
Chapter 6. Entity-Relationship Modelling

Table of contents

• Objectives
• Introduction
• Context
• Entities, attributes and values

– Entities
– Attributes
– Values
– Primary key data elements
– Key
– Candidate keys
– Foreign keys

• Entity-Relationship Modelling
– Entity representation
– One-to-one relationships between two entities
– One-to-many relationships between two entities
– Many-to-many relationships between two entities
– Recursive relationships

• Relationship participation condition (membership class)
– Mandatory and optional relationships
– One-to-one relationships and participation conditions

∗ Both ends mandatory
∗ One end mandatory, other end optional:
∗ One end optional, other end mandatory:
∗ Both ends optional:

– One-to-many relationships and participation conditions
∗ Both ends mandatory:
∗ One end mandatory, other end optional:
∗ One end optional, other end mandatory:
∗ Both ends optional:

– Many-to-many relationships and participation conditions
∗ Both ends mandatory:
∗ One end mandatory, other end optional:
∗ One end optional, other end mandatory:
∗ Both ends optional

• Weak and strong entities
• Problems with entity-relationship (ER) models

– Fan traps
– Chasm traps

• Converting entity relationships into relations
– Converting one-to-one relationships into relations

∗ Mandatory for both entities
∗ Mandatory for one entity, optional for the other entity

1



∗ Optional for both entities
– Converting one-to-many relationships into relations

∗ Mandatory for both entities
∗ Mandatory for one entity, optional for another entity: many end

mandatory
∗ Mandatory for one entity, optional for another entity: many end

optional
∗ Optional for both entities

– Converting many-to-many relationships into relations
∗ Mandatory for both entities
∗ Mandatory for one entity, optional for the other entity
∗ Optional for both entities

– Summary of conversion rules
• Review questions

Objectives

At the end of this chapter you should be able to:

• Analyse a given situation to identify the entities involved.

• Be able to identify the relationships between entities, and carry out any
necessary transformations.

• Develop the model further by identifying attributes for each entity.

• Map the entities into tables suitable for Relational database implementa-
tion.

Introduction

In parallel with this chapter, you should read Chapter 11 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter is the first to address in detail the extremely important topic of
database design. The main approach described in this chapter is called Entity-
Relationship Modelling. This technique has become a widely used approach in
the development of database applications. The approach is essentially top-down,
in that the first step is to look overall at the requirements for the application be-
ing developed, identifying the entities involved. The approach progresses from
that point through the development of a detailed model of the entities, their
attributes and relationships. The Entity-Relationship Modelling process is not
formal, in the mathematical sense, but to be done well, it requires a consistent
precision to be applied to the way that entities, their relationships and their
attributes are discussed. The approach can be supplemented by methods which

2



are more formal in their approach, and that provide a bottom-up perspective
to the design process. The most commonly used of these approaches is Normal-
isation, which will be a core topic of the later chapters on database design.

Context

This chapter introduces the ideas of top-down database design, and provides the
starting point in learning how to develop a database application. The chapter
links closely with the others covering database design (Normalisation and other
design topics). The chapter also has considerable relevance for the material
in the module on performance tuning, such as the chapter on indexing, as the
decisions made during database design have a major impact on the performance
of the application.

Entities, attributes and values

Entities

Many organisations (such as businesses, government departments, supermarkets,
universities and hospitals) have a number of branches, divisions or sections in
order to deal with a variety of functions or different geographical areas. Each
branch, division or section may itself be split up into smaller units. It is possible
to regard each branch, division or section (or each unit within these) as an
organisation in its own right. Organisations require information in order to carry
out the tasks and activities for which they are responsible. The information that
these organisations need could be categorised in a number of ways, for example:

People

• Payroll

• Pensions

• Annual leave

• Sick leave

Things

• Furniture

• Equipment

• Stationery

• Fire extinguishers

Locations

• Offices

3



• Warehouses

• Stock rooms

Events

• Sale is made

• Purchase order is raised

• Item is hired

• Invoice is issued

Concepts

• Image of product

• Advertising

• Marketing

• Research and development.

Each of these can be regarded as an entity.

Important

Entity

An entity may represent a category of people, things, events, locations or con-
cepts within the area under consideration. An entity instance is a specific exam-
ple of an entity. For example, John Smith is an entity instance of an employee
entity.

Attributes

Entities have attributes. The following are typical of the attributes that an
entity might possess:

Entity: House

Attributes:

Entity: Book

Attributes:

4



Entity: Employee

Attributes:

Important

Attribute

An entity may have one or more attributes associated with it. These attributes
represent certain characteristics of the entity; for a person, attributes might be
name, age, address, etc.

