
Chapter 10. Declarative Constraints and
Database Triggers

Table of contents

• Objectives
• Introduction
• Context
• Declarative constraints

– The PRIMARY KEY constraint
– The NOT NULL constraint
– The UNIQUE constraint
– The CHECK constraint

∗ Declaration of a basic CHECK constraint
∗ Complex CHECK constraints

– The FOREIGN KEY constraint
∗ CASCADE
∗ SET NULL
∗ SET DEFAULT
∗ NO ACTION

• Changing the definition of a table
– Add a new column
– Modify an existing column’s type
– Modify an existing column’s constraint definition
– Add a new constraint
– Drop an existing constraint

• Database triggers
– Types of triggers

∗ Event
∗ Level
∗ Timing

– Valid trigger types
• Creating triggers

– Statement-level trigger
∗ Option for the UPDATE event

– Row-level triggers
∗ Option for the row-level triggers

– Removing triggers
– Using triggers to maintain referential integrity
– Using triggers to maintain business rules

• Additional features of Oracle
– Stored procedures
– Function and packages
– Creating procedures
– Creating functions

1

– Calling a procedure from within a function and vice versa
• Discussion topics
• Additional content and activities

Objectives

At the end of this chapter you should be able to:

• Know how to capture a range of business rules and store them in a
database using declarative constraints.

• Describe the use of database triggers in providing an automatic response
to the occurrence of specific database events.

• Discuss the advantages and drawbacks of the use of database triggers in
application development.

• Explain how stored procedures can be used to implement processing logic
at the database level.

Introduction

In parallel with this chapter, you should read Chapter 8 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter introduces you to some of the most advanced features of Relational
databases and SQL, namely declarative constraints, database triggers and stored
procedures. These features have been made available in popular DBMSs such
as Oracle. They provide those DBMSs with greater flexibility and power in
dealing with complexities in many demanding business applications.

The reason for studying these advanced database features is that we need to
address a growing trend of providing mechanisms for the processing as well as
storage of data in database systems. Declarative constraints are a means of
recording some types of business rules within a database system, and by doing
so, have them systematically applied across all the applications operating on the
database. Database triggers and stored procedures are additional mechanisms
provided in some of the most powerful DBMSs (e.g. Oracle) for storing and
applying logic at the database rather than application level.

The contents of this chapter are closely related to some of the others in this
module. The distribution of processing in an application is an area of design
that has developed with the evolution of client-server computing. A database de-
signer now has choices about whether to place some aspects of business logic at
the server (where the database resides), by having them built into the database
system and enforced at that level, or at the client where it is enforced at the

2

application level. This chapter extends the SQL constructs studied in the chap-
ter on Advanced SQL and discusses how business rules can be captured at the
database level. Because of the design decisions that need to be made about the
placing of business logic, this chapter also relates to the two on database design,
and the chapter on distributed databases and client-server applications.

Because different DBMSs may implement those advanced features in different
ways, our study will be focused on the related functionality provided by Or-
acle. Oracle PL/SQL statements will be used to provide examples to enable
detailed discussions. Other DBMSs should provide similar functionalities, but
you should consult with the system’s documentation should you come across
any incompatibilities. All SQL statements are in capital letters.

Context

For any complex database application, it is likely that there will be two or more
tables involved to store information. It is also likely that data within the same
table or in different tables will have to maintain some kind of relationship to
reflect the corresponding business logic. In addition, some attributes (columns)
of a table may need to have certain conditions imposed on them, and these
conditions, which are often used to capture necessary business rules, need to be
satisfied at all times.

In order to accommodate these practical needs of database applications, the
SQL standard provides mechanisms to maintain the integrity of databases; that
is, the integrity of data within a single table or in different tables as a whole.
Declarative constraints are one of such mechanisms. They are used to define,
according to the business application rules, conditions on columns and tables.
Once defined (i.e. declared), these conditions will be enforced by the DBMS
automatically.

As can be seen from the above description, the types of declarative constraints
that can be declared are predefined by the DBMS, which conforms to the SQL
standard. Usually they are used to store and enforce the kinds of business rules
which are generally needed across different applications. Although they are sim-
ple to use and maintain, they lack some necessary flexibility and may not always
be able to satisfy some specific needs of individual applications. To compensate
for this, some DBMSs (e.g. Oracle) provide another type of mechanism to ensure
database integrity: database triggers and stored procedures.

A procedure is a set of SQL or PL/SQL (in the case of Oracle) statements used
together to execute a particular function. Database triggers are a mechanism
that allows a database designer to write procedures that are automatically exe-
cuted whenever a predefined situation (an event) is raised by the execution of
INSERT, UPDATE or DELETE statements on a table or view. Because the
database designer is responsible for creating triggers and writing procedures,
he/she has an overall control. This control can be used to capture and build

3

business logic into the database as necessary. As a result, this mechanism of-
fers greater flexibility and fewer restrictions for the designer to develop complex
database applications. In short, database triggers and procedures are not only
able to enforce integrity constraints, but can also be used to write customised
functions to satisfy individual applications’ needs.

In the rest of this chapter, we are going to study in detail declarative constraints,
database triggers and procedures. We will see how they are used in practical
applications, what the advantages and drawbacks are, and what the solutions
are to potential problems.

To facilitate detailed discussions, suppose we need to implement a database for a
university. The basic requirements state that there are four entities: STUDENT,
MODULE, LECTURER and DEPT. A student can attend as many modules as
necessary, and a module must be attended by at least one student. A module
must be taught by one and only one lecturer, but a lecturer may teach between
one and four modules. A student should be enrolled to a department; a module
should be offered by one and only one department; a lecturer should belong to
one and only one department.

It is not difficult to see that we will need to implement five tables: four tables
for the four entities and one table (called RECORD) for the many-to-many
relationship between STUDENT and MODULE.

• STUDENT (SID, SNAME, DNAME, SLEVEL, SEMAIL).

• LECTURER (EID, LNAME, LEMAIL, DNAME).

• MODULE (CODE, TITLE, EID, DNAME).

• DEPT (DNAME, LOCATION).

• RECORD (SID, CODE, MARK).

In the STUDENT table, SID is the student’s identity number and the primary
key, SNAME is the student’s name, DNAME is the department to which the
student has enrolled, SLEVEL is the level the student is at, and SEMAIL is
the student’s email address. In the LECTURER table, EID is the employee
identity number for the lecturer and the primary key, LNAME is the lecturer’s
name, LEMAIL is the lecturer’s email address and ENAME is the name of the
department. In the MODULE table, CODE is the code of the module and
the primary key, TITLE is the title of the module, EID is the name of the
lecturer taking the module and DNAME is the name of the department the
module belongs to. The DEPT table has only two attributes, department name
DNAME (primary key) and location of the department in the university. In the
RECORD table, SID is the student number, CODE is the code of the module
and MARK is the mark a student obtained from attending a module. The SID
and CODE makes a primary key.

4

Declarative constraints

Constraints are a mechanism provided within the DDL SQL standard to main-
tain the consistency and integrity of a database and, at the same time, enforce
certain business rules in the database application. There are five different types
of declarative constraints in SQL that can be defined on a database column
within a table, and they are as follows:

• PRIMARY KEY

• NOT NULL

• UNIQUE

• CHECK

• FOREIGN KEY

The PRIMARY KEY constraint

The PRIMARY KEY constraint is used to maintain the so-called entity integrity.
When such a constraint is declared on a column of a table, the DBMS enforces
the following rules:

• The column value must be unique within the table.

