider for yourself, and discuss online
with colleagues, which of these two constructs you find easier to understand and
to code. Do you find that any previous programming experience you may have
had influences your ease of understanding and application of these concepts? For
example, most people who have experience of conventional programming lan-
guages are familiar with loop statements and nesting one loop inside another,
a construct which is very similar to a nested query. In general, do you think
having had previous experience is an advantage or disadvantage when learning
a language such as SQL?

24

Additional content

Following on from the Additional Content section of the introductory chapter
to SQL, you are encouraged to explore further the SQL support provided within
Microsoft Access, or some other database of your choice, for the SQL constructs
we have covered in this chapter.

Whereas you will have found relatively consistent support for all of the SQL fea-
tures covered in the introductory chapter, now that we have covered the majority
of the constructs available within the DML part of SQL, you are much more
likely to find variations in support for the different features. These variations
are likely to include:

e Complete lack of support for some of the constructs covered, e.g. some
databases do not allow nested queries at all, or do not support JOINs.

o Partial support for some constructs; for example, some systems support
nested queries, but do not support the keywords ANY and ALL.

e Variations in the limits to how different constructs can be used; for ex-
ample, some databases only allow query nesting to two or three levels, or
support conventional JOINs but not the SELF or OUTER JOIN.

Using the sample tables provided in the database you have chosen, investigate
the use of the SQL constructs described in this chapter, noting down differences
and limitations in their implementation between your chosen database and the
Oracle implementation.

25

	Chapter 4. Intermediate SQL
	Objectives
	Introduction
	Context
	Grouping and summarising information
	A very common error with GROUP BY
	The HAVING clause

	Writing queries on more than one table - JOIN
	Avoiding ambiguously named columns
	Outer JOINs
	Using table aliases
	SELF JOINS
	Summary of JOINs

	Nested queries
	The depth and breadth of nested queries

	The UNION operator
	The INTERSECT operator
	The MINUS operator
	ANY or ALL operator
	Correlated sub-queries
	Interactive queries
	Activities
	Activity 1: JOINs
	Activity 2: GROUP BY
	Activity 3: Nested queries

	Review questions
	Discussion topic
	Additional content