Values

Using the entities and attributes shown above, the following are examples of
one set of values for a particular instance of each entity. Every occurrence of an
entity will have its own set of values for attributes it possesses.

Entity: House

Attributes:

Values:

Entity: Book

Attributes:

Values:

5



Entity: Employee

Attributes:

Values:

Primary key data elements

If the value of certain attributes (or perhaps just one attribute) is known for
a particular entity, this enables us to discover the value of other attributes
associated with that entity. The attributes (or attribute) which possess this
quality are known as keys, because they are able to ‘unlock’ the values of the
other attributes that are associated with that specific instance of an entity.
Why do we need a key? Suppose we had two members of staff with the same
(or similar) names, such as Linda Clark and Lydia Clark. It would be a simple
mistake to record something in the file of Linda Clark that should be kept in the
file for Lydia Clark (or the other way around). It would be even more difficult
to tell them apart if the name was given as just an initial and surname.

Some names may be spelt slightly differently, but sound similar (such as Clark
and Clarke), and therefore pose a further risk of identifying the wrong member
of staff.

Key

The addition of a staff number as the primary key would enable us to be sure
that when we needed to refer to one or other of these members of staff, we had
identified the correct individual. In this way 11057 Clark can be distinguished
from 28076 Clark.

The following are examples of key data elements:

• The payroll number (primary key) of a member of staff enables us to find
out the name, job title and address for that individual.

6



• The account number (primary key) enables us to find out whether the
balance of that account is overdrawn.

• The item code (primary key) in a stationery catalogue enables us to order
a particular item in a particular size and colour (e.g. a red A4 folder).

Sometimes we may need to use more than one attribute in order to arrive at a
key that will provide unique identification for all the other data elements. When
considering which attribute (or combination of attributes) might be used as a
primary key, these attributes are known as candidate keys.

Candidate keys

Where there is more than one set of attributes which could be chosen as the pri-
mary key for an entity, each of these groups of attributes are known as candidate
keys.

A company might choose either an employee’s staff number or an employee’s
National Insurance number as the primary key, as each will provide unique iden-
tification of an individual. (Note that in different countries, a slightly different
term might be used for a national code that is used to identify any one indi-
vidual, such as national ID number, etc.) The staff number and the National
Insurance number are candidate keys, until one is selected as the primary key.

At times we may refer to a collection of attributes that includes the primary key
(for example, staff number and staff name); this group of attributes is sometimes
known as a superkey.

When we need to connect together different items of data (for example, cus-
tomers and items, in order to produce orders and invoices), we can do this by
including the primary key of one entity as a data item in another entity; for
example, we would include the primary key of Customer in the Order entity to
link customers to the Orders they have placed.

Foreign keys

When a copy of the primary key for one entity is included in the collection of
attributes of another entity, the copy of the primary key held in the second
entity is known as a foreign key.

A foreign key enables a link to be made between different entities.

7



Entity-Relationship Modelling

Entity representation

One common method to represent an entity is to use entity-relationship dia-
grams, where each entity is represented by a box with two compartments, the
first for entity name and the second for attributes.

You may also come across diagrams that employ ellipses to represent the at-
tributes belonging to each entity.

The relationships that exist between two entities can be categorised according
to the following:

• one-to-one

• one-to-many

• many-to-many

In some cases, for simplicity, the attributes are omitted in the entity diagram.

One-to-one relationships between two entities

In a concert hall, each ticket holder has a seat for a single performance (the seat
number will appear on the ticket). Only one person can sit in one seat at each
performance; the relationship between a member of the audience and a seat is
therefore one-to-one.

8



Each seat in the concert hall can be sold to one person only for a particular
performance; the relationship between the seat and the member of the audience
with a ticket for that seat is also one-to-one.

Relationships between entities and attributes, between attributes, and between
entities can be shown in a variety of diagrammatic formats. The common format
is to represent each relationship as a line. The style of the line shows the
type of relationship being represented. Here, in order to represent a one-to-one
relationship, a single straight line is used between the two entities.

The overall relationship between ticket holders and seats is one-to-one for each
performance. The entity-relationship diagram above shows the one-to-one link
between a ticket holder and a concert hall seat.

In an orchestra, each individual will play one type of musical instrument; for
example, a person who plays a violin will not play a trumpet. The relationship
is one-to-one from a member of the orchestra to a type of instrument.

9



One-to-many relationships between two entities

An orchestra will have more than one musician playing a particular type of
instrument; for example, it is likely that there will be several members of the
orchestra each playing a violin. The relationship is therefore one-to-many from
a type of musical instrument to a member of the orchestra.