• The value must exist for any tuple (a record or a row of data) that is to
be stored in the table. That is, the column cannot have a NULL value.

For the STUDENT table in our university database, for example, we have SID
as the key attribute. As a normal business rule, all students must have a valid
and unique ID number as soon as they are enrolled. Thus, the SID column must
have a unique value and cannot be null. To enforce this business rule, we can
have the PRIMARY KEY constraint declared on the column when creating the
STUDENT table. One way to do this is:

CREATE TABLE STUDENT (

SID NUMBER(5) CONSTRAINT PK_STUDENT PRIMARY KEY,

SNAME VARCHAR2(30),

DNAME VARCHAR2(30),

SLEVEL NUMBER(1),

SEMAIL VARCHAR2(40));

In the above SQL statement, the constraint is declared by using the keywords
CONSTRAINT and PRIMARY KEY. A column definition clause with such a
constraint declaration is called a column constraint clause. “PK_STUDENT”
is a user-defined name for the constraint. It is optional, but when defined, it

5

can help the database designer and user to pinpoint a violation of this con-
straint. The reason is that when this particular constraint is violated, the
DBMS will generate an error/warning message which includes the constraint’s
name. A usual convention for defining a PRIMARY KEY constraint’s name is
“PK_Table_Name”.

There is an alternative way to declare the PRIMARY KEY constraint:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30),

SLEVEL NUMBER(1),

SEMAIL VARCHAR2(40),

CONSTRAINT PK_STUDENT PRIMARY KEY (SID));

OR

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30),

SLEVEL NUMBER(1),

SEMAIL VARCHAR2(40),

PRIMARY KEY (SID));

In this SQL statement, a separate clause (called table constraint clause) is used
to define the constraint. The column name (e.g. SID) must be explicitly stated
in the list (i.e. within the brackets ()). If the table has a composite key, then
the list will include all the key attributes. For example, to create the RECORD
table, we have:

CREATE TABLE RECORD (

SID NUMBER(5),

CODE VARCHAR2(6),

MARK NUMBER(3),

CONSTRAINT PK_RECORD PRIMARY KEY (SID, CODE));

By enforcing the PRIMARY KEY constraint, the DBMS can prevent any at-
tempt or mistake of inserting or updating a student record with a duplicate
student number. It also ensures that every student on record has a valid ID

6

number. In the RECORD table, it ensures that each record has a unique com-
bination of SID and CODE values, which means that a student will never be
allowed to have two or more records for the same module.

It must be emphasised that a table can have at most one PRIMARY KEY
constraint, and it is actually optional (a table does not have to have a PRIMARY
KEY constraint). However, it is rare that a table be created without such a
constraint, because tables usually do have a primary key.

Review question 1

1. What types of constraints can be declared in SQL?

2. What rules are enforced by the PRIMARY KEY constraint?

3. Is it true that a table must have at least one PRIMARY KEY constraint?

The NOT NULL constraint

The NOT NULL constraint is imposed on any column that must have a value.
In the STUDENT table, for example, the attributes DNAME and SLEVEL can
have this constraint declared on them to reflect the application requirement that
whenever a student is enrolled, he/she must be assigned to a department and
be at a certain level.

To declare the constraint on DNAME and SLEVEL, we can use the following
SQL statement to create table STUDENT:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) CONSTRAINT NN_STUDENT_DNAME NOT
NULL,

SLEVEL NUMBER(1) NOT NULL,

SEMAIL VARCHAR2(40),

CONSTRAINT PK_STUDENT PRIMARY KEY (SID));

You may have noticed that the constraint on DNAME has been given a user-
defined name “NN_STUDENT_DNAME”, while the one on SLEVEL has not.
It is optional to name a NOT NULL constraint. Unlike the PRIMARY KEY
constraint, it does not make much difference whether or not you choose to
define a name for the constraint. In Oracle, when the NOT NULL constraint is
violated, the system will generate an error message. However, this message will
not include the name of the NOT NULL constraint, even if one is defined.

7

Also notice that when a constraint is not to be given a user-defined name, the
keyword CONSTRAINT is not used. The same applies to other constraint
definitions.

The UNIQUE constraint

The UNIQUE constraint is the same as the PRIMARY KEY constraint, except
NULL values are allowed. In the STUDENT table, for example, the SEMAIL
attribute should have this constraint. The reason is that according to the uni-
versity’s policy, a student may or may not be given an email account. However,
when one is given, the email account name must be unique. By enforcing this
constraint on SEMAIL, the DBMS can ensure that different students will not
be allowed to have the same email addresses. For those who do not have an
email account, the SEMAIL column can have NULL values.

To declare the UNIQUE constraint on SEMAIL, we can use the following SQL
statement to create table STUDENT:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) NOT NULL,

SLEVEL NUMBER(1) NOT NULL,

SEMAIL VARCHAR2(40) CONSTRAINT UK_STUDENT_SEMAIL
UNIQUE,

CONSTRAINT PK_STUDENT PRIMARY KEY (SID));

Again, an optional user-defined name “UK_STUDENT_SEAMIL” is given to
the constraint. This is a good practice in Oracle, because when the UNIQUE
constraint is violated, the system will generate an error message containing the
name. Similar to the PRIMARY KEY constraint, the constraint’s name helps
pinpoint the violation. You can avoid giving the constraint a name and just use
the UNIQUE keyword:

SEMAIL VARCHAR2(40) UNIQUE

Review question 2

Why is it a good practice to give a name to a declarative constraint?

The CHECK constraint

Declaration of a basic CHECK constraint

8

The CHECK constraint defines a discrete list of values that a column can have.
This list of values may be literally expressed within the constraint declaration
or may be defined using a mathematical expression. In the STUDENT table,
for example, a student must be at a level between 0 and 3. To impose such a
constraint, the CREATE statement for the STUDENT table will be as follows:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) NOT NULL,

SLEVEL NUMBER(1) NOT NULL CONSTRAINT CK_STUDENT_LEVEL
CHECK ((SLEVEL>=0) AND (SLEVEL<=3)),

SEMAIL VARCHAR2(40) CONSTRAINT UK_STUDENT_SEMAIL
UNIQUE,

CONSTRAINT PK_STUDENT PRIMARY KEY (SID));

Notice two things in the above CREATE statement. First, the CHECK con-
straint can be declared in a column constraint clause and concatenated (linked)
with other NOT NULL, UNIQUE and/or PRIMARY KEY constraints. When
a column constraint clause is concatenated, there is no separator between the
different constraints, just a comma after the last constraint. Second, the check
condition (e.g. (SLEVEL>=0) AND (SLEVEL<=3)) can include logical con-
nectors such as AND and OR. Thus, it is possible to define a complex condition.

