
Chapter 9. Advanced Data Normalisation

Table of contents

• Objectives
• Context
• Recap

– Introduction
– Before starting work on this chapter
– Summary of the first three normal forms
– Third normal form determinacy diagrams and relations of Performer

∗ Case study
• Motivation for normalising beyond third normal form

– Why go beyond third normal form?
– Insertion anomalies of third normal form
– Amendment anomalies of third normal form
– Deletion anomalies of third normal form

• Boyce-Codd and fourth normal form
– Beyond third normal form
– Boyce-Codd normal form
– Fourth normal form
– Summary of normalisation rules

• Fully normalised relations
• Entity-relationship diagram
• Further issues in decomposing relations

– Resolution of the problem
• Denormalisation and over-normalisation

– Denormalisation
– Over-normalisation

∗ Splitting a table horizontally
∗ Splitting a table vertically

• Review questions
• Discussion topic

Objectives

At the end of this chapter you should be able to:

• Convert a set of relations to Boyce-Codd normal form.

• Describe the concept of multi-valued dependency, and be able to convert
a set of relations to fourth normal form.

• Avoid a number of problems associated with decomposing relations for
normalisation.

1



• Describe how denormalisation can be used to improve the performance
response of a database application.

Context

This chapter relates closely to the previous two on database design. It finalises
the material on normalisation, demonstrates how a fully normalised design can
equally be represented as an entity-relationship model, and addresses the impact
that a target DBMS will have on the design process. The issues relating to
appropriate choices of DBMS-specific parameters, to ensure the efficient running
of the application, relate strongly to the material covered in the chapters on
indexing and physical storage. Information in all three chapters can be used
in order to develop applications which provide satisfactory response times and
make effective use of DBMS resources.

Recap

Introduction

In parallel with this chapter, you should read Chapter 14 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

In this concluding database design unit, we bring together a number of advanced
aspects of database application design. It begins by extending the coverage of
data normalisation in an earlier chapter, describing Boyce-Codd normal form (a
refinement of the original third normal form) and providing a different view of
how to generate a set of relations in third normal form. The chapter then looks
at a number of important issues to be considered when decomposing relations
during the process of normalisation. Finally, the important topic of physical
database design is included, which shows the impact that DBMS-specific pa-
rameters can have in the development of an application. Many of these con-
siderations have a direct impact on both the flexibility and the performance
response of the application.

Before starting work on this chapter

This chapter addresses a number of advanced issues relating to data normal-
isation. It is very important that you fully understand all the concepts and
techniques introduced in the previous chapter, Data Normalisation.

You should not attempt this chapter until you are confident in your understand-
ing and application of the following concepts:

• Functional dependency

2



• Fully functional dependency

• Partial functional dependency

• Direct dependency

• Transitive (indirect) dependency

• Determinants

• Determinant

• Determinacy diagrams

• Normal forms

• Un-normalised form (UNF)

• First normal form (1NF)

• Second normal form (2NF)

• Third normal form (3NF)

Summary of the first three normal forms

The following is a brief summary of the first three normal forms:

• 1NF — Identify the determinants of data items, and through the removal
of any repeating groups, arrange the data items into an initial first normal
form relation.

• 2NF — Remove part-key dependencies from the relations in first normal
form. I.e. for non-key attributes, remove those attributes that are not
fully functionally dependent on the whole of the primary key (and form
new entities where these attributes are fully functionally dependent on the
whole primary key).

• 3NF — Remove any transitive (indirect) dependencies from the set of
relations in second normal form (to produce a set of relations where all
attributes are directly dependent on the primary key).

Third normal form determinacy diagrams and relations of Performer

In this chapter we shall be extending the work from the previous chapter on the
data for the Performer case study. As a starting point, we shall first present the
determinacy diagrams and the third normal form relations developed for this
case study.