The entity-relationship diagram shows that there is a one-to-many relationship
between musical instrument types and members of the orchestra. The ‘crow’s
foot’ link shows that there may be more than one member of the orchestra for
each type of musical instrument.

Many-to-many relationships between two entities

An individual may attend a series of concerts during each season as a member

10



of the audience; the relationship between an individual and the concerts is one-
to-many.

Many ticket holders will attend each concert; the relationship between a concert
and members of the audience is also one-to-many.

As the relationship is one-to-many on both sides of the relationship, the rela-
tionship that exists between the two entities can be described as many-to-many.

The entity-relationship diagram above has a ‘crow’s foot’ connection at each end,
illustrating that there is a many-to-many relationship between ticket holders and
concert performances, as one ticket holder may attend many performances, and
each performance is likely to have many ticket holders present.

As it is difficult to implement a many-to-many relationship in a database system,
we may need to decompose a many-to-many relationship into two (or more)
one-to-many relationships. Here, we might say that there is a one-to-many
relationship between a ticket holder and a ticket (each ticket holder may have
several tickets, but each ticket will be held by only one person).

We could also identify a one-to-many relationship between a concert perfor-
mance and a ticket (each ticket for a particular seat will be for only one perfor-
mance, but there will be many performances each with a ticket for that seat).

11



This allows us to represent the many-to-many relationship between ticket holder
and concert performance: two one-to-many relationships involving a new entity
called Ticket For Seat. This new structure can then be implemented within a
Relational database system.

Recursive relationships

The relationships we have seen so far have all been between two entities; this
does not have to be the case. It is possible for an entity to have a relationship
with itself; for example, an entity Staff could have a relationship with itself,
as one member of staff could supervise other staff. This is known as a recur-
sive or involute relationship, and would be represented in an entity-relationship
diagram as shown below.

Exercises

Exercise 1: Identifying entities and attributes

Benchmarque International, a furniture company, keeps details Of items it sup-
plies to homes and offices (tables, chairs, bookshelves, etc). What do you think
would be the entities and attributes the furniture company would need to rep-
resent these items?

Exercise 2: Identification of primary keys

What do you think would make a suitable primary key for the entity (or entities)
representing the tables, chairs, bookshelves and other items of furniture for
Benchmarque International?

In other words, what are the candidate keys?

12



Exercise 3: Identifying relationships

At a conference, each delegate is given a bound copy of the proceedings, contain-
ing a copy of all the papers being presented at the conference and biographical
details of the speakers.

What is the relationship between a delegate and a copy of the proceedings?

Draw the entity-relationship diagram.

Exercise 4: Identifying relationships II

Many papers may be presented at a conference.

Each paper will be presented once only by one individual (even if there are
multiple authors).

Many delegates may attend the presentation of a paper.

Papers may be grouped into sessions (two sessions in the morning and three in
the afternoon).

What do you think is the relationship between:

• a speaker and a paper

• a paper and a session

Exercise 5 — Identifying relationships III

A conference session will be attended by a number of delegates. Each delegate
may choose a number of sessions. What is the relationship between conference
delegates and sessions? Draw the entity-relationship diagram.

Relationship participation condition (membership class)

Mandatory and optional relationships

We can extend the entity-relationship model by declaring that some relation-
ships are mandatory, whereas others are optional. In a mandatory relationship,
every instance of one entity must participate in a relationship with another en-
tity. In an optional relationship, any instance of one entity might participate in
a relationship with another entity, but this is not compulsory.

Important

Participation condition/membership class

The participation condition defines whether it is mandatory or optional for an
entity to participate in a relationship. This is also known as the membership
class of a relationship.

13



As there are two kinds of participation conditions (mandatory and optional),
and most entities are involved in binary relationships, it follows that there are
four main types of membership relationships, as follows:

1. Mandatory for both entities

2. Mandatory for one entity, optional for the other

3. Optional for one entity, mandatory for the other

4. Optional for both entities

It might be tempting to think that options 2 and 3 are the same, but it is
important to recognise the difference, particularly when thinking about whether
the relationship is one-to-one, one-to-many or many-to-many. A useful analogy
is to think of a bank, with customers who have savings accounts and loans. It
may be the bank’s policy that any customer must have a savings account before
they are eligible to receive a loan, but not all customers who have savings
accounts will require a loan.

We can examine how these different types of membership classes can be used
to reflect the policies of allocating staff within departments. We would expect
any member of staff in an organisation to work in a given department, but what
happens if a new department is created, or a new member of staff joins? If we
look at each combination in turn, we can see what the possibilities are:

1. Mandatory for both entities: A member of staff must be assigned to
a given department, and any department must have staff. There can be
no unassigned staff, and it is not possible to have an ‘empty’ department.

