Chapter 14. Backup and Recovery

Table of contents

¢ Objectives
o Relationship to other chapters
o Context
e Introduction
e A typical recovery problem
o Transaction logging
— System log
— Committing transactions and force-writing
— Checkpoints
— Undoing
— Redoing
— Activity 1 - Looking up glossary entries
¢ Recovery outline
— Recovery from catastrophic failures
— Recovery from non-catastrophic failures
— Transaction rollback
e Recovery techniques based on deferred update
— Deferred update
Deferred update in a single-user environment
— Deferred update in a multi-user environment
Transaction actions that do not affect the database
¢ Recovery techniques based on immediate update
— Immediate update
— Immediate update in a single-user environment
— Immediate update in a multi-user environment
e Recovery in multidatabase transactions
¢ Additional content and exercise
— Shadow paging
— Page management
— Shadow paging scheme in a single-user environment
— Extension exercise 1: Shadow paging

Objectives

At the end of this chapter you should be able to:

e Describe a range of causes of database failure, and explain mechanisms
available to deal with these.

¢ Understand a range of options available for the design of database backup
procedures.

e Analyse the problems of data management in a concurrent environment.

e Be able to discuss the software mechanisms you would expect to be pro-
vided for recovery in a large, multi-user database environment.

Relationship to other chapters

The design of suitable backup and recovery procedures will usually be carried out
by the database administrator (DBA) or DBA group, probably in conjunction
with representatives of management and application developers. The way in
which the databases in use provide for the concurrent processing of transactions,
covered in the chapter Concurrency Control, will have an impact on the design
of the backup and recovery procedures required.

Context

In the previous chapter, Concurrency Control, we discussed the different causes
of failure such as transaction errors and system crashes. In this chapter we will
introduce some of the techniques that can be used to recover from transaction
failures.

We will first introduce some concepts that are used by recovery processes such
as the system log, checkpoints and commit points. We then outline the recovery
procedures. The process of rolling back (undoing) the effect of a transaction
will be discussed in detail.

We will present recovery techniques based on deferred update, also known as
the NO-UNDO/REDO technique, and immediate update, which is known as
UNDO/REDO. We also discuss the technique known as shadowing or shadow
paging, which can be categorised as a NO-UNDO/NO-REDO algorithm. Recov-
ery in multidatabase transactions is briefly discussed in the chapter. Techniques
for recovery from catastrophic failure are also discussed briefly.

Introduction

In parallel with this chapter, you should read Chapter 22 of Ramez Elmasri
and Shamkant B. Navathe, ” FUNDAMENTALS OF Database Systems®, (7th
edn.).

Database systems, like any other computer system, are subject to failures. De-
spite this, any organisation that depends upon a database must have that
database available when it is required. Therefore, any DBMS intended for a
serious business or organisational user must have adequate facilities for fast
recovery after failure. In particular, whenever a transaction is submitted to a
DBMS for execution, the system must ensure that either all the operations in the

transaction are completed successfully and their effect is recorded permanently
in the database, or the transaction has no effect whatsoever on the database or
on any other transactions.

The understanding of the methods available for recovering from such failures
are therefore essential to any serious study of database. This chapter describes
the methods available for recovering from a range of problems that can oc-
cur throughout the life of a database system. These mechanisms include auto-
matic protection mechanisms built into the database software itself, and non-
automatic actions available to people responsible for the running of the database
system, both for the backing up of data and recovery for a variety of failure sit-
uations.

Recovery techniques are intertwined with the concurrency control mechanisms:
certain recovery techniques are best used with specific concurrency control
methods. Assume for the most part that we are dealing with large multi-user
databases. Small systems typically provide little or no support for recovery; in
these systems, recovery is regarded as a user problem.

A typical recovery problem

Data updates made by a DBMS are not automatically written to disk at each
synchronisation point. Therefore there may be some delay between the commit
and the actual disk writing (i.e. regarding the changes as permanent and wor-
thy of being made to disk). If there is a system failure during this delay, the
system must still be able to ensure that these updates reach the disk copy of the
database. Conversely, data changes that may ultimately prove to be incorrect,
made for example by a transaction that is later rolled back, can sometimes be
written to disk. Ensuring that only the results of complete transactions are
committed to disk is an important task, which if inadequately controlled by the
DBMS may lead to problems, such as the generation of an inconsistent database.
This particular problem can be clearly seen in the following example.