3



Case study

Determinacy diagram: Performers and Fees

Relation in third normal form: Performers

4



Relation in third normal form: Fees

Determinacy diagram: Agents

Relation in third normal form: Agents

5



Determinacy diagram: Venues

Relation in third normal form: Venues

6



Determinacy diagram: Events

Relation in third normal form: Events

7



Determinacy diagrams: Bookings

8



9



The determinacy diagram below combines the previous two determinacy dia-
grams to show the overlapping keys for the Bookings relation, and illustrates
the dependencies between the attributes event-id and event-name:

The details of the Bookings relation are shown below:

Relation in third normal form: Bookings

10



Motivation for normalising beyond third normal form

Why go beyond third normal form?

As we shall explore in this section, under certain circumstances there are anoma-
lies that can occur for data that meets all the requirements for third normal form.
Once these anomalies were identified and understood, database researchers de-
veloped the further normal forms we shall explore in this chapter.

Insertion anomalies of third normal form

There are no true insertion anomalies in the Bookings relation in third normal
form; the details about each performer, agent, venue and event are also held in
separate relations specifically for those entities, but there is data redundancy.

Relation in third normal form: Bookings

11



We can see that there is data redundancy in the Bookings relation, as every time
a particular event is involved in a booking, both the event-id and the event-name
need to be inserted into the Bookings relation.

Strictly speaking, we do not need to have both event-id and event-name in the
Bookings relation, as each determines the other. If a mistake were to be made
while inserting a new tuple, so that the event-id and the event-name did not
match, this would cause problems of inconsistency within the database. The
solution is to decide on one of the two determinants from the Events relation as
part of the composite key for the Bookings relation.

We have noted that the event-id and the event-name determine each other within
the Events relation, and this in turn creates overlapping keys in the Bookings
relation. If the relationship between event-id and event-name were to break
down, and a new event happened to have the same name as another event with
a different event-id, this could create problems in the Bookings relation.

Performer Scenario 2

We can refer to a slightly altered database design as ‘Performer Scenario 2’, in

12



order to demonstrate the effects of overlapping keys.

An issue that we need to examine is in the context of this slightly different
database. In the example we having been using, the Events relation contains
event-id, event-name and event-type. We can see that the performer-type in the
Performers relation matches the event-type in the Events relation (e.g. actors
performing in dramas, singers performing in musicals). If we now consider that
the database holds only event-id and event-name as details about each event,
this would affect the structure of the database.

Now, if we were to attempt to insert details about an event which had not yet
been booked, we would not be able to do so as we would have an incomplete
key in the Bookings relation. An event which has not been booked would have
an event-id and an event-name, but no other attributes would have a value as
there has been no booking.

Amendment anomalies of third normal form

If there were a change to the name of a particular event, this would need to be
reflected in every booking involving that event. Some events may be booked
many times, and if the change to the name of an event is not updated in each
case, we would again find problems with maintaining consistent information in
the database.

Here too, the solution is to identify either event-id or event-name as the deter-
minant from the Events relation, so that the other of these two attributes is
stored once only in the Events relation.

13



Deletion anomalies of third normal form

There are no deletion anomalies in the example we have been using. If we
consider Scenario 2, however, we will find that deletion anomalies do exist.

Performer Scenario 2

We know that in Performer Scenario 2, there is no separate Events relation.
If a booking is cancelled, we will want to delete the relevant tuple from the
Bookings relation. This means that if we delete a tuple which contained details
of an event that had no other booking, we would lose all information about that
event.

Boyce-Codd and fourth normal form

Beyond third normal form

In this section we introduce two new normal forms that are more ‘strict’ than
third normal form. For historical reasons, the simple numbering of first, second
and third deviates before getting to fourth. The two new normal forms are
called:

• Boyce-Codd normal form

• Fourth normal form

Boyce-Codd normal form

When it comes to identifying the booking, there is an ambiguity, as the booking
details could be identified by more than one combination of attributes.

As it is possible to identify details of each event either by the event-id or by
the event-name, there are two possible groupings of attributes that could be
used to identify a booking: performer-id, agent-id, venue-id and event-id, or
performer-id, agent-id, venue-id and event-name.

14



Important

Boyce-Codd normal form (BCNF)

A relation is in Boyce-Codd normal form if all attributes which are determinants
are also candidate keys.

