
Chapter 7. Enhanced Entity-Relationship Mod-
elling

Table of contents

• Objectives
• Introduction
• Context
• Recap on previous concepts

– Entities
– Relationship types
– Relationship participation

• Specialization/generalization
– Representation of specialization/generalization in ER diagrams
– Constraints on specialization/generalization
– Mapping specialization/generalization to relational tables

• Aggregation
– Representation of aggregation in ER diagrams

• Composition
– Representation of composition in ER diagrams

• Additional content - XML
– What is XML?

∗ Element
∗ Attribute
∗ Example representing relational table records in XML

– Document type definition
– Namespaces
– XQuery

Objectives

At the end of this chapter you should be able to:

• Describe the concepts of specialization/generalization, aggregation and
composition.

• Illustrate how specialization/generalization, aggregation and composition
are represented in ER diagrams.

• Map the specialization/generalization relationship to tables suitable for
Relational database implementation.

1

Introduction

In parallel with this chapter, you should read Chapter 12 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter builds on the previous chapter which addressed the basic concepts
of Entity-Relationship (ER) modelling. The chapter discussed the concepts of
an entity, participation, recursive relationships, weak entities and strong entities.
It also illustrated how these concepts can be represented in the ER diagrams.
Improved computer speed and memory has, in recent years, triggered the de-
velopment of sophisticated software applications like Geographical Information
Systems (GIS). The basic features of ER modelling are not sufficient to represent
all the concepts in such applications. To address these needs, many different
semantic data models have been proposed and some of the most important se-
mantic concepts have been successfully incorporated into the original ER model.
This chapter discusses and illustrates advanced ER modelling concepts, namely
specialization/generalization, aggregation and composition.

Context

This chapter continues to address the top-down database design concepts. Like
the previous chapters, it links closely with the other chapters on database de-
sign, Normalisation and other design topics. The chapter also has considerable
relevance for the material in the module on performance tuning, such as the
chapter on indexing, as the decisions made during database design have a major
impact on the performance of the application.

Recap on previous concepts

In the previous chapter, we discussed basic concepts of ER modelling. This
sections revisits some of the important concepts covered.

Entities

An entity may represent a category of people, things, events, locations or con-
cepts within the area under consideration. An entity can have one or more
attributes or characteristics. Two notations for representing an entity are com-
mon: box notation, and the notation that employs ellipses to represent the
attributes belonging to an entity.

2

Relationship types

These express the number of entities with which another entity can be associated
via a relationship. The relationships that exist between two entities can be
categorised by the following:

• one-to-one

• one-to-many

3

• many-to-many

Relationship participation

The participation condition defines whether it is mandatory or optional for an
entity to participate in a relationship. This is also known as the membership
class of a relationship.

There are two kinds of participation conditions: mandatory and optional. Most
entities are involved in binary relationships, so it follows that there are four
main types of membership relationships:

1. Mandatory for both entities

2. Mandatory for one entity, optional for the other

3. Optional for one entity, mandatory for the other

4

4. Optional for both entities

Note: We have used the one-to-many relationship type to illustrate participation.
Refer to the previous chapter for more details on how to model participation
for other relationship types.

Specialization/generalization

We have discussed different types of relationships that can occur between entities.
Some entities have relationships that form a hierarchy. For example, a shipping
company can have different types of ships for its business. The relationship that
exists between the concept of the ship and the specific types of ships forms a
hierarchy. The ship is called a superclass. The specific types of ships are called
subclasses.

Superclass: An entity type that represents a general concept at a high level.

Subclass: An entity type that represents a specific concept at lower levels.

A subclass is said to inherit from a superclass. A subclass can inherit from many
superclasses in the hierarchy. When a subclass inherits from one or more super-
classes, it inherits all their attributes. In addition to the inherited attributes,
a subclass can also define its own specific attributes. A subclass also inherits
participation in the relationship sets in which its superclass (higher-level entity)
participates.

The process of making a superclass from a group of subclasses is called gener-
alization. The process of making subclasses from a general concept is called
specialization.

Specialization: A means of identifying sub-groups within an entity set which
have attributes that are not shared by all the entities (top-down).

Generalization: Multiple entity sets are synthesized into a higher-level entity
set, based on common features (bottom-up).

Representation of specialization/generalization in ER diagrams

A diamond notation is a common representation of specialization/generalization
relationships in ER diagrams.

5

As an example, let’s consider the following scenario:

Africa holds many historical artefacts in different locations. Each artefact is kept
in a specific location. A location can be a point, province, country or sub-region
of Africa.

The scenario has a specialization relationship between the location and different
specific types of locations (i.e. point, province, country and sub-region). This
specialization relationship is represented in the ER diagram below.

To demonstrate generalization, let’s imagine that an Artefact is one of the exam-
ples of the African cultural items. Another type of a cultural item is an Artist.
It is clear to see that a cultural item is a superclass of an artefact and artist.
This generalization relationship can be represented in the ER diagram as show
below.