Alternatively, the CHECK constraint can be defined using a table constraint
clause, such as:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) NOT NULL,

SLEVEL NUMBER(1) NOT NULL,

SEMAIL VARCHAR2(40) CONSTRAINT UK_STUDENT_SEMAIL
UNIQUE,

CONSTRAINT PK_STUDENT PRIMARY KEY (SID),

CONSTRAINT CK_STUDENT_LEVEL CHECK ((SLEVEL>=0) AND
(SLEVEL<=3)));

It is worth mentioning that when the CHECK constraint is applied to a list of
literal values, the values are case sensitive. For example, if only students in the
Department of Computing Science or Information Technology are allowed to be

9

in the database, a CHECK constraint is defined on DNAME in the following
way:

……

DNAME VARCHAR2(30) NOT NULL, ……,

CHECK (DNAME IN (‘Computing Science’, ‘Information Technology’)), ……;

Any value that does not exactly match the specified values (including ‘Comput-
ing science’) will cause a violation.

Complex CHECK constraints

It is also possible to create a CHECK constraint that is constructed from mul-
tiple columns of the table. In this case, because it applies to more than one
column, the constraint must be declared with a table constraint clause rather
than a column constraint clause. For example, instead of declaring two CHECK
constraints on SLEVEL and DNAME respectively, we can use a single constraint
called CK_STUDENT_VALIDITY as follows:

CREATE TABLE STUDENT (SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) NOT NULL,

SLEVEL NUMBER(1) NOT NULL,

SEMAIL VARCHAR2(40) CONSTRAINT UK_STUDENT_SEMAIL
UNIQUE,

CONSTRAINT PK_STUDENT PRIMARY KEY (SID),

CONSTRAINT CK_STUDENT_VALIDITY CHECK (((SLEVEL>=0) AND
(SLEVEL<=3))

AND (DNAME IN (‘Computing Science’, ‘Information Technology’))));

This CREATE statement will create the same STUDENT table as the earlier
statement that uses two separate CHECK constraints.

Review question 3

What is the purpose of using a CHECK constraint?

The FOREIGN KEY constraint

We saw in earlier chapters, when introducing the Relational model, that entities
are often linked by a one-to-many relationship. For example, a department
may contain many employees, so we say there is a one-to-many relationship
between instances of the department entity and instances of the employee entity.

10

Entities related in this way are sometimes referred to as parents and children;
in the example above, the parent entity would be the department table, and the
employee entity would be the child table.

A foreign key is a column or a set of columns (attributes) that links each row
in the child table containing the foreign key to the row of the parent table
containing the matching key value. The FOREIGN KEY constraint enforces
referential integrity, which means that, if the foreign key contains a value, that
value must refer to an existing, valid row in the parent table.

In our university database, for example, SID and CODE are foreign keys in the
RECORD table (notice that SID and CODE together form the primary key
for RECORD as well), and RECORD has two parent tables STUDENT and
MODULE. For a row in RECORD, there must be an existing student row with
the same SID value in STUDENT, and a valid row in MODULE with the same
CODE value. Otherwise, the referential integrity is broken. One important
implication of this, is that when using FOREIGN KEY constraints, the parent
tables must be created before the child tables, and the parent tables must be
populated before the child tables, in order to avoid constraint violations. It is
important to bear in mind this required order of doing things when undertaking
practical work involving FOREIGN KEY constraints.

The following SQL statement can be used to declare the FOREIGN KEY con-
straints on SID and CODE when creating the RECORD table.

CREATE TABLE RECORD (

SID NUMBER(5),

CODE VARCHAR2(6),

MARK NUMBER(3),

CONSTRAINT PK_RECORD PRIMARY KEY (SID, CODE),

CONSTRAINT FK_RECORD_SID FOREIGN KEY (SID) REFERENCES
STUDENT,

FOREIGN KEY (CODE) REFERENCES MODULE);

It can be seen from the above example that:

• The FOREIGN KEY constraint can be given an optional name. In the
example, FK_RECORD_SID is the name for the constraint on SID. To
define the name, the keyword CONSTRAINT must be used. Otherwise,
it is omitted as in the case of declaring the constraint on CODE.

• The keywords FOREIGN KEY define which column (or columns) is the
foreign key column to be constrained.

• The keyword REFERENCES indicates the parent table.

11

By declaring and enforcing the FOREIGN KEY constraint, the DBMS can
ensure that the referential integrity is maintained in both the child table(s) and
the parent table(s).

In the child table, the DBMS will not allow any INSERT or UPDATE operation
that attempts to create a foreign key value without a matching candidate key
value in the corresponding parent table (as indicated by the REFERENCES
clause).

In the parent table, the DBMS ensures that appropriate actions are taken for any
UPDATE or DELETE operation that attempts to change or delete a candidate
key value that is being referenced by some rows in the child table. The kind of
actions that can be taken are user definable. They are CASCADE, SET NULL,
SET DEFAULT and NO ACTION.

CASCADE

This action can be triggered by either a DELETE or an UPDATE operation.

When a parent row is deleted, all its child rows are also deleted. This action
can subsequently be applied to each child row deleted, because such rows may
themselves have a candidate key that is used as a foreign key in some other
tables. Thus, this action may be executed in a cascading manner.

The CASCADE option can be specified in SQL as follows:

CREATE TABLE RECORD (

SID NUMBER(5),

CODE VARCHAR2(6),

MARK NUMBER(3),

CONSTRAINT PK_RECORD PRIMARY KEY (SID, CODE),

FOREIGN KEY (SID) REFERENCES STUDENT ON DELETE CASCADE,

FOREIGN KEY (CODE) REFERENCES MODULE);

In this example, when a student row is deleted from the STUDENT table, all
his/her records will also be removed from the RECORD table.

When the candidate key value is changed (by a UPDATE operation), the foreign
key column in the child table is set to the same new value. Similar to CASCADE
by DELETE, such update actions can be carried out in a cascading manner to
the child tables of the child table and so on. For example, when a student’s
identity number (SID) is changed, all his/her records in the RECORD table
should have the new SID value to replace the old. In Oracle, such an action can
be defined by creating a trigger (to be discussed later).

12

SET NULL

When a row is deleted from the parent table, all its child rows will have their
corresponding foreign key column set to NULL. This option is only valid if the
foreign key column allows NULL value (i.e. it has neither the PRIMARY KEY
constraint nor the NOT NULL constraint).

Similarly, when the candidate key value of the parent row is changed, all its child
rows may have their corresponding foreign key column set to NULL. Again, this
option is valid if and only if the foreign key column allows NULL value.

The SET NULL option can be specified in Oracle by creating corresponding
triggers.

SET DEFAULT

By having this option, the operation of deleting the parent row or updating the
candidate key value in the parent table will set the corresponding foreign key
column in the child table to its default value. This option is only valid if the
foreign key column has a DEFAULT value specified.

Again in Oracle, this option can be implemented using appropriate triggers.

NO ACTION

This is the option by default. If there is no other option specified, the DBMS
will reject any DELETE or UPDATE in the parent table that may affect rows
in the child tables. Any such illegal attempt (to break the referential integrity)
will raise an error message in Oracle.

Review question 4

1. Does the keyword CONSTRAINT always need to be used in declaring a
constraint?

2. What are the rules enforced by the FOREIGN KEY constraint?

Activity 1 - Creating tables with appropriate constraints

For the university database described in the Context section, we now want to
use SQL to create five tables as specified below:

STUDENT

• SID: a five-digit number, which is also the primary key of the table.