Boyce-Codd normal form is stronger than third normal form, and is sometimes
known as strong third normal form.

Transformation into Boyce-Codd normal form deals with the problem of over-
lapping keys.

An indirect dependency is resolved by creating a new relation for each entity;
these new relations contain the transitively dependent attributes together with
the primary key.

We know that we can identify a booking by means of the attributes performer-id,
agent-id, venue-id and event-id, as shown in the determinacy diagram below.

We also know that we can identify a booking by using the attributes performer-
id, agent-id, venue-id and event-name, shown in the next determinacy diagram.

15



When we combine the two determinacy diagrams shown above, we can see that
we have an example of overlapping keys:

16



The details of the Bookings relation are shown later in this section.

Although overlapping keys are rare in practice (and some examples may appear
rather contrived), we need to be aware that they can occur, and how to deal with
them. The solution is simple: we need to decide on a single choice of attributes
so that we have only one primary key. We know that event-name would not
be an ideal choice of primary key. This is because it can be difficult to get
names exactly right (e.g. “Quicktime” is not identical to “Quick Time”), and
it may be coincidence rather than a rule that there is a one-to-one relationship
between event-id and event-name (the relationship might break down). The
choice of attribute to appear in the primary key is therefore event-id rather
than event-name.

In Boyce-Codd normal form, we have six relations: Performers, Fees, Agents,
Venues, Events and Bookings. The structure of the determinacy diagrams and
content of the relations for Performers, Fees, Agents and Venues remain un-
changed from third normal forms, and are not repeated here. There are changes
to the Events and Bookings relations, which are illustrated below. A summary
of the determinacy diagrams and the relations for this example are given in
the ‘Summary of normalisation rules’ section of this chapter, together with an
entity-relationship diagram.

Event details The choice of event-id as the primary key for the Bookings
relation means that we can show the simpler representation of the determinacy
diagram for event details, as we no longer have to consider the attribute event-

17



name as a possible key.

18



Note that in Scenario 2, where there was no separate Events relation, it would
now be necessary to create an Events relation in order to transform the Bookings
relation from third normal form into Boyce-Codd normal form.

Booking details Now that we have decided that event-id is the more suitable
attribute for use as part of the key for the Bookings relation, we no longer
need to store the event-name, which is already held in the Events relation. The
problem of the overlapping keys has now been resolved, and the key for the
Bookings relation is the combination of the attributes performer-id, agent-id,

19



venue-id and event-id.

The Bookings relation no longer needs to hold the attribute event-name, as this
is already held in the Events relation.

Relation in Boyce-Codd normal form: Bookings

20



Exercise 1

Define Boyce-Codd normal form.

Fourth normal form

The normalisations process so far has produced a set of five relations, which are
robust against insertion, amendment and deletion anomalies. If at this stage
it were decided to introduce further details into the relations, it would still be
possible to do so. Database designers and developers would be well advised to
start again with the normalisations process if changes are proposed to the data.
However, for this example, we will introduce some new information that only
affects the performers.

We are now required to add further details to the Performers relation, to show
their knowledge and skills in two other areas: languages and hobbies.

Important

Fourth normal form (4NF) A relation is in fourth normal form if there are
no multi-valued dependencies between the attributes.

Multi-valued dependencies occur where there are a number of attributes that
depend only on the primary key, but exist independently of each other.

21



The representation of languages spoken and hobbies would be a simple enough
requirement if each performer spoke exactly one language and had only one
hobby. However, our performers are multi-talented, and some speak many
languages, and others have several hobbies. Furthermore, the languages and
hobbies are not related to each other. This presents us with a problem: how
can we represent this in the relation? We know we cannot have a group of items
under the headings Languages and Hobbies, as this would contravene the rules
for first normal form.

The relation below is an attempt at representing some of this information, using
a small number of performers as an example.