6

Constraints on specialization/generalization

There are three constraints that may apply to a specialization/generalization:
membership constraints, disjoint constraints and completeness constraints.

• Membership constraints

Condition defined: Membership of a specialization/generalization rela-
tionship can be defined as a condition in the requirements e.g. tanker is a
ship where cargo = “oil”

User defined: Sometimes the designer can define the superclass-subclass
relationship. This can be done to simplify the design model or represent
a complex relationship that exists between entities.

• Disjoint constraints

Disjoint: The disjoint constraint only applies when a superclass has more
than one subclass. If the subclasses are disjoint, then an entity occurrence
can be a member of only one of the subclasses, e.g. postgrads or under-
grads – you cannot be both. To represent a disjoint superclass/subclass
relationship, ‘Or’ is used.

Overlapping: This applies when an entity occurrence may be a member of
more than one subclass, e.g. student and staff – some people are both. ‘And’ is
used to represent the overlapping specialization/generalization relationship in
the ER diagram.

7

• Completeness constraints

Total: Each superclass (higher-level entity) must belong to subclasses
(lower-level entity sets), e.g. a student must be postgrad or undergrad. To
represent completeness in the specialization/generalization relationship,
the keyword ‘Mandatory’ is used.

Partial: Some superclasses may not belong to subclasses (lower-level en-
tity sets), e.g. some people at UCT are neither student nor staff. The key-
word ‘Optional’ is used to represent a partial specialization/generalization
relationship.

8

We can show both disjoint and completeness constraints in the ER diagram.
Following our examples, we can combine disjoint and completeness constraints.

Some members of a university are both students and staff. Not all members of
the university are staff and students.

9

A student in the university must be either an undergraduate or postgraduate,
but not both.

Mapping specialization/generalization to relational tables

Specialization/generalization relationship can be mapped to relational tables in
three methods. To demonstrate the methods, we will take the student, post-
graduate and undergraduate relationship. A student in the university has a
registration number and a name. Only postgraduate students have supervisors.
Undergraduates accumulates points through their coursework.

Method 1

All the entities in the relationship are mapped to individual tables.

Student (Regno, name)

PosGrad (Regno, supervisor)

UnderGrad (Regno, points)

Method 2

Only subclasses are mapped to tables. The attributes in the superclass are
duplicated in all subclasses.

PosGrad (Regno, name, supervisor)

UnderGrad (Regno, name, points)

This method is most preferred when inheritance is disjoint and complete, e.g. ev-
ery student is either PosGrad or UnderGrad and nobody is both.

Method 3

Only the superclass is mapped to a table. The attributes in the subclasses are
taken to the superclass.

10

Student (Regno, name, supervisor, points)

This method will introduce null values. When we insert an undergraduate record
in the table, the supervisor column value will be null. In the same way, when
we insert a postgraduate record in the table, the points value will be null.

Review question 1

Discuss the specialization/generalization relationship in ER modelling.

Review question 2

Explain the three constraints that can be applied on the specializa-
tion/generalization relationship.

Aggregation

Aggregation represents a ‘has-a’ relationship between entity types, where one
represents the ‘whole’ and the other the ‘part’.

An example of aggregation is the Car and Engine entities. A car is made up of
an engine. The car is the whole and the engine is the part. Aggregation does
not represent strong ownership. This means, a part can exist on its own without
the whole. There is no stronger ownership between a car and the engine. An
engine of a car can be moved to another car.

Representation of aggregation in ER diagrams

A line with a diamond at the end is used to represent aggregation.

The ‘whole’ part must be put at the end of the diamond. For example, the
Car-Engine relationship would be represented as shown below:

Composition

Composition is a form of aggregation that represents an association between
entities, where there is a strong ownership between the ‘whole’ and the ‘part’.
For example, a tree and a branch have a composition relationship. A branch is
‘part’ of a ‘whole’ tree - we cannot cut the branch and add it to another tree.

11

Representation of composition in ER diagrams

A line with a filled diamond at the end is used to represent composition.

The example of the Tree-Branch relationship can be represented as shown below:

Review question 3

Using an example, explain the concepts of aggregation and composition.

Exercise 1

Draw the ER diagram for a small database for a bookstore. The database will
store information about books for sale. Each book has an ISBN, title, price and
short description. Each book is published by a publisher in a certain publishing
year. For each publisher, the database maintains the name, address and phone
number.

Each book is written by one or more authors. For each author, the database
maintains his/her ID, name and a short introduction. Each book is stored
in exactly one warehouse with a particular quantity. For each warehouse, the
database maintains the warehouse name, the location and the phone number.
Each book has one or more sellers, which may be either companies (corporate
vendors) or individuals (individual vendors).