• SNAME: a string of characters; maximum length is 30.

• SLEVEL: a single-digit integer; must have a value.

• SEMAIL: a string of characters; maximum length is 40; must be unique.

• DNAME: foreign key referring to the DEPT table; must have a value.

13

MODULE

• CODE: a string of 6 letters and/or numbers; primary key of the table.

• TITLE: a string of characters; maximum length is 45; must be unique.

• EID: foreign key referring to the LECTURER table; must have a value.

• DNAME: foreign key referring to the DEPT table; must have a value.

LECTURER

• EID: a six-digit number; primary key of the table.

• LNAME: a string of characters; maximum length is 30.

• LEMAIL: a string of characters; maximum length is 40; must be unique.

• DNAME: foreign key referring to the DEPT table; must have a value.

DEPT

• DNAME: a string of characters; maximum length is 30; primary key of
the table.

• LOCATION: a string of characters; maximum length is 35; must have a
value.

RECORD

• SID: foreign key referring to the STUDENT table; primary key attribute.

• CODE: foreign key referring to the MODULE table; primary key attribute.

• MARK: an integer.

Activity 2 - Inserting data into the tables and enforcing constraints

Having created the five tables, we can now insert data records into them. The
records that are to be stored are listed below. Insert each of them and see
what happens after the insertion of the highlighted rows, bearing in mind the
constraints that some of the columns may have.

14

15

Activity 3 - Maintaining referential integrity

We have learned that by declaring and enforcing the FOREIGN KEY constraint,
the DBMS can ensure that the referential integrity is maintained in both the
child table(s) and the parent table(s).

In the child table, the DBMS will not allow any INSERT or UPDATE operation
that attempts to create a foreign key value without a matching candidate key
value in the corresponding parent table (as indicated by the REFERENCES
clause). We have seen one of such examples in Activity 2.

In the parent table, the DBMS ensures that appropriate actions are taken for any
UPDATE or DELETE operation that attempts to change or delete a candidate
key value that is being referenced by some rows in the child table.

Now try to perform the following two operations on our university database and
see what happens:

• Operation 1: Change the name of the Department of Computing Science
to simply ‘Computing’ in the DEPT table.

• Operation 2: Delete all level 3 students from the STUDENT table.

16

Changing the definition of a table

Once created, a table’s definition can still be changed using the ALTER TABLE
command in SQL. Different DBMSs implement ALTER TABLE differently, pro-
viding more or less functionality than that specified in the SQL standard. In
Oracle, the following operations can be carried out on a table using appropriate
ALTER TABLE statements:

• Add a new column, including a constraint declaration for that column.

• Modify an existing column’s type, with certain restrictions.

• Modify an existing column’s constraint definition, with certain restric-
tions.

• Add a new constraint to an existing column.

• Drop (remove) an existing constraint from a column.

Add a new column

Suppose we now want to create a new column in the RECORD table to
store the date on which the mark was obtained. The column is to be named
EXAM_DATE, and can be added in the following way:

ALTER TABLE RECORD

ADD EXAM_DATE DATE;

If there is an application requirement stating that the exam date must not be
earlier than 1st January 1998 in order for the mark to be valid, we can include
a CHECK constraint as well when creating the new column. In this case, the
following SQL statement is used instead of the previous one:

ALTER TABLE RECORD

ADD EXAM_DATE DATE CONSTRAINT CK_RECORD_DATE CHECK
(TO_CHAR(EXAM_DATE, ‘YYMMDD’) >= ‘980101’);

The constraint is given a name “CK_RECORD_DATE”. The system function
TO_CHAR is used to convert EXAM_DATE into a string so that it can be
compared with ‘980101’, representing 1st January 1998. Other constrains can
be specified in the column constraint clause in a similar way.

Modify an existing column’s type

Using the ALTER TABLE command, we can modify the type definition of a
column with the following restrictions:

17

• If there is data (except NULL) present in the column, then the type of
this column cannot be changed. The type definition can only be changed
if the table is empty, or all values in the column concerned are NULL.

• If the type definition is changed on a column with a UNIQUE or PRI-
MARY KEY constraint, it may potentially become incompatible with the
data type of a referencing FOREIGN KEY. Thus, the ALTER TABLE
command should be used with caution.

The following SQL statement changes the data type of SID in the RECORD
table to NUMBER(9) (the original type was NUMBER(5)):

ALTER TABLE RECORD

MODIFY SID NUMBER(9);

Notice that SID in RECORD is a foreign key referencing SID in STUDENT
which still has the type NUMBER(5). However, because NUMBER(9) and
NUMBER(5) are compatible, this ALTER TABLE operation is allowed. If we
attempt to change SID to be of type VARCHAR2(5), it will be rejected because
of incompatible data types.

Modify an existing column’s constraint definition

There are a number of possibilities for modifying a constraint definition. If a
column has the NOT NULL constraint, it can be changed to NULL to allow
null values, and vice versa.

For example, the SEMAIL column in the STUDENT table did allow NULL
values. If we wish to change this, the following SQL statement is used:

ALTER TABLE STUDENT MODIFY SEMAIL NOT NULL;

Notice that the above operation is valid if and only if the table is empty or the
SEMAIL column does not have any NULL value. Otherwise, the operation is
rejected.

The SEMAIL column can also be changed back to allow NULL values as follow-
ing:

ALTER TABLE STUDENT MODIFY SEMAIL NULL;

For other existing constraints (i.e. UNIQUE, CHECK and FOREIGN KEY), if
they need be changed, they have to be removed first (DROP) and then new
ones added (ADD).

Add a new constraint

New constraints, such as UNIQUE, CHECK and FOREIGN KEY, can be added
to a column.

18

In our university database, for example, we may add a UNIQUE constraint on
SNAME in the STUDENT table. As a result, no students can have the same
name in the database.

ALTER TABLE STUDENT

ADD CONSTRAINT UK_STUDENT_SNAME UNIQUE(SNAME);

In the RECORD table, if we want to ensure that MARK is always less than or
equal to 100, we can add a CHECK constraint on MARK as follows:

ALTER TABLE RECORD ADD CONSTRAINT CK_RECORD_MARK
CHECK (MARK <= 100);

In the LECTURER table, DNAME is a foreign key with a link to the DEPT
table. If we did not declare a FOREIGN KEY constraint on DNAME when
creating LECTURER, we can add it now using the following statement:

ALTER TABLE LECTURER

ADD CONSTRAINT FK_LECTURER_DNAME

FOREIGN KEY (DNAME) REFERENCES DEPT;

All the keywords in the statements are highlighted. Notice that we have given
names to all the newly added constraints. They will be helpful when constraints
have to be dropped.

Drop an existing constraint

The ALTER TABLE … DROP command is used to remove an existing constraint
from a column. This operation is effectively to delete its definition from the data
dictionary of the database.

Earlier, we added a UNIQUE constraint (named UK_STUDENT_SNAME)
on SNAME in the STUDENT table. It prevents any students having the same
name. Obviously it is not practically useful, because it is always possible that
some students may happen to have the same name. In order to remove this
constraint, we can use the following SQL statement:

ALTER TABLE STUDENT DROP CONSTRAINT UK_STUDENT_SNAME;

Notice that in order to drop a constraint, its name has to be specified in the
DROP clause. There is no difficulty if the constraint has a user-defined name.
However, if the user does not give a name to the constraint when it is declared,
the DBMS will automatically assign a name to it. To remove such a constraint,
the system-assigned name has to be found out first. It can be done in Oracle,
but it causes some unnecessary trouble. This may be another incentive to define
a name for a constraint when it is declared.