Relation: Some-Performers-Example 1

Relation: Some-Performers-Example 1

If we look at this relation, while it conforms to the rules for first normal form
(there are no repeating groups), there is still some ambiguity in its meaning. If
we look at Baron’s hobbies, we can see that ‘art’ has been identified, but that
there is no entry for the attribute ‘language’. Does this mean that Baron does
not speak any other languages? We know this is not true, because there are
other entries that demonstrate that Baron speaks three languages. If we take
the alternative view, and look at another entry for Baron, we can see that Baron
speaks Italian, but from this entry it could appear that Baron has no hobbies.
This approach is not the solution to the problem.

Another attempted solution pairs languages and hobbies together, but some-
times there is a language but no hobby (or the other way around).

Relation: Some-Performers-Example 2

Relation: Some-Performers-Example 2

22



In this new approach, we have entered each hobby against a language. However,
we are still faced with problems. If Steed decides to give up poetry as a hobby,
we will lose the information that Steed speaks English. If Baron’s French gets
‘rusty’ and is deleted from the relation, we will lose the information that Baron’s
hobby is art.

Relation: Some-Performers-Example 3

Relation: Some-Performers-Example 3

In this next attempt, all languages are paired with all hobbies; this means that
there is a great amount of redundancy, as basic data about the performers is
repeated each time. We have a problem with Jones, who does not appear to
have a hobby, which questions whether this entry is valid. In addition, if Steed
learns a new language, it would be necessary to repeat this new language paired
with Steed’s existing hobbies. This option is also an unsatisfactory method of
solution.

The solution to this problem is to divide the information that we are trying
to represent into a group of new relations; one containing the basic performer
information as before, another showing details of languages spoken, and a third
maintaining a record of hobbies.

This transformation deals with the problems of multi-valued facts and associated
redundancies in the data; we can now convert the relation into three relations

23



in fourth normal form.

Naturally, the new relations would hold data for all the performers, although
only an extract from each relation is given here.

Relation in fourth normal form: Some-Performers

Relation in fourth normal form: Some-Performers-Languages

Relation in fourth normal form: Some-Performers-Hobbies

Exercise 2

24



Define fourth normal form.

Summary of normalisation rules

The rules used for converting a group of data items which are un-normalised into
a collection of normalised relations are summarised in the table below. Remem-
ber that in some cases we might choose not to normalise the data completely,
if this would lead to inefficiency in the database.

The conversion from fourth normal form to fifth normal form is included for
completeness. We will not be examining the definition of fifth normal form in
detail; it is concerned with avoiding unnecessary duplication of tuples when new
relations are created by joining together existing relations. The cause of this
problem is the existence of interdependent multi-valued data items.

Fully normalised relations

We now have five relations which are fully normalised, and can be represented by
means of determinacy diagrams, relations, and an entity-relationship diagram.
Each relation has a corresponding entity in the entity-relationship diagram.

Performer details

25



All performers appear in the Performers relation. The primary key is performer-
id, and the other attributes are performer-name, performer-code (which identi-
fies the performer-type) and performer-location.

Fully normalised relation: Performers

Fee details

Each performer is paid a fee depending on the performer-type. The rates of
pay for each performer-type are stored in the Fees relation, together with a
performer-code, which is the primary key.

26



Agent details

All agents are recorded in the Agents relation, where the primary key is agent-id,
and the remaining attributes are agent-name and agent-location.

27



Venue details

There are a number of venues available for bookings, and these are stored in
the Venues relation. The primary key is venue-id, and the other attributes are
venue-name and venue-location.

28



Event details

All events which can be booked are listed in the Events relation; the primary
key is event-id, and the other attributes are event-name and event-type.

29



Booking details

Every booking made by an agent, for a performer, at a venue, for an event, is
stored in the Bookings relation. The primary key is a combination of performer-
id, agent-id, venue-id and event-id; the remaining attribute is booking date.

30



31



Note that this assumes there can only be one booking involving a particular
combination of performer, agent, venue and event. This means that we cannot
have multiple bookings made involving the same performer, agent, venue and
event, as the primary key would be the same for each booking and we would
therefore lose unique identification of bookings.