Suppose we want to enter a transaction into a customer order. The following
actions must be taken:

START
1. Change the customer record with the new order data
2. Change the salesperson record with the new order data
3. Insert a new order record into the database

STOP

And the initial values are shown in the figure below:

CUSTOMER:

C-No Order-No Description Cost
123 1,000 400 Tennis balls | £2,400
ORDERS:
SALESPERSOMN: Order-No
Mame Total-Sales 1000
lones £3,200 2000
3000
4000
5000

If only operations 1 and 2 are successfully performed, this results in the values
shown in the figure below:

CUSTOMER:
C-No Order-No Description Cost
123 1,000 400 Tennis balls | £2,400
123 3,000 250 Cricket balls | £6,500
ORDERS:
SALESPERSOM: Order-No
MName Total-5ales 1000
lanes £3,700 2000
3000
4000
5000

This database state is clearly unacceptable as it does not accurately reflect
reality; for example, a customer may receive an invoice for items never sent, or
a salesman may make commission on items never received. It is better to treat
the whole procedure (i.e. from START to STOP) as a complete transaction
and not commit any changes to the database until STOP has been successfully
reached.

Transaction logging
System log

The recovery manager overcomes many of the potential problems of transaction
failure by a variety of techniques. Many of these are heavily dependent upon the
existence of a special file known as a system log, or simply a log (also sometimes
called a journal or audit trail). It contains information about the start and end
of each transaction and any updates which occur in the transaction. The log
keeps track of all transaction operations that affect the values of database items.
This information may be needed to recover from transaction failure. The log is
kept on disk (apart from the most recent log block that is in the process of being
generated, this is stored in the main memory buffers). Thus, the majority of the
log is not affected by failures, except for a disk failure or catastrophic failure.
In addition, the log is periodically backed up to archival storage (e.g. tape) to
guard against such catastrophic failures. The types of entries that are written
to the log are described below. In these entries, T refers to a unique transaction
identifier that is generated automatically by the system and used to uniquely
label each transaction.

o start__transaction(T): This log entry records that transaction T starts
the execution.

o read__item(T, X): This log entry records that transaction T reads the
value of database item X.

o write_item(T, X, old_ value, new__value): This log entry records
that transaction T changes the value of the database item X from
old_value to new_value. The old value is sometimes known as a before
image of X, and the new value is known as an after image of X.

e commit(T): This log entry records that transaction T has completed
all accesses to the database successfully and its effect can be committed
(recorded permanently) to the database.

o abort(T): This records that transaction T has been aborted.

e checkpoint: This is an additional entry to the log. The purpose of this
entry will be described in a later section.

Some protocols do not require that read operations be written to the system
log, in which case, the overhead of recording operations in the log is reduced,
since fewer operations — only write — are recorded in the log. In addition, some
protocols require simpler write entries that do not include new_ value.

Because the log contains a record of every write operation that changes the value
of some database item, it is possible to undo the effect of these write operations
of a transaction T by tracing backward through the log and resetting all items
changed by a write operation of T to their old_ values. We can also redo the

effect of the write operations of a transaction T by tracing forward through the
log and setting all items changed by a write operation of T to their new_ values.
Redoing the operations of a transaction may be required if all its updates are
recorded in the log but a failure occurs before we can be sure that all the
new__values have been written permanently in the actual database.

Committing transactions and force-writing

A transaction T reaches its commit point when all its operations that access the
database have been executed successfully; that is, the transaction has reached
the point at which it will not abort (terminate without completing). Beyond
the commit point, the transaction is said to be committed, and its effect is
assumed to be permanently recorded in the database. Commitment always
involves writing a commit entry to the log and writing the log to disk. At the
time of a system crash, we search back in the log for all transactions T that
have written a start_ transaction(T) entry into the log but have not written a
commit(T) entry yet; these transactions may have to be rolled back to undo
their effect on the database during the recovery process. Transactions that have
written their commit(T) entry in the log must also have recorded all their write
operations in the log - otherwise they would not be committed - so their effect
on the database can be redone from the log entries.