Review question 5

19

1. How does one change the definition of a constraint on a column?

2. How does one remove an existing constraint?

Activity 4 - Changing an existing column’s constraint

In Activity 2, when we were trying to insert the following record:

into the STUDENT table, an error occurred. This was because there was a
NOT NULL constraint declared on SLEVEL. As a result, the SLEVEL column
cannot take NULL values. The insertion did not take place.

In this activity, we will change the constraint on SLEVEL from NOT NULL to
NULL so that NULL value is allowed. Write an SQL statement to perform the
change and then re-insert the record into the STUDENT table. It should now
be held in the table.

Activity 5 - Adding a new constraint to a column

When the RECORD table was created, there was no constraint on MARK. As a
normal business rule, however, we know that a student’s mark should always be
between 0 and 100. Thus, we can declare an appropriate constraint to enforce
this rule. Since the RECORD table has already been created, we need to use
the ALTER TABLE command to add the new constraint.

Write a proper SQL statement to perform the required operation. Having added
the new constraint, try to increase all the marks in module CS1234 by 80 and
see what happens.

Activity 6 - Modifying an existing FOREIGN KEY constraint

In Activity 3, we could not delete level 3 students from the STUDENT table,
because they were still being referenced by some child rows via the foreign key
SID in the RECORD table.

Now suppose that we want to relax the constraint a bit so that we may remove
student rows from the STUDENT table together with their child rows. In this
case, the FOREIGN KEY constraint on SID in RECORD needs be changed to
include the option to allow cascade deletions.

Write proper SQL statements to perform the required modification. Remember
that for existing constraints such as FOREIGN KEY, UNIQUE and CHECK, if
they need be modified, they have to be removed first and then new ones added.

Now, having modified the constraint, perform the operation to delete all level
3 students from the STUDENT table. Then check both the STUDENT and
RECORD tables to see what rows have been deleted.

20

Database triggers

A trigger defines an action the database should take when some database-related
event occurs. Triggers may be used to:

• Supplement declarative constraints, to maintain database integrity.

• Enforce complex business rules.

• Audit changes to data.

Different DBMSs may implement the trigger mechanism differently. In this
chapter, we use Oracle to discuss triggers. In Oracle, a trigger consists of a set of
PL/SQL statements. The execution of triggers is transparent to the user. They
are executed by the DBMS when specific types of data manipulation commands
are performed on specific tables. Such commands include INSERT, UPDATE
and DELETE.

Because of their flexibility, triggers may supplement database integrity con-
straints. However, they should not be used to replace them. When enforcing
business rules in an application, you should first rely on the declarative con-
straints available in the DBMS (e.g. Oracle); only use triggers to enforce rules
that cannot be coded through declarative constraints. This is because the en-
forcement of the declarative constraints is more efficient than the execution of
user-created triggers.

It is worth mentioning that in order to create a trigger on a table, you must be
able to alter that table and any other table that may subsequently be affected
by the trigger’s action. You need to ensure that you have sufficient privilege to
do so.

Types of triggers

In Oracle, there are fourteen types of triggers that can be implemented using
PL/SQL. Once again, note that other DBMSs may not have the same support,
and that you should consult your system’s documentation if you encounter any
problems. The type of a trigger is defined by the following three features:

• Event

• Level

• Timing

Event

Refers to the triggering SQL statement; that is, INSERT, UPDATE or DELETE.
A single trigger can be designed to fire on any combination of these SQL state-
ments.

21

Level

Refers to statement-level versus row-level triggers. The level of a trigger denotes
whether the trigger fires once per SQL statement or once for each row affected
by the SQL statement.

Statement-level triggers execute once for each SQL statement. For example, if
an UPDATE statement updates 300 rows in a table, the statement-level trigger
of that table would only be executed once. Thus, these triggers are not often
used for data-related activities. Instead, they are normally used to enforce
additional security measures on the types of transactions that may be performed
on a table.

Statement-level triggers are the default type of triggers created via the CREATE
TRIGGER command.

Row-level triggers execute once for each row operated upon by a SQL statement.
For example, if an UPDATE statement updates 300 rows in a table, the row-level
trigger of that table would be executed 300 times. Also, row-level triggers have
access to column values of the row currently being operated upon by the SQL
statement. They can evaluate the contents of each column for that row. Thus,
they are the most common type of triggers and are often used in data-auditing
applications.

Row-level triggers are created using the FOR EACH ROW clause in the CRE-
ATE TRIGGER command.

It is important to know that a trigger can only be associated with one table,
but a table can have a mixture of different types of triggers.

Timing

Timing denotes whether the trigger fires BEFORE or AFTER the statement-
level or row-level execution. In other words, triggers can be set to occur im-
mediately before or after those triggering events (i.e. INSERT, UPDATE and
DELETE).

Within the trigger, one will be able to reference the old and new values involved
in the transaction. ‘Old’ refers to the data as it existed prior to the transaction.
UPDATE and DELETE operations usually reference such old values. ‘New’ val-
ues are the data values that the transaction creates (such as being INSERTed).

If one needs to set a column value in an inserted row via a trigger, then a BE-
FORE INSERT trigger is required in order to access the ‘new’ values. Using an
AFTER INSERT trigger would not allow one to set the inserted value, since the
row will already have been inserted into the table. For example, the BEFORE
INSERT trigger can be used to check if the column values to be inserted are
valid or not. If there is an invalid value (according to some pre-specified business

22

rules), the trigger can take action to modify it. Then only validated values will
be inserted into the table.

AFTER row-level triggers are often used in auditing applications, since they do
not fire until the row has been modified. Because the row has been successfully
modified, it implies that it has satisfied the referential integrity constraints
defined for that table.

In Oracle, there is a special BEFORE type of trigger called an INSTEAD OF
trigger. Using an INSTEAD OF trigger, one can instruct Oracle what to do
instead of executing the SQL statement that has activated the trigger. The code
in the INSTEAD OF trigger is executed in place of the INSERT, UPDATE or
DELETE triggering transaction.

Valid trigger types

To summarise, the fourteen types of triggers are listed below.

Triggered by INSERT:

• BEFORE INSERT statement-level.

• BEFORE INSERT row-level.

• AFTER INSERT statement-level.

• AFTER INSERT row-level.

Triggered by UPDATE:

• BEFORE UPDATE statement-level.

• BEFORE UPDATE row-level.

• AFTER UPDATE statement-level.

• AFTER UPDATE row-level.

Triggered by DELETE:

• BEFORE DELETE statement-level.

• BEFORE DELETE row-level.

• AFTER DELETE statement-level.

• AFTER DELETE row-level.

To replace the triggering event:

• INSTEAD OF statement-level.

• INSTEAD OF row-level.

23

The first twelve types of triggers are most commonly used, and are discussed in
this chapter. The INSTEAD OF triggers are more complex than others, and
interested students are advised to refer to books specifically dealing with Oracle
PL/SQL programming.