In order to accommodate multiple bookings involving the same entities, we
could include the booking date as part of the key, but then we would not be
able to distinguish between morning and evening performances on the same date
(unless we included time as well as date).

Entity-relationship diagram

The determinacy diagrams and relations, which are now fully normalised, can
also be viewed as entities linked by relationships using the data modelling tech-
nique described in the chapter on entity-relationship modelling. Each determi-
nacy diagram represents a relation, which in turn corresponds to an entity, as
can be seen in the entity-relationship diagram below. The relationships that
exist between each entity are summarised below the diagram.

32



This entity relationship diagram represents the following:

• Each performer may have many bookings, so the relationship between
performer and booking is one-to-many.

• A performer earns a fee, the value of which depends on the performer type,
so the relationship between performer and fee is one-to-one (a performer
can only be of one type).

• An agent may make a number of bookings, so the relationship between
agent and booking is one-to-many.

• Any venue may have been booked several times, which makes the relation-
ship between venue and booking one-to-many.

• Each event may be involved in a number of bookings, so this relationship
is also one-to-many.

33



• The relationships that exist between performers, agents, venues and events
are shown by their connections through the bookings.

Exercise 3

Why have so many normal forms?

Further issues in decomposing relations

When moving to a higher normal form, we often have a choice about the way
in which we can decompose a relation into a number of other relations. This
section examines problems that can arise if the wrong decomposition is chosen.

As an example, supposing within a government department responsible for in-
telligence gathering, we wish to record details of employees in the department,
and the levels of their security clearance, which describe the levels of access
employees have to secret information. The table might contain the following
attributes:

Relation EMPLOYEE (Employee, Security_code, Level)

Where Employee is the primary key and provides some convenient means of
identifying each employee, Security_code identifies the security clearance of that
employee, and Level identifies the level of access to secret information possessed
by anyone having that Security_code.

The determinants in this relation are:

Employee determines Security_code

Security_code determines Level

So we have two functional dependencies, respectively Security_code is func-
tionally dependent on Employee, and Level is functionally dependent on Se-
curity_code. We also have a transitive, or indirect dependency, of Level on
Employee; that is, an employee’s level of security clearance does depend on who
that employee is, but only via the value of their Security_code.

This relation is in second normal form; i.e. it contains no repeating groups and
no part-key dependencies, but it does contain a transitive dependency.

In order to convert relation EMPLOYEE to third normal form, we need to
decompose it to remove the transitive dependency of Level on Employee. Until
we make this decomposition, we have the following insert, update and deletion
anomalies:

• We cannot create a new Security_code until we have an Employee to
whom we wish to allocate it.

34



• If we change the Level of a Security_code, i.e. change the Level of infor-
mation employees who hold that code can access, then in relation EM-
PLOYEE, we would have to propagate the update throughout all the
employees who hold that Level.

• If we remove the last Employee holding a particular Security_code, we
loose the information about the Level of clearance assigned to that Secu-
rity_code.

To perform the decomposition, suppose we split relation EMPLOYEE into two
relations as follows:

Decomposition A

Relation EMPLOYEE-CLEARANCE (Employee, Level)

Relation SECURITY_LEVEL (Security_code, Level)

There are problems with this decomposition. Supposing we wish to change the
security clearance for a given Employee. We can change the value of Level in
relation SECURITY_CLEARANCE, but unfortunately, this update is not in-
dependent of the data held in relation SECURITY_LEVEL. In order for the
change to have taken place in the SECURITY-CLEARANCE relation, one of
two things must have arisen. Either the Employee in question has changed
his/her Security_code, in which case no update need be made to relation SE-
CURITY_LEVEL, or the Level associated with the Security_code possessed by
the Employee has changed, in which case relation SECURITY_LEVEL must
be changed to reflect this.