2. Mandatory for one entity, optional for the other: Any member of
staff must be attached to a department, but it is possible for a department
to have no staff allocated.

3. Optional for one entity, mandatory for the other: A member of
staff does not have to be placed in a department, but all departments
must have at least one member of staff.

4. Optional for both entities: A member of staff might be assigned to
work in a department, but this is not compulsory. A department might,
or might not, have staff allocated to work within it.

We can elaborate the standard entity-relationship notation with a solid circle to
indicate a mandatory entity, and a hollow circle for an optional entity (think
of the hollow circle like ‘o’ for optional). (You may find alternative notations
in other texts - for example, a solid line to represent a mandatory entity, and a
dotted line to indicate an optional entity. Another method places solid circles
inside entity boxes for mandatory participation, or outside entity boxes for op-
tional membership.) The use of a graphical technique enables us to represent
the membership class or participation condition of an entity and a relationship
in an entity-relationship diagram.

14



We will now explore these possibilities using a performer, agents and bookings
scenario as an example, but experimenting with different rules to see what effect
they have on the design of the database. Supposing to start with, we have the
following situation.

There are a number of performers who are booked by agents to appear at dif-
ferent venues. Performers are paid a fee for each booking, and agents earn
commission on the fee paid to each performer. We will now consider relation-
ships of different kinds between these entities.

One-to-one relationships and participation conditions

Both ends mandatory

It might be the case that each performer has only one agent, and that all
bookings for any one performer must be made by one agent, and that agent
may only make bookings for that one performer. The relationship is one-to-one,
and both entities must participate in the relationship.

The solid circle at each end of the relationship shows that the relationship is
mandatory in both directions; each performer must have an agent, and each
agent must deal with one performer.

One end mandatory, other end optional:

It might be possible for agents to make bookings that do not involve performers;
for example, a venue might be booked for an art exhibition. Each performer,
however, must have an agent, although an agent does not have to make a booking
on behalf of a performer.

The solid circle at the performer end of the relationship illustrates that a per-
former must be associated with an agent. The hollow circle at the agent end of
the relationship shows that an agent could be associated with a performer, but
that this is not compulsory. Each performer must have an agent, but not all
agents represent performers.

15



One end optional, other end mandatory:

It might be possible for performers to make bookings themselves, without using
an agent. In this case, one performer might have an agent, and that agent will
make bookings for that performer. On the other hand, a different performer
might elect to make their own bookings, and will not be represented by an agent.
All agents must represent a performer, but not all performers will be represented
by agents. The relationship is optional for the performer, but mandatory for
the agent, as shown in the diagram below.

The solid circle at the agent end of the relationship shows each agent must be
associated with a performer. The hollow circle at the performer end of the
relationship indicates that a performer could be represented by an agent, but
that this is not compulsory. Each agent must deal with only one performer, but
each performer does not have to have an agent.

Both ends optional:

Another possibility is that agents may make bookings that do not involve per-
formers; for example, a venue might be booked for an art exhibition. In addition,
performers may make bookings themselves, or might have bookings made by an
agent, but if a performer has an agent, there must be a one-to-one relationship
between them. This relationship is optional for both entities.

The hollow circles show that there is an optional relationship between a per-
former and an agent; if there is a relationship, it will be one-to-one, but it is
not compulsory either for the performer or for the agent.

One-to-many relationships and participation conditions

It might be the case that a performer has only one agent, and that all bookings
for any one performer must be made by one agent, although any agent may
make bookings for more than one performer.

Both ends mandatory:

A performer must have one or more bookings; each booking must involve one
performer.

16



The membership class is mandatory for both entities, as shown by the solid
circle. In this case, it is not possible for a booking to be made for an event
that does not involve a performer (for example, a booking could not be for an
exhibition).

One end mandatory, other end optional:

A performer must have one or more bookings, but a booking might not involve
a performer (e.g. a booking might be for an exhibition, not a performer).

The solid circle shows the compulsory nature of the relationship for a performer;
all performers must have bookings. The hollow circle shows that it is optional
for a booking to involve a performer. This means that a performer must have a
booking, but that a booking need not have a performer.

One end optional, other end mandatory:

A performer might have one or more bookings; each booking must involve one
performer.

The membership class is mandatory for a booking, but optional for a performer.
This means that it would not be possible for a booking to be for an exhibition, as
all bookings must involve a performer. On the other hand, it is not compulsory
for a performer to have a booking.