Review question 6

What is a database trigger? Should triggers be used to replace declarative
constraints and why?

Creating triggers

Instead of presenting a formal syntax for creating triggers, a number of examples
are used to illustrate how different types of triggers are created.

Statement-level trigger

This type of trigger is created in the following way:

CREATE TRIGGER first_trigger_on_student

BEFORE INSERT ON STUDENT BEGIN

[the trigger body consisting of PL/SQL code;]

END;

The CREATE TRIGGER clause must define the trigger’s name. In the
example, it is called “first_trigger_on_student”. In practice, the name
must be something that can reflect what the trigger does. In this sense,
“first_trigger_on_student” is not a good choice of name, but merely for
convenience of illustrating the syntax.

In the next clause (after CREATE TRIGGER), the timing and triggering event
must be specified. In our example, the trigger will fire BEFORE (timing) any
INSERT (event) operation ON the STUDENT table. Obviously, timing can
also be AFTER, and event be UPDATE or DELETE.

The last part of a trigger definition is the BEGIN/END block containing
PL/SQL code. It specifies what action will be taken after the trigger is invoked.

In the above example, instead of defining a single triggering event (INSERT), a
combination of the three events may be specified as follows:

CREATE OR REPLACE TRIGGER first_trigger_on_student

BEFORE INSERT OR UPDATE OR DELETE ON STUDENT BEGIN

[the trigger body consisting of PL/SQL code;]

END;

24

In this case, any of the INSERT UPDATE, and DELETE operations will
activate the trigger. Also notice that instead of using a CREATE TRIG-
GER clause, we use CREATE OR REPLACE TRIGGER. Because the
“first_trigger_on_student” trigger is already in existence, the keywords
CREATE OR REPLACE are used. For defining new triggers, the keyword
CREATE alone is sufficient

Option for the UPDATE event

If the timing and triggering event are simply defined as

BEFORE UPDATE ON STUDENT

then UPDATE on any column will fire the trigger. In Oracle, we have the option
to specify a particular column whose update will activate the trigger. Updates
on other columns will have no effects on the trigger.

For example, we can define a trigger specifically for UPDATE on DNAME in
the STUDENT table (meaning whenever a student changes department, the
trigger fires). This trigger is called “second_trigger_on_student”.

CREATE TRIGGER second_trigger_on_student

BEFORE UPDATE OF DNAME ON STUDENT

BEGIN [the trigger body consisting of PL/SQL code;]

END;

Notice the option “OF column’s name” is used for the UPDATE operation.

Row-level triggers

To define a row-level trigger, the FOR EACH ROW clause must be included
in the CREATE TRIGGER statement. For example, if we want to have a
trigger for each INSERT, UPDATE and DELETE operation on every row that
is affected, we can create the trigger in the following way:

CREATE TRIGGER third_trigger_on_student

AFTER INSERT OR UPDATE OR DELETE ON STUDENT

FOR EACH ROW

BEGIN

[the trigger body consisting of PL/SQL code;]

END;

The trigger will fire whenever a row has been inserted, updated or deleted. At
the row-level, we can also add the option for the UPDATE event.

25

CREATE OR REPLACE TRIGGER third_trigger_on_student

AFTER INSERT OR UPDATE OF DNAME OR DELETE ON STUDENT

FOR EACH ROW

BEGIN

[the trigger body consisting of PL/SQL code;]

END;

Option for the row-level triggers

For row-level triggers, there is another optional clause which can be used to
further specify the exact condition for which the trigger should fire. This is the
“WHEN ‘condition’ ” clause. The ‘condition’ must be evaluated to be TRUE for
the trigger to fire. If it is evaluated to be FALSE or does not evaluate because
of NULL values, the trigger will not fire.

For example, if we want to take some action when a student is moved to the
Department of Computing Science, we can define a trigger like the following:

CREATE TRIGGER fourth_trigger_on_student

AFTER UPDATE OF DNAME ON STUDENT

FOR EACH ROW WHEN (NEW.DNAME = ‘Computing Science’)

BEGIN

[the trigger body consisting of PL/SQL code;]

END;

Notice how the WHEN clause is used to specify the exact condition for the
trigger to fire. The ‘condition’ can be a complex Boolean expression connected
by AND/OR logical operators.

Also, the notation “NEW.column_name” (such as NEW.DNAME) refers to the
column (e.g. DNAME) which has a new value as a result of an INSERT or
UPDATE operation. Similarly, the notation “OLD.column_name” refers to the
column which still has the old value prior to an UPDATE or DELETE operation.
These two notations are very useful for maintaining data integrity. (Note that
in the BEGIN … END block, a colon ‘:’ needs to be placed before OLD and
NEW.)

Another example: Suppose we want to take some action when a student is to
leave the Department of English. We can define an appropriate trigger in the
following way:

CREATE TRIGGER fifth_trigger_on_student

BEFORE UPDATE OF DNAME OR DELETE ON STUDENT

26

FOR EACH ROW WHEN (OLD.DNAME = ‘English’)

BEGIN

[the trigger body consisting of PL/SQL code;]

END;

Compare “fifth_trigger_on_student” with “fourth_trigger_on_student”, and
see how they are different.

Removing triggers

Existing triggers can be deleted via the DROP TRIGGER command. For ex-
ample, the “first_trigger_on_student” trigger is removed from the STUDENT
table in the following way:

DROP TRIGGER first_trigger_on_student;

Using triggers to maintain referential integrity

As studied in the earlier part of this chapter, the FOREIGN KEY constraint is
often used for ensuring the referential integrity among parent and child tables.
However, the FOREIGN KEY constraint can only enforce standard integrity
rules. They are:

• The foreign key column in the child table cannot reference non-existing
rows in the parent table.

• If the DELETE CASCADE option is not chosen, a row in the parent table
that is being referenced via a foreign key column cannot be deleted.

• If the DELETE CASCADE option is chosen, the row can be deleted to-
gether with all the rows in the child table which reference the parent row.

If other non-standard rules have to be enforced as well, then appropriate triggers
need to be created. Some possible non-standard rules are:

• Cascade updates.

• Set the foreign key column to NULL on updates and deletes.

• Set a default value to the foreign key column on updates and deletes. The
meanings of these rules have been explained before.

It must be emphasised that if triggers are used instead of the standard FOR-
EIGN KEY constraint, then for each of the integrity rules (standard and non-
standard), one or more triggers may need to be implemented. Also, the FOR-
EIGN KEY constraint must not be declared when creating the corresponding
tables. Otherwise, the triggers will not work, because the standard FOREIGN
KEY constraint will override the trigger actions.

27

In this section, we are going to see two examples of using triggers to implement
the DELETE CASCADE rule and the UPDATE CASCADE rule. The two
tables concerned are STUDENT and RECORD:

STUDENT(SID, SNAME, DNAME, SLEVEL, SEMAIL)

RECORD(SID, CODE, MARK)

We know that SID in RECORD is a foreign key linking to STUDENT.

To create the trigger to cascade deletes:

CREATE TRIGGER cascade_deletes_student_record

BEFORE DELETE ON STUDENT

FOR EACH ROW

BEGIN

DELETE FROM RECORD

WHERE RECORD.SID = :OLD.SID;

END;

It can be seen from the above example that, before the parent row is deleted from
the STUDENT table, all the child rows in the RECORD table are deleted. This
maintains the referential integrity. (In the PL/ SQL code, :OLD.SID represents
the SID of the row in the STUDENT table, which is to be deleted.)