The problem has arisen because the two relations in decomposition A are not
independent of one another. There is in fact a functional dependency between
them: the fact that Security_code is functionally dependent on Employee. In de-
composition A, instead of storing in the same relation those data items that are
functionally dependent on one another, we have split the functional dependency
of Security_code on Employee across the two relations, preserving the transi-
tive dependency of Level on Employee in relation SECURITY_CLEARANCE.
The problems this gives is that we cannot then make updates to one of these
relations without considering whether updates are required to the other. As a
further example, if we make updates to relation SECURITY_LEVEL, changing
the Level of access associated with each Security_code, we must make sure that
these updates are propagated to relation SECURITY_CLEARANCE, i.e. that
the employees who possess the altered security codes have their Level attribute
updated to reflect the changes in the SECURITY_LEVEL relation.

Resolution of the problem

The solution to this problem is to ensure that when making decompositions,
we preserve the functional dependencies of data items within the resulting rela-

35



tions, rather than splitting them between the different relations. For the above
example, the correct decomposition would therefore be as follows:

Decomposition B

Relation EMPLOYEE_CODE (Employee, Security_code)

Relation ACCESS_LEVEL (Security_code, Level)

This decomposition allows us to manipulate the level of security granted to an
individual employee (in relation EMPLOYEE_CODE) independently of that
which specifies in general the level of access associated with security codes (main-
tained in relation ACCESS_LEVEL).

Denormalisation and over-normalisation

Denormalisation

As the normalisation process progresses, the number of relations required to
represent the data of the application being normalised increases. This can lead
to performance problems when it comes to performing queries and updates on
the implemented system, because the increased number of tables require multi-
ple JOINs to combine data from different tables. These performance problems
can be a major issue in larger applications (by larger we mean both in terms of
numbers of tables and quantity of data).

To avoid these performance problems, it is often decided not to normalise an
application all the way to fourth normal form, or, in the case of an existing
application which is performing slowly, to denormalise an existing application.
The process of denormalisation consists of reversing (or in the case of a new
application, not carrying out in the first place) the steps to fully normalise
an application. Whether this is appropriate for any given application depends
critically on two factors:

• Whether the size of the application is sufficient that it will run slowly on
the hardware/software platform being used.

• Whether failing to carry out certain steps in the normalisation process
will compromise the requirements of the applications users.

Supposing, for example, we have a relation in which we wish to store the details
of companies, the departments making up the companies and the locations of
the departments. We might describe such a relation as follows:

Relation COMPANY (Company, Department, Location)

A row in the relation indicates that a particular Department of a specific Com-
pany is based at a particular Location. The primary key of relation COMPANY
is the attribute Company. Assuming that Location depends directly on the De-
partment of any particular Company, there is a transitive dependency between

36



Company and Location, via Department. To convert relation COMPANY to
third normal form, we would decompose it into:

Relation DEPARTMENT (Company, Department)

Relation LOCATION (Department, Location)

This would avoid the insert, update and deletion anomalies associated with
second normal form relations, giving us the ability to manipulate the information
about which departments make up a particular company quite independently
of the information about where particular departments are located. This is the
additional flexibility provided by taking the step of converting the application
to third normal form. However, if we wish to store information about a large
number of companies and departments, and we will not need to manipulate the
location information about departments independently of the information about
which departments make up a company, then we may choose not to proceed to
third normal form, but to leave relation COMPANY in second normal form.
Thus we’d retain the Company, Department and Location attributes in one
relation, where they can be queried and manipulated together, without the
need for JOINs.

If we choose to leave relation COMPANY in second normal form, what we will
have lost in terms of flexibility is as follows:

• The ability to create new departments at specific locations without allo-
cating them to a specific company.

• The ability to create new departments at specific locations without allo-
cating them to a specific company.

Note that in this particular case, the update anomaly does not arise, as each
department is assumed to appear only once in relation COMPANY. Users of
the application may feel that the flexibility provided by third normal form is
simply not required in this application, in which case we can opt for the second
normal form design, with its improved performance.

The same arguments apply when considering whether to take any steps that
lead to a higher normal form; there is always a trade-off similar to the above,
between the increased flexibility of a more normalised design versus a faster-
running application in a less normalised design, due to the smaller number of
relations. When Relational database systems first arrived in the early ’80s, their
performance was generally slow, and this had an influence in slowing down their
adoption by some companies. Since that time, a huge amount of research and
development has gone into improving the performance of Relational systems.
This development work, plus the considerable improvements in the processing
speed of hardware, tends to suggest that the need to denormalise applications
should be reduced; however, it remains an important option for application
designers seeking to develop well-tuned applications.