Both ends optional:

17



A performer might have one or more bookings; a booking might be associated
with a performer.

In this case, a booking could be for an exhibition as it is optional for a booking to
involve a performer, as indicated by the hollow circle. A performer might decline
to accept any bookings; this is acceptable, as it is optional for a performer to
have a booking (shown by the hollow circle).

Many-to-many relationships and participation conditions

We could say that there is a many-to-many relationship between performers
and agents, with each agent making bookings for many performers, and each
performer having bookings made by many agents. We know that we need to
decompose many-to-many relationships into (usually) two one-to-many relation-
ships, but we can still consider what these many-to-many relationships would
look like before this decomposition has taken place. We will see later that many-
to-many relationships can be converted into relations either after they have been
decomposed, or directly from the many-to-many relationship. The result of the
conversion into relations will be the same in either case.

Both ends mandatory:

An example here might be where each performer must be represented by one
or more agents, and each agent is required to make bookings for a number of
performers.

There is a many-to-many relationship between the two entities, in which both
entities must participate. Agents are not allowed to make bookings for events
that do not involve performers (such as conferences or exhibitions). Performers
must have bookings made by agents, and are not allowed to make their own
bookings.

One end mandatory, other end optional:

18



In this example, it is still necessary for performers to be represented by a number
of agents, but the agents now have more flexibility as they do not have to make
bookings for performers.

There is a many-to-many relationship between the two entities; one must par-
ticipate, but it is optional for the other entity.

One end optional, other end mandatory:

Here, performers have the flexibility to make their own bookings, or to have
bookings made by one or more agents. Agents are required to make bookings
for performers, and may not make arrangements for any other kind of event.

There is a many-to-many relationship between the two entities; it is optional for
one to participate, but participation is mandatory for the other entity.

Both ends optional

Here, performers and agents are both allowed a degree of flexibility. Performers
may make their own bookings, or may have agents make bookings for them.
Agents are permitted to make bookings for a number of performers, and also
have the ability to make other kinds of bookings where performers are not
required.

There is a many-to-many relationship between the two entities; participation is
optional for both entities.

These many-to-many relationships are likely to be decomposed into one-to-many
relationships. The mandatory/optional nature of the relationship must be pre-
served when this happens.

19



Weak and strong entities

An entity set that does not have a primary key is referred to as a weak entity
set. The existence of a weak entity set depends on the existence of a strong
entity set, called the identifying entity set. Its existence, therefore, is dependent
on the identifying entity set.

The relationship must be many-to-one from weak to identifying entity. Par-
ticipation of the weak entity set in the relationship must be mandatory. The
discriminator (or partial key) of a weak entity set distinguishes weak entities
that depend on the same specific strong entity. The primary key of a weak
entity is the primary key of the identifying entity set + the partial key of the
weak entity set.

Example: Many payments are made on a loan

• Payments don’t exist without a loan.

• Multiple loans will each have a first, second payment and so on. So, each
payment is only unique in the context of the loan which it is paying off.

The weak entity is commonly represented by two boxes.

The payment is a weak entity; its existence is dependent on the loan entity.

Problems with entity-relationship (ER) models

In this section we examine problems that may arise when creating an ER model.
These problems are referred to as connection traps, and normally occur due to
a misinterpretation of the meaning of certain relationships. We examine two
main types of connection traps, called fan traps and chasm traps, and illustrate
how to identify and resolve such problems in ER models.

Fan traps

These occur when a model represents a relationship between entity types, but
the pathway between certain entity occurrences is ambiguous. Look at the
model below.

20



The above model looks okay at first glance, but it has a pitfall. The model says
a faculty has many departments and many staff. Although the model seems to
capture all the necessary information, it is difficult to know which department
staff are affiliated to. To find out the departments the staff belong to, we will
start from the staff entity. Through the relationship between staff and faculty,
we are able to easily identify the faculties staff belong to. From the faculty, it’s
difficult to know the exact department because one faculty is associated with
many departments.

The model below removes the fan trap from the model.

Chasm traps

These occur when a model suggests the existence of a relationship between entity
types, but the pathway does not exist between certain entity occurrences.

The model represents the facts that a faculty has many departments and each
department may have zero or many staff. We can clearly note that, not all
departments have staff and not all staff belong to a department. Examples of
such staff in a university can include the secretary of the dean. He/she does not
belong to any department.

It’s difficult to answer the question, “Which faculty does the dean’s secretary
belong to?”, as the secretary to the dean does not belong to any department.

We remove the ‘chasm trap’ by adding an extra relationship from staff to faculty.