To create the trigger to cascade updates:

CREATE TRIGGER cascade_updates_student_record

AFTER UPDATE OF SID ON STUDENT

FOR EACH ROW

BEGIN

UPDATE RECORD

SET RECORD.SID = :NEW.SID

WHERE RECORD.SID = :OLD.SID;

END;

Again, it can be seen from the example that, after the parent row is updated
in the STUDENT table, all the child rows in the RECORD table are updated
accordingly. This maintains the referential integrity.

28

Using triggers to maintain business rules

In the Context section, it was mentioned that in the university database, a
lecturer can teach no more than four modules (i.e. this is a business rule). This
restriction can be enforced by defining a trigger on the MODULE table to
ensure that no lecturer has more than four corresponding rows in the table.
The MODULE table’s structure is as following:

MODULE(CODE, TITLE, EID, DNAME)

To create the trigger,

CREATE TRIGGER max_teaching_load

BEFORE INSERT OR UPDATE OF EID ON MODULE

FOR EACH ROW

DECLARE NO_OF_MODULES INTEGER(1);

BEGIN

SELECT COUNT(*) INTO NO_OF_MODULES

FROM MODULE

WHERE MODULE.EID = :NEW.EID;

IF NO_OF_MODULES >= 4 THEN

RAISE_APPLICATION_ERROR(-20001, ‘Maximum teaching load exceeded
for this lecturer!’);

END IF;

END;

In the above code, the DECLARE NO_OF_MODULES INTEGER(1) clause
defines an integer variable called NO_OF_MODULES.

In this example, the key point is that we use the RAISE_APPLICATION_ERROR
procedure (system provided) to generate an error message and stop the execu-
tion of any INSERT or UPDATE OF EID operation which may result in a lec-
turer teaching more than four modules. In RAISE_APPLICATION_ERROR,
the number -20001 is a user-defined error number for the condition (the number
must be between –20001 and –20999), and the text in single quotes is the error
message to be displayed on the screen.

Now suppose that the university has another rule stating that a student’s mark
cannot be changed by more than 10% of the original mark. In this case, we can
define a trigger on the RECORD table in the following way:

CREATE OR REPLACE TRIGGER mark_change_monitoring

BEFORE UPDATE OF MARK ON RECORD

29

FOR EACH ROW

BEGIN

IF ((:NEW.MARK/:OLD.MARK) >= 1.1) OR ((:OLD.MARK/:NEW.MARK)
>= 1.1)

THEN

RAISE_APPLICATION_ERROR(-20002, ‘Warning: Large percentage change
in marks prohibited.’);

END IF;

END;

The above two examples should have shown you what triggers are capable of
doing. In fact, using Oracle’s PL/SQL language, one can write much more
complex triggers to enforce various business rules. The discussion of PL/SQL is
beyond the scope of this module. Interested students are again advised to refer
to any book specifically dealing with Oracle PL/SQL programming for more
information on writing triggers.

Review question 7

1. When and how do we use triggers to maintain referential integrity?

2. How do we use triggers to implement business rules in the database?

Activity 7 - Creating triggers to prevent updates and deletions

In the university database, we can see that the rows in the DEPT table are often
referenced by many child rows in a number of other tables (e.g. STUDENT,
LECTURER and MODULE). Although there are FOREIGN KEY constraints
declared on the child tables to maintain the referential integrity, we can still
define a trigger in the parent table (i.e. DEPT) to stop any attempt to change
the name of the department and/or to remove any of the DEPT rows. This is
corresponding to the business rule stating that once a university department is
established, it will be there ‘forever’ and will not be allowed to change name
(we assume that such a rule is necessary).

In this activity, write appropriate PL/SQL statements to create the trigger.
After the trigger is created, try to change the name of some departments in
DEPT and delete a row from DEPT, and see what happens. Find out how the
trigger works.

Note that in order to execute PL/SQL statements in some DBMSs (including
Oracle’s SQL*PLUS), you may need to end the block of statements with a ‘/’.
Consult your DBMS’s documentation for any additional semantics requirements.

Activity 8 - Creating triggers to maintain data validity

In Activity 5, we have declared a CHECK constraint on MARK in the RECORD
table. Any mark that is not between 0 and 100 will cause a violation of the

30

constraint. Applying the CHECK constraint, however, we would not know
whether the mark is greater than 100 or smaller than 0 (i.e. a negative number).

In this activity, we will create a trigger to replace the original CHECK constraint,
which can tell us how the restriction on MARK is violated. Whenever the value
of MARK is beyond the valid range (0 – 100), the trigger will generate an error
message informing users whether it is greater than 100 or a negative number.

Write proper PL/SQL statements to create the trigger, and use some SQL UP-
DATE and INSERT statements to test it. Remember we need to drop the
CHECK constraint first, otherwise it will override any other triggers on MARK.

Activity 9 - Creating triggers to validate new column values

In the STUDENT table, the column SLEVEL can only take value 0, 1, 2, 3 or
NULL. Any other value is illegal. In order to ensure that only valid values are
stored in SLEVEL, we can create a trigger to automatically validate any new
value to be updated or inserted. The rules are:

• If a new value is smaller than 0, then set it to 0 before updating or inserting
it.

• An appropriate message is always displayed on the screen to inform the
user that a proper validation has been carried out.

Write proper PL/SQL statements to create the trigger, and use some SQL UP-
DATE and INSERT statements to test it.

Note that the Oracle’s DBMS_OUTPUT.PUT_LINE procedure can be used
to display text on screen. The basic syntax is:

DBMS_OUTPUT.PUT_LINE (‘the text to be displayed in single quotes’);

Remember that for Oracle, in order to use DBMS_OUTPUT.PUT_LINE to
display text on screen, you need to execute the command “SET SERVEROUT-
PUT ON” once in the SQL*PLUS environment.

Additional features of Oracle

The rest of this chapter deals with some additional features that are present in
Oracle. In other advanced DBMSs, similar features are also available. Again,
please consult your DBMS’s documentation to find out whether or not it sup-
ports the following features.

Stored procedures

Some sophisticated business rules and application logic can be implemented
and stored as procedures within Oracle. In fact, triggers are special types of

31

procedures associated with tables and invoked (called upon) by pre-specified
events.

Stored procedures, containing SQL or PL/SQL statements, allow one to move
code that enforces business rules from the application to the database. As a
result, the code can be stored once for use by different applications. Also, the
use of stored procedures can make one’s application code more consistent and
easier to maintain. This principle is similar to the good practice in general
programming in which common functionality should be coded separately as
procedures or functions.

Some of the most important advantages of using stored procedures are sum-
marised as follows:

• Because the processing of complex business rules can be performed within
the database, significant performance improvement can be obtained in
a networked client-server environment (refer to client-server chapters for
more information).

• Since the procedural code is stored within the database and is fairly static,
applications may benefit from the reuse of the same queries within the
database. For example, the second time a procedure is executed, the
DBMS may be able to take advantage of the parsing that was previously
performed, improving the performance of the procedure’s execution.