37



Over-normalisation

A further technique for improving the performance response of database appli-
cations, is that of over-normalisation. This technique is so-called because it
results in a further decomposition of the relations of an application, but for
different reasons than that of the usual normalisation process. In normalisation,
we are seeking to satisfy user requirements for improved application flexibility,
and to eliminate data redundancy. In contrast, the decompositions made during
over-normalisation are generally done so to improve application performance.

As an example, we shall take the case of a company possessing a large table of
customer information, supposing the table contains several thousand rows, and
that the customers are more or less equally divided into those based in the home
country of the company and overseas.

There are essentially two approaches to over-normalisation of a table — we can
divide it up either horizontally or vertically.

Splitting a table horizontally

The most common approach is to split a table horizontally. In the case of
the large customer table, we might split it into two tables, one for home-based
customers, and the other for overseas customers.

Splitting a table vertically

The alternative approach of vertical partitioning might be used if the columns of
a table fell naturally into two or more logical subsets of information; for example,
if several columns of the customer table contained data specific to credit-limit as-
sessment, whereas others contained more general contact and customer-profiling
information. If this were the case, we might split the table vertically, one par-
tition containing credit-limit assessment information, and the other containing
the more general customer details. It is important when performing vertical
partitioning in this way that the primary key of the entity involved, in this
case, Customer, is retained in both partitions, enabling all of the data for the
same entity instance (here for a specific customer) to be re-assembled through
a JOIN.

Example of over-normalisation

So, for the process of over-normalisation, tables can be split into a number of
horizontal or vertical fragments. For example, if the customers in the above
example contained a ‘region’ attribute, which indicated in which region of the
world they are based, then rather than a simple dual split into home-based
and overseas customers, we might create a separate partition for each regional
grouping of customers.

38



There are a number of reasons why relations may be fragmented in this way, most
of which are directly concerned with improving performance. These objectives
are briefly examined below:

• Splitting a large table into a number of smaller tables often reduces the
number of rows or columns that need to be scanned by specific query or
update transactions for an application. This is particularly true when
the partitions created are a good match to different business functions
of the application - for example, in the customer table example above, if
customers in different regions of the world undergo different types of query
and update processing.

• The smaller tables retrieved by queries restricted to one, or even a few, of
a number of partitions will take up less space in main memory than the
large number of rows fetched by a query on a large table. This often means
that the small quantity of data is able to remain in memory, available for
further processing if required, rather than being swapped back to disk, as
would be likely to happen with a larger data set.

Just as a good match to business functions for the chosen partitions means
the over-normalisation process will work well in improving performance, a poor
match to transaction requirements could lead to a poorer performance, because
the over-normalised design could lead to an increased number of JOINs.

Review questions

Review question 1

Consider the following scenario.

A database is being designed to store details of a hospital’s clinics and the
doctors who work in them. Each doctor is associated with just one hospital.
Each clinic has a two-to-three-hour session during which a doctor who is a
specialist in a particular field of medicine, sees patients with problems in that
specialist area; for example, a diabetic clinic would be run by a doctor who is
a specialist in diabetes. The same clinic may occur in a number of different
hospitals; for example, several hospitals may run a diabetes clinic. Doctors may
hold a number of different clinics. Clinic within the same hospital are always
held by the same doctor. The relation is therefore of the following form:

Relation CLINIC (Hospital, Clinic, Doctor)

A row in the relation signifies that a particular clinic is held by a particular
doctor in a specific hospital.

1. What are the determinants in the above relation?

2. Demonstrate that relation CLINIC is not in BCNF. Which normal form
is it in?

39



3. Explain any insertion, update or deletion problems that might arise with
relation CLINIC. How might these be resolved?