21



Converting entity relationships into relations

When we have identified the main entities and the relationships that exist be-
tween them, we are in a position to translate the entity-relationship model we
have created from a diagram into tables of data that will form the relations
for our database. The nature of the relationships between entities will make a
difference to the nature of the relations we construct; the cardinality, degree
and membership class will all affect the structure of the database.

If we design a database by using an entity-relationship model, we need to be
able to convert our design from a diagrammatic format into a series of relations
that will hold the values of the actual data items.

It would be possible to create a number of relations so that each represented
either an entity or relationship. This approach would generate a relational
database that represented the entities and the relationships between them as
identified in our data model, but it would suffer from a number of disadvan-
tages. One disadvantage would be that the number of relations created could
result in the database being unnecessarily large. There are also a number of
insertion, update and deletion anomalies, which will be examined in the chapter
on Normalisation, to which a database created in such a way would be vulner-
able. To avoid these problems, we need to specify a method that allows us
to create only those relations that are strictly necessary to represent our data
model as a database. The way we do this is guided by the nature of the rela-
tionships between the entities, in terms of the cardinality and the membership
class (participation condition).

Converting one-to-one relationships into relations

We can transform entity-relationship diagrams into relations by following simple
rules which will specify the number of relations needed, depending on the car-

22



dinality (one-to-one, one-to-many or many-to-many) and the membership class
(mandatory or optional) of the entities participating in the relationship. In the
case of one-to-one relationships, the creation of one or two relations is sufficient,
depending on whether participation is mandatory or optional.

Mandatory for both entities

A single relation will be able to represent the information represented by each
entity and the relationship that exists between them.

If we consider an earlier example, with a one-to-one mandatory relationship
between performers and agents, this could now be converted from a diagram
into a relation as part of our database.

This part of an entity-relationship model can be converted into a single relation,
Performer-details. This relation holds information about all the performers and
their agents. The agents do not need to be held in a separate relation as each
performer has one agent, and each agent represents only one performer.

Relation: Performer-details

In the relation Performer-details above, we can see that all performer informa-
tion is stored and can be accessed by the performer-id attribute, and all agent
information can be extracted by means of the agent-id attribute.

As the relationship is one-to-one and mandatory in both directions, we do not
need to store the performers and agents in separate relations, although we could
choose to do so. (If we stored performers and agents in separate relations, we
would then need to use the identifying attributes of performer-id and agent-id
as foreign keys. This means that we would be able to identify the relevant agent
in the Performer relation, and identify the appropriate performer in the Agent
relation.)

23



Mandatory for one entity, optional for the other entity

In this case, two relations will be needed, one for each entity. The relationship
could be mandatory for the first entity and optional for the second, or the other
way around. There are therefore two possibilities for performers and agents.

In this first example, a performer must be represented by an agent, but an agent
does not have to represent a performer. The relationship is therefore mandatory
for a performer, but optional for an agent.

This would convert into two relations, one for each entity. The agent identifier is
stored in the Performer relation in order to show the connection between agents
and performers where appropriate. This is known as posting an identifier (or
posting an attribute). It is important that the value of a posted identifier is not
null.

Relation: Performer

Note that the agent identifier, agent-id, is held in the Performer relation. The
attribute agent-id is a foreign key in the Performer relation. This means that
we can identify which agent represents a particular performer.

We would not want to store the performer-id in the Agent relation for this
example, as there are agents who do not represent performers, and there would
therefore be a null value for the performer-id attribute in the Agent relation.
We can see that there are agents in the Agent relation who do not represent
performers, but all performers are represented by only one agent.

Relation: Agent

24



In the second example, an agent must represent a performer, but a performer
does not need to have an agent. Here, the relationship is optional for a performer,
but mandatory for an agent.

Again, this would translate into two relations, one for each entity. On this
occasion, however, the link between performers and agents will be represented
in the Agent relation rather than the Performer relation. This is because every
agent will be associated with a performer, but not all performers will be linked
to agents. The performer-id is a foreign key in the Agent relation. We cannot
have the agent identifiers in the Performer relation as in some instances there
will be no agent for a performer, and a null value for an agent identifier is not
allowed, as it would contravene the rules on entity integrity.

Relation: Performer

Relation: Agent

25



Optional for both entities

In this scenario, a performer might or might not have an agent. Similarly,
an agent might or might not represent a performer. However, if a performer
does have an agent, that agent will not represent any other performers. The
relationship between the two entities is one-to-one, but optional on both sides.
In order to convert this relationship into a relational format, three relations will
be needed, one for each entity and one for the relationship.