• Consolidating business rules within the database means they no longer
need to be written into each application, saving time during application
creation and simplifying the maintenance process. In other words, there
is no need to reinvent the wheel in individual applications, when the rules
are available in the form of procedures.

Function and packages

In Oracle, a procedure is implemented to perform certain operations when called
upon by other application programs. Depending on the operations, it may not
return any value, or it might return one or more values via corresponding vari-
ables when its execution finishes. Unlike procedure, a function always returns
a value to the caller as a result of completing its operations. It is also worth
mentioning that a function may be invoked by code within a procedure, and a
procedure may be called from within a function.

In Oracle, groups of procedures, functions, variables and SQL statements can be
organised together into a single unit, called a package. To execute a procedure
within a package, one must first specify the package name, followed by the
procedure name, as shown in the following example:

DBMS_OUTPUT.PUT_LINE(‘This is an example to show how to use a pro-
cedure within a package.’);

32

In the example, DBMS_OUTPUT is the package containing a number of pro-
cedures relating to displaying message on the screen. PUT_LINE is a proce-
dure within the DBMS_OUTPUT package that can take a string of characters
(i.e. the text in the single quotes) and output them onto the screen.

Note that in order to use Oracle’s DBMS_OUTPUT.PUT_LINE procedure to
display text on screen, you need to execute the command SET SERVEROUT-
PUT ON once in the SQL*PLUS environment.

Creating procedures

We use the following example to illustrate how to create a procedure:

CREATE PROCEDURE check_student_mark (id_number IN INTEGER, mod-
ule_code IN VARCHAR2, the_mark OUT INTEGER)

AS

BEGIN

SELECT MARK INTO the_mark

FROM RECORD

WHERE SID = id_number AND CODE = module_code;

END;

It can be seen from the example, that the syntax for creating procedures is
somewhat similar to that of creating triggers, except that we need to specify
the input and/or output variables to be used in the procedure.

The CREATE PROCEDURE clause defines the procedure’s name (e.g.
“check_student_mark”) as well as variables. The keyword IN defines an input
variable together with its data type (e.g. id_number IN INTEGER), and OUT
defines an output variable together with its data type(e.g. the_mark OUT
INTEGER). The query result is returned via the output variable “the_mark”.

After the keyword AS, the BEGIN/END block contains PL/SQL code to imple-
ment the required operations. It can be as simple as containing a single SQL
statement, as in our example. It can also be as complex as necessary.

The created procedure can then be used to retrieve the mark for a particular
student on a specific module. For example,

check_student_mark(12345, ‘BIS42’, the_mark)

will retrieve the mark for the student with identity number of 12345 on module
BIS42. The query result is stored in the variable “the_mark”.

The CREATE PROCEDURE clause is used for creating a new procedure. To
replace an existing one, we can use CREATE OR REPLACE PROCEDURE.

33

Creating functions

Again we use an example to illustrate how to create a function:

CREATE FUNCTION retrieve_my_mark (id_num IN INTEGER, mod_code
IN VARCHAR2)

RETURN INTEGER

IS

my_mark INTEGER;

BEGIN

SELECT MARK INTO my_mark

FROM RECORD

WHERE SID = id_num AND CODE = mod_code; RETURN (my_mark);

END;

It can be seen from the example, that the syntax for creating functions is sim-
ilar to that of creating procedures. However, there are a couple of important
differences.

The CREATE FUNCTION clause defines the function’s name (e.g. “re-
trieve_my_mark”) as well as input variables. The keyword IN defines an input
variable together with its data type (e.g. id_num IN INTEGER).

The RETURN keyword specifies the data type of the function’s return value,
which can be any valid PL/SQL data type (e.g. RETURN INTEGER). Every
function must have a RETURN clause, because the function must, by definition,
return a value to the calling environment.

In the BEGIN/END block, the RETURN(my_mark) command performs the
necessary action to return the required value to the calling environment.

The created function can then be used to retrieve the mark for a particular
student on a specific module. For example,

my_mark := retrieve_my_mark(12345, ‘CSC4001’)

will retrieve the mark for the student with identity number of 12345 on module
CSC4001. The query result is returned and held in the variable “my_mark”.

The CREATE FUNCTION clause is used for creating a new function. To replace
an existing one, we can use CREATE OR REPLACE FUNCTION.

34

Calling a procedure from within a function and vice versa

If the check_student_mark procedure has already been created, then it can be
used by function retrieve_my_mark. In this case, the function is redefined as
following:

CREATE OR REPLACE FUNCTION retrieve_my_mark (id_num IN INTE-
GER, mod_code IN VARCHAR2)

RETURN INTEGER

IS

my_mark INTEGER;

BEGIN

check_student_mark(id_num, mod_code, my_mark); RETURN (my_mark);

END;

It can be seen from the above example, that instead of rewriting an SQL retrieval
statement, the procedure check_student_mark is used to retrieve the mark and
store the result in the variable my_mark. And then the value held in my_mark
is returned as the value of the function.

Similarly, if the function is created first, then it may be invoked from within the
procedure.

Review question 8

Why are stored procedures useful in databases?

Discussion topics

Having studied this chapter, we should have obtained a fair amount of knowledge
about declarative constraints, database triggers and stored procedures. We have
seen in Oracle that PL/SQL is a very useful as well as powerful language for
creating triggers to enforce business rules.

Now use any database application with which you may be familiar (e.g. for a
bank, a car-rental company, etc) to discuss in general what kind of application
logic and/or business rules should be implemented in the database using con-
straints and triggers. The objective of this discussion is to help you understand
further the usefulness and benefits of the techniques.

Additional content and activities

In this chapter, we have studied the five declarative constraints and the mecha-
nisms for creating database triggers and procedures in more advanced DBMSs

35

such as Oracle. We have seen that the constraints, database triggers and proce-
dures can be effectively used to incorporate application logic and enforce busi-
ness rules in databases.

A number of examples have been provided in this chapter. As additional ac-
tivities, you may wish to try out those examples, using the university database
that has been created during previous activities.

We have also seen in this chapter that the PL/SQL language of Oracle plays
a very important role in creating database triggers and procedures. In fact,
PL/SQL is a powerful language in Oracle that enables us to construct flexible
triggers and procedures to deal with various complex application issues. Al-
though we were not able to cover PL/SQL to a sufficient extent, interested
students who want to develop further knowledge on PL/SQL are advised to
read relevant books.

36

	Chapter 10. Declarative Constraints and Database Triggers
	Objectives
	Introduction
	Context
	Declarative constraints
	The PRIMARY KEY constraint
	The NOT NULL constraint
	The UNIQUE constraint
	The CHECK constraint
	The FOREIGN KEY constraint

	Changing the definition of a table
	Add a new column
	Modify an existing column's type
	Modify an existing column's constraint definition
	Add a new constraint
	Drop an existing constraint

	Database triggers
	Types of triggers
	Valid trigger types

	Creating triggers
	Statement-level trigger
	Row-level triggers
	Removing triggers
	Using triggers to maintain referential integrity
	Using triggers to maintain business rules

	Additional features of Oracle
	Stored procedures
	Function and packages
	Creating procedures
	Creating functions
	Calling a procedure from within a function and vice versa

	Discussion topics
	Additional content and activities