Notice that the log file must be kept on disk. At the time of a system crash,
only the log entries that have been written back to disk are considered in the
recovery process, because the contents of main memory may be lost. Hence,
before a transaction reaches its commit point, any portion of the log that has
not been written to the disk yet must now be written to the disk. This process
is called force-writing of the log file, before committing a transaction. A commit
does not necessarily involve writing the data items to disk; this depends on the
recovery mechanism in use.

A commit is not necessarily required to initiate writing of the log file to disk.
The log may sometimes be written back automatically when the log buffer is
full. This happens irregularly, as usually one block of the log file is kept in main
memory until it is filled with log entries and then written back to disk, rather
than writing it to disk every time a log entry is added. This saves the overhead
of multiple disk writes of the same information.

Checkpoints

In the event of failure, most recovery managers initiate procedures that involve
redoing or undoing operations contained within the log. Clearly, not all oper-
ations need to be redone or undone, as many transactions recorded on the log
will have been successfully completed and the changes written permanently to
disk. The problem for the recovery manager is to determine which operations

need to be considered and which can safely be ignored. This problem is usually
overcome by writing another kind of entry in the log: the checkpoint entry.

The checkpoint is written into the log periodically and always involves the writ-
ing out to the database on disk the effect of all write operations of committed
transactions. Hence, all transactions that have their commit(T) entries in the
log before a checkpoint entry will not require their write operations to be redone
in case of a system crash. The recovery manager of a DBMS must decide at
what intervals to take a checkpoint; the intervals are usually decided on the
basis of the time elapsed, or the number of committed transactions since the
last checkpoint. Performing a checkpoint consists of the following operations:

¢ Suspending executions of transactions temporarily;

o Writing (force-writing) all modified database buffers of committed trans-
actions out to disk;

o Writing a checkpoint record to the log; and
o Writing (force-writing) all log records in main memory out to disk.

A checkpoint record usually contains additional information, including a list
of transactions active at the time of the checkpoint. Many recovery methods
(including the deferred and immediate update methods) need this information
when a transaction is rolled back, as all transactions active at the time of the
checkpoint and any subsequent ones may need to be redone.

In addition to the log, further security of data is provided by generating backup
copies of the database, held in a separate location to guard against destruction
in the event of fire, flood, disk crash, etc.

Undoing

If a transaction crash does occur, then the recovery manager may undo trans-
actions (that is, reverse the operations of a transaction on the database). This
involves examining a transaction for the log entry write_item(T, x, old_ value,
new_ value) and setting the value of item x in the database to old-value. Undo-
ing a number of write__item operations from one or more transactions from the
log must proceed in the reverse order from the order in which the operations
were written in the log.

Redoing

Redoing transactions is achieved by examining a transaction’s log entry and for
every write_item(T, x, old_value, new_ value) entry, the value of item x in the
database is set to new_ value. Redoing a number of transactions from the log
must proceed in the same order in which the operations were written in the log.

The redo operation is required to be idempotent; that is, executing it over and
over is equivalent to executing it just once. In fact, the whole recovery process
should be idempotent. This is so because, if the system were to fail during
the recovery process, the next recovery attempt might redo certain write item
operations that had already been redone during the previous recovery process.
The result of recovery from a crash during recovery should be the same as the
result of recovering when there is no crash during recovery. Of course, repeating
operations, as long as they are done in the correct way, should never leave the
database in an inconsistent state, although as we have seen the repetitions may
be unnecessary.

It is only necessary to redo the last update of x from the log during recovery,
because the other updates would be overwritten by this last redo. The redo
algorithm can be made more efficient by starting from the end of the log and
working backwards towards the last checkpoint. Whenever an item is redone, it
is added to a list of redone items. Before redo is applied to an item, the list is
checked; if the item appears on the list, it is not redone, since its last value has
already been recovered.