This means that it is possible to have a performer without an agent, and it
is also permissible for an agent to have no performers. All performer details
will be stored in the Performers relation, and all agent data will be held in the
Agent relation. Where there is a performer with an agent, this will be shown in
the relation Works-with, which will represent the relationship between the two
entities.

Relation: Performer

The relation Performers holds details of all the performers relevant to the
database.

Relation: Agents

26



All agents within the database are stored in the relation Agents.

Relation: Works-with

Note that the relation Works-with only has entries for those agents and per-
formers who are linked together.

Converting one-to-many relationships into relations

Mandatory for both entities

If we consider the situation where a performer has a single agent, but each agent
may represent a number of performers, and the relationship is mandatory for
both entities, we have an entity-relationship as shown below.

If we convert this part of our data model into tables of data, we will have two
relations (one for each entity). In order to maintain the relationship that exists
between the two entities, we will hold a copy of the primary key of the entity
at the “one” end of the relationship as one of the attributes associated with the
entity at the “many” end of the relationship. In this example, the attribute
agent-id is a foreign key in the relation Performers.

Relation: Performers

27



Relation: Agents

Mandatory for one entity, optional for another entity: many end
mandatory

In this example, all performers must be represented by agents, and each per-
former has only one agent. The agents themselves need not be responsible for
making bookings for performers, and can be involved in other activities.

The mandatory nature of the relationship for the performer is shown by the
solid circle; the hollow circle indicates an optional relationship for an agent.
This means that there must be a relation to represent performers, and another
relation to represent agents. The links between performers and agents are shown
by having the agent identifier stored against the appropriate performer in the
Performer relation. The attribute agent-id is therefore a foreign key in the
Performer relation. All performers must have an agent associated with them,
but not all agents will be involved in a booking for a performer.

Relation: Performers

28



Relation: Agents

Mandatory for one entity, optional for another entity: many end
optional

Here, agents may make bookings for performers, and performers may also make
bookings for themselves. It is only possible for agents to make bookings for
functions that involve performers. An agent may be responsible for making
bookings for more than one performer. If a performer is represented by an
agent, each performer may have only one agent.

The mandatory nature of the relationship for the agent is shown by the solid
circle; the hollow circle indicates an optional relationship for a performer. This
means that there must be a relation to represent performers, another relation
to represent agents, and a third relation to represent those occasions when
performers have booked through agents. The links between performers and
agents are shown by having the agent identifier stored against the appropriate

29



performer in the third relation.

Relation: Performers

Relation: Agents

Relation: Agent-Performer

Optional for both entities

Here, agents may make bookings for performers, and performers may also make
bookings for themselves. It is also possible for agents to make bookings for
other functions that do not involve performers. An agent may be responsible
for making bookings for a number of performers. If a performer is represented by
an agent, each performer may have only one agent. The relationship is optional
for both entities.

30



This relationship can be converted into three relations. There will be one re-
lationship to represent the performers, another for the agents, and a third will
store details of the relationship between performers and agents (where such a
relationship exists).

Relation: Performers

Relation: Agents

Relation: Agent-Performer

31



We can see from these relations that a performer may be represented by an
agent, and an agent may represent more than one performer. Some performers
do not have agents, and some agents do not represent performers.

Converting many-to-many relationships into relations

We know that if we are dealing with many-to-many relationships, we have to
decompose them into two one-to-many relationships. Here we can see that if
we leave a many-to-many relationship as it is, it will be represented by three
relations just as if we had converted it into two one-to-many relationships.

Mandatory for both entities

In this example, all performers must be represented by agents, and all agents
must represent performers. It is not possible for performers to represent them-
selves when making bookings, neither is it possible for agents to make bookings
that do not involve performers. (Note that this does not imply that each per-
former has one agent, and each agent represents one performer; that would
imply a one-to-one relationship).

Three relations are required to represent a relationship of this kind between
two entities, one for each entity and one for the relationship itself, i.e. one
to represent the performers, another to represent the agents, and a third to
represent the relationship between the performers and the agents.

Relation: Performers

32



Relation: Agents

Relation: Agent-Performers

33



The Agent-Performers relation shows us that all performers are represented
by agents, and that all agents represent performers. Some performers are repre-
sented by more than agent, and some agents represent more than one performer.
We now have three relations representing the many-to-many relationship manda-
tory for both entities.

Mandatory for one entity, optional for the other entity

The first possibility is that the performer entity is mandatory, but the agent
entity is optional. This would mean that performers cannot make bookings for
themselves, but depend on a number of agents to make bookings for them. The
relationship is mandatory for the performer. An agent, however, is allowed to
make bookings for a number of performers, and may also agree bookings for
events that do not involve performers, such as exhibitions or conferences. The
relationship is optional for the agent.