For each company, the database maintains a name of the company, its address,
its phone numbers (there could be more than one phone number, each with a
number and a description) and its contact person. For each individual vendor,
the database keeps a name, a phone number and an email address. A contact
person whose company sells a book cannot be selling the same book as an
individual vendor at the same time (he/she may sell other books as an individual
seller).

Additional content - XML

What is XML?

In previous chapters, we introduced database technology and how it is used
by businesses to store data in a structured format. XML (eXtensible Markup

12

Language) has become a standard for structured data interchange among busi-
nesses. It was formally ratified by the World Wide Web Consortium (W3C) in
1998. XML uses markup for formatting plain text. Markup refers to auxiliary
information (tags) in the text that give structure and meaning.

We have demonstrated how to use relational tables to represent entities and their
attributes. XML also supports the representation of entities and attributes.

In this section, we will introduce XML. Students are encouraged to study de-
tailed books for further information. One useful website for learning XML is
http://www.w3schools.com/xml/default.asp.

Element

An element is a building block of an XML document.

• All elements are delimited by < and >.

• Element names are case-sensitive and cannot contain spaces.

The representation of an element is shown below:

<Element> …. </Element>

An XML document can contain many elements, but one must be the root ele-
ment. A root element is a parent element of all other elements.

Attribute

Elements can have attributes. Attributes are specified by name=value pairs
inside the starting tag of an element:

<Element attribute = “value” >.. </Element >

All values of the attributes are enclosed in double quotes.

An element can have several attributes, but each attribute name can only occur
once.

13

<Element attribute1 = “value1” attribute2=“value2”>

Example representing relational table records in XML

To demonstrate XML, let’s imagine we have a customer table that holds infor-
mation of customers.

We can represent the information in XML as follows:

14

Explanation

• <?xml version=“1.0” encoding=“UTF-8”?>: is the XML prolog.
The prolog is used to specify the version of XML and the encoding used.
It is optional, but if it appears in the document, it must be the first line
in the document.

• Customers element: Customers is the root element.

• Customer element: A Customer element represents a tuple in the Cus-
tomers table. The table has three attributes, CUSTOMER_ID, NAME
and LOCATION. In our XML, CUSTOMER_ID is represented as an

15

attribute of the Customer element. NAME and LOCATION are repre-
sented as child elements of the Customer element. Notice that we have
repeated the Customer element three times to capture the three records
in the Customer table.

Document type definition

The XML technology specifies the syntax for writing well-formed documents
but does not impose the structure of the document. XML document writers
are free to structure an XML document in any way they want. This can be
problematic when verifying a document. How many elements can a document
have? What elements should a document have? These questions are difficult to
answer unless we also specify the structure of the document. Document type
definition (DTD) is used to define the structure of an XML document.

DTD specifies the following:

• What elements can occur.

• What attributes an element can/must have.

• What sub-elements can/must occur inside each element, and how many
times.

DTD element syntax:

<!ELEMENT element (subelements-specification) >

DTD attribute syntax:

<!ATTLIST element (attributes) >

The DTD for the XML we defined above can be defined as shown below:

Explanation

16

• !DOCTYPE: Defines that the Customers element is the root element of
the document.

• <IELEMENT>: Defines an XML element. The first element to be
defined is the Customers element. A Customers element has one child
element, Customer, indicated in brackets. The + symbol means that the
Customer element can appear one or more times under the Customers
element. The Customer has two sub-elements, Name and Location. The
Name and Location elements have character data as a child element.

• <!ATTLIST>: Defines the attribute. The Customers element has one
attribute, customerID, of type character data.

Namespaces

XML data has to be exchanged between organisations. The same element name
may have different meaning in different organisations, causing confusion on ex-
changed documents.

Specifying a unique string as an element name avoids confusion. A better solu-
tion is to use a unique name followed by an element name.

unique-name:element-name

Adding a unique name to all element names can be cumbersome for long docu-
ments. To avoid using long unique names all over a document, we can use XML
namespaces.

The namespace FB has been declared and initialised to ‘http://www.FancyBoats.com’.
Namespaces are URIs. URIs are generic identifiers like URLs.

17

XQuery

XQuery is a language for finding and extracting elements and attributes from
XML documents. The way SQL is to relational databases, XQuery is the query
language for XML documents. For example, to display all the names of the
customers in the XML above, our XQuery will look as follows:

for $x in /Customers/Customer

return $x/Name

Exercise 2

In chapter 3, Introduction to SQL, we introduced the EMP table. Represent
the records in the table in XML.

18

	Chapter 7. Enhanced Entity-Relationship Modelling
	Objectives
	Introduction
	Context
	Recap on previous concepts
	Entities
	Relationship types
	Relationship participation

	Specialization/generalization
	Representation of specialization/generalization in ER diagrams
	Constraints on specialization/generalization
	Mapping specialization/generalization to relational tables

	Aggregation
	Representation of aggregation in ER diagrams

	Composition
	Representation of composition in ER diagrams

	Additional content - XML
	What is XML?
	Document type definition
	Namespaces
	XQuery