Activity 1 - Looking up glossary entries
In the Transaction Logging section of this chapter, the following terms have
glossary entries:

e system log

e commit point

e checkpoint

o force-writing

1. In your own words, write a short definition for each of these terms.

2. Look up and make notes of the definition of each term in the module
glossary.

3. Identify (and correct) any important conceptual differences between your
definition and the glossary entry.

Review question 1

1. Unfortunately, transactions fail frequently, and they do so due to a variety
of causes. Review the chapter on Concurrency Control, and discuss the
different causes of the transaction failures.

2. What is meant by a system log? Discuss how a system log is needed in
the recovery process.

3. Discuss the actions involved in writing a checkpoint entry.

4. Discuss how undo and redo operations are used in the recovery process.

Recovery outline

Recovery from transaction failures usually means that the database is restored
to some state from the past, so that a correct state — close to the time of
failure — can be reconstructed from that past state. To do this, the system
must keep information about changes to data items during transaction execution
outside the database. This information is typically kept in the system log. It
is important to note that a transaction may fail at any point, e.g. when data is
being written to a buffer or when a log is being written to disk. All recovery
mechanisms must be able to cope with the unpredictable nature of transaction
failure. Significantly, the recovery phase itself may fail; therefore, the recovery
mechanism must also be capable of recovering from failure during recovery.

A typical strategy for recovery may be summarised based on the type of failures.

Recovery from catastrophic failures

The main technique used to handle catastrophic failures including disk crash is
that of database backup. The whole database and the log are periodically copied
onto a cheap storage medium such as magnetic tapes. In case of a catastrophic
system failure, the latest backup copy can be reloaded from the tape to the disk,
and the system can be restarted.

To avoid losing all the effects of transactions that have been executed since the
last backup, it is customary to back up the system log by periodically copying
it to magnetic tape. The system log is usually substantially smaller than the
database itself and hence can be backed up more frequently. When the system
log is backed up, users do not lose all transactions they have performed since
the last database backup. All committed transactions recorded in the portion
of the system log that has been backed up can have their effect on the database
reconstructed. A new system log is started after each database backup operation.
Hence, to recover from disk failure, the database is first recreated on disk from
its latest backup copy on tape. Following that, the effects of all the committed
transactions whose operations have been entered in the backed-up copy of the
system log are reconstructed.

Recovery from non-catastrophic failures

When the database is not physically damaged but has become inconsistent due
to non-catastrophic failure, the strategy is to reverse the changes that caused
the inconsistency by undoing some operations. It may also be necessary to redo
some operations that could have been lost during the recovery process, or for

some other reason, in order to restore a consistent state of the database. In
this case, a complete archival copy of the database is not required; rather, it
is sufficient that the entries kept in the system log are consulted during the
recovery.

There are two major techniques for recovery from non-catastrophic transaction
failures: deferred updates and immediate updates. The deferred update tech-
niques do not actually update the database until after a transaction reaches its
commit point; then the updates are recorded in the database. Before commit,
all transaction updates are recorded in the local transaction workspace. During
commit, the updates are first recorded persistently in the log and then written
to the database. If a transaction fails before reaching its commit point, it will
not have changed the database in any way, so UNDO is not needed. It may
be necessary to REDO the effect of the operations of a committed transaction
from the log, because their effect may not yet have been written in the database.
Hence, deferred update is also known as the NO-UNDO/REDO algorithm.

In the immediate update techniques, the database may be updated by some
operations of a transaction before the transaction reaches its commit point.
However, these operations are typically recorded in the log on disk by force-
writing before they are applied to the database, making recovery still possible.
If a transaction fails after recording some changes in the database but before
reaching its commit point, the effect of its operations on the database must be
undone; that is, the transaction must be rolled back. In the general case of
immediate update, both undo and redo are required during recovery, so it is
known as the UNDO/REDO algorithm.

Transaction rollback

If a transaction fails for whatever reason after updating the database, it may
be necessary to roll back or UNDO the transaction. Any data item values that
have been changed by the transaction must be returned to their previous values.
The log entries are used to recover the old values of data items that must be
rolled back.