Review question 2

A library holds a database of the loans and services used by its members. Each
member may borrow up to 10 books at a time, and may reserve sessions making
use of library facilities, such as time on an Internet PC, a Multimedia PC,
booking a ticket for a performance at the library theatre, etc.

Describe how the above scenario could be handled in the process of normalisa-
tion.

Review question 3

It is required to develop a database which can provide information about soccer
teams: the number of games they have played, won, drawn and lost, and their
current position in the league.

Write down your thoughts on the issues involved in supporting the requirement
to provide the current league position, and how this is best satisfied.

Review question 4

If BCNF is a stronger definition of 3NF, and provides a more concise definition
of the normalisation process, why is it worth understanding the step-by-step
processes of moving from an un-normalised design to 3NF? Why is BCNF a
stronger normal form than 3NF?

Review question 5

A binary relation is a relation containing just two attributes. Is it true that any
binary relation must be in BCNF?

Review question 6

What is the difference between a repeating group and a multi-valued depen-
dency?

Review question 7

True or false: Splitting a functional dependency between two relations when
decomposing to a higher normal form is to be preferred to splitting a transitive
dependency. Give reasons to justify your assertion.

Review question 8

Explain the difference between denormalisation and over-normalisation. What
do the two techniques have in common, and what differences do they have?

Review question 9

A chemical plant produces chemical products in batches. Raw materials are
fed through various chemical processes called a production run, which turns
the raw materials into a final product. Each batch has a unique number, as

40



does each product produced by the plant. We can also assume that product
names are unique. Each production run results in the production of a quantity
of a particular product. We assume that only one product is produced in any
given production run, and so different production runs are required for different
products. The design of a relation to store the details of production runs could
look as follows:

Relation PRODUCTION_RUN (Product_no, Product_name, Batch_no,
Quantity)

In which normal form is relation PRODUCTION_RUN? Explain the reasoning
behind your assertion.

Resolve any anomalies that could arise in the manipulation of rows in the PRO-
DUCTION_RUN relation.

Review question 10

A company wishes to store details of its employees, their qualifications and
hobbies. Each employee has a number of qualifications, and independently of
these, a number of hobbies.

Produce a normalised design for storing this information.

Review question 11

We saw earlier the issues surrounding storing some types of derived data; for
example, the league position of soccer teams. Supposing we wish to store the
number of points accumulated by such teams, given the rules that:

• A win is awarded 3 points

• A draw is awarded 1 point

• There are no points for a defeat

Consider any problems that might be associated with the storage of the number
of points obtained by teams in such a league.

Discussion topic

Normalisation has been the second major technique we have examined for use
in the design of database applications, the other being entity-relationship mod-
elling. You are encouraged to discuss your feelings about the relative usefulness
of these two approaches with respect to the following:

• Learnability. Which of the two techniques have you found easier to learn?
Do not settle for merely identifying which technique was easier to learn,
but examine what it is about the techniques that makes one or other of
them easier to learn.

41



• Usability. Which of the techniques have you found easier to use so far in
the chapters you have worked through, and which would you expect to be
more useful in commercial application development? Be sure to back your
assertions with an explanation of why you believe them to be true.

Finally, consider what you believe the relative strengths and weaknesses of the
two design approaches to be, and consider to what extent these are or are not
complementary.

42


	Chapter 9. Advanced Data Normalisation
	Objectives
	Context
	Recap
	Introduction
	Before starting work on this chapter
	Summary of the first three normal forms
	Third normal form determinacy diagrams and relations of Performer

	Motivation for normalising beyond third normal form
	Why go beyond third normal form?
	Insertion anomalies of third normal form
	Amendment anomalies of third normal form
	Deletion anomalies of third normal form

	Boyce-Codd and fourth normal form
	Beyond third normal form
	Boyce-Codd normal form
	Fourth normal form
	Summary of normalisation rules

	Fully normalised relations
	Entity-relationship diagram
	Further issues in decomposing relations
	Resolution of the problem

	Denormalisation and over-normalisation
	Denormalisation
	Over-normalisation

	Review questions
	Discussion topic