The entity relationship diagram above shows that it is mandatory for performers,
but optional for agents to participate. This is translated into three relations be-
low. Note that in the relation Agent-Performers, all performers are represented
by an agent (or more than one agent). There are some agents in the Agent
relation who do not appear in Agent-Performers because they do not represent
performers.

34



Relation: Performers

Relation: Agents

Relation: Agent-Performers

35



The second possibility for this kind of relationship is that the performer entity
is optional but the agent entity is mandatory. In this case, a performer might
have one or more agents, but an agent must represent several performers. Here,
a performer could make a booking personally, or could have a booking made by
a number of different agents. The agents can only make bookings for performers,
and for no other kind of event.

The entity relationship diagram above illustrates optional participation for a
performer, but mandatory participation by an agent.

Relation: Performers

Relation: Agents

Relation: Agent-Performers

36



The relation Agent-Performers shows that all agents represent one or more per-
formers. Some performers are represented by more than one agent, whereas
other performers are not represented by agents at all.

Optional for both entities

We could imagine a situation where each performer could be represented by
a number of different agents, and could also make bookings without using an
agent. In addition, each agent could act for a number of different performers,
and the agents could also make bookings that did not involve performers. This
would be modelled by a many-to-many relationship between performers and
agents that was optional for both entities.

In order to represent this relationship between two entities, we would need three
relations, one for each entity and one for the relationship itself. The reason
we need three relations rather than just two (one for each entity) is that the
relationship is optional. This means that if we were to store the identifier of one
entity in the relation of the other, there would be times when we would have a
null value for the identifier as no relationship exists for a particular instance of
the entity. We cannot have a null value for an identifier, and therefore we show
the relationships that do exist explicitly in a third relation.

Relation: Performers

37



Relation: Agents

Relation: Agent-Performers

38



Summary of conversion rules

The following table provides a summary of the guidelines for converting com-
ponents of an entity-relationship diagram into relations. We need to be certain
that if we store an identifier for one entity in a relation representing another
entity, that the identifier never has a null value. If we have a null value for
an identifier, we will never be able to find the other details that should be
associated with it.

39



Review questions

• Case study: Theatrical database

Consider the design of a database in the context of the theatre. From the
description given below, identify the entities and the relationships that exist
between them. Use this information to create an entity-relationship diagram,
with optional and mandatory membership classes marked. How many entities
have you found? Now translate this data model into relations (tables of data).
Don’t forget the guidelines in order to decide how many relations you will need
to represent entities and the relationships between them. You should also think

40



about areas where you don’t have enough information, and how you would deal
with this kind of problem. You might also find that there is information that
you don’t need for building the data model.

“Authors are responsible for writing plays that are performed in theatres. Every
time a play is performed, the author will be paid a royalty (a sum of money for
each performance).

Plays are performed in a number of theatres; each theatre has maximum audi-
torium size, and many people attend each performance of a play. Many of the
theatres have afternoon and evening performances.

Actors are booked to perform roles in the plays; agents make these bookings
and take a percentage of the fee paid to the actor as commission. The roles in
the plays can be classified as leading or minor roles, speaking or non-speaking,
and male or female.”

• Explain the difference between entities and attributes. Give examples of
each.

• Distinguish between the terms ‘entity type’ and ‘entity instance’, giving
examples.

• Distinguish between the terms ‘primary key’ and ‘candidate key’, giving
examples.

• Explain what is meant by one-to-one, one-to-many and many-to-many
relationships between entities, giving an example of each.

• How are many-to-many relationships implemented in Relational
databases?

41


	Chapter 6. Entity-Relationship Modelling
	Objectives
	Introduction
	Context
	Entities, attributes and values
	Entities
	Attributes
	Values
	Primary key data elements
	Key
	Candidate keys
	Foreign keys

	Entity-Relationship Modelling
	Entity representation
	One-to-one relationships between two entities
	One-to-many relationships between two entities
	Many-to-many relationships between two entities
	Recursive relationships

	Relationship participation condition (membership class)
	Mandatory and optional relationships
	One-to-one relationships and participation conditions
	One-to-many relationships and participation conditions
	Many-to-many relationships and participation conditions

	Weak and strong entities
	Problems with entity-relationship (ER) models
	Fan traps
	Chasm traps

	Converting entity relationships into relations
	Converting one-to-one relationships into relations
	Converting one-to-many relationships into relations
	Converting many-to-many relationships into relations
	Summary of conversion rules

	Review questions