If a transaction T is rolled back, any transaction S that has, in the interim,
read the value of some data item X written by T must also be rolled back.
Similarly, once S is rolled back, any transaction R that has read the value of
some item Y written by S must also be rolled back; and so on. This phenomenon
is called cascading rollback. Cascading rollback, understandably, can be quite
time-consuming. That is why most recovery mechanisms are designed such that
cascading rollback is never required.

The table below shows an example where cascading rollback is required. The
read and write operations of three individual transactions are shown below:

10

T

T

T

Read item(A);

read_item(B);

Read item(C);

Read item(D);

write_item(B);

Write_item(B);

Write_item({D);

read_item(D);

Read_item(A);

write_item(D);

Write_item(A);

The diagram below graphically shows the operations of different transactions

along the time axis:

READ(C) READ(A)
Ti | 1] |
| \ [\
BEGIN WRITE(B)
READ(B) READ(D)
T | I 1 ——
BEGIN WRITE(B) WRITE(D)
READ{A) WRITE(D)
| | | |
T | I LI 1
BEGIN READ(D)

v

The figure below shows the system log at the point of a system crash for a
particular execution schedule of these transactions. The values of A, B, C and
D, which are used by the transactions, are shown to the right of the system
log entries. At the point of system crash, transaction T3 has not reached its
conclusion and must be rolled back. The write operations of T3, marked by a
single *, are the operations that are undone during transaction rollback.

11

Log A |B |(C |D
30(15| 40| 20

start_transaction(T;)
read_item(T;, C)
*write_item(Ts, B, 15, 12) 12
start_transaction(T,)
read item(T,, B)
**write_item(T,, B, 12, 18) 18
start_transaction(T-)
read_item(T,, A)
read_item(Ty, D)

write item(T,, D, 20, 25) 25
read item(T,, D)
**write_item(T,, D, 25, 26) 26

read_item(T,;, A)
System crash

* T.isrolled back because it did not reach its
commit point when system crash happens.

** T.isrolled back because it reads the
value of item B written by T-.

The rest of the write entries in the log are redone.

We must now check for cascading rollback. In the diagram above, which shows

12

transactions along the time axis, we see that transaction T2 reads the value B
which was written by T3; this can also be determined by examining the log.
Because T3 is rolled back, T2 must also be rolled back. The write operations of
T2, marked by ** in the log, are the ones that are undone. Note that only write
operations need to be undone during transaction rollback; read operations are
recorded in the log only to determine whether cascading rollback of additional
transactions is necessary. If rollback of transactions is never required by the
recovery method, we can keep more limited information in the system log. There
is also no need to record any read_ item operations in the log, because these are
needed only for determining cascading rollback.

Review question 2

1. What is catastrophic failure? Discuss how databases can recover from
catastrophic failures.

2. What is meant by transaction rollback? Why is it necessary to check for
cascading rollback?

3. Compare deferred update with immediate update techniques by filling in
the following blanks.

The deferred update techniques do not actually update the database until a
transaction reaches its commit point; then the updates are recorded in the
database. Before commit, all transaction updates are recorded in the lo-
cal transaction workspace. During commit, the updates are first recorded
persistently in the and then written to the .Ifa
transaction fails before reaching its commit point, it will not have changed
the database in any way, so is not needed. It may be necessary to

the effect of the operations of a committed transaction in the
log, because their effect may not yet have been written in the database.
Hence, deferred update is also known as the algorithm. In
the immediate update techniques, the database may be updated by some
operations of a transaction the transaction reaches its commit
point. However, these operations are typically recorded in the log on disk
before they are applied to the database, making recovery still possible. If
a transaction fails after recording some changes in the database but be-
fore reaching its commit point, the effect of its operations on the database

must be ; that is, the transaction must be . In the
general case of immediate update, both and are
required during recovery, so it is known as the algorithm.

13

Recovery techniques based on deferred update
Deferred update

The idea behind deferred update is to defer or postpone any actual updates
to the database itself until the transaction completes its execution successfully
and reaches its commit point. During transaction execution, the updates are
recorded only in the log and in the transaction workspace. After the transaction
reaches its commit point and the log is force-written to disk, the updates are
recorded in the database itself. If a transaction fails before reaching its commit
point, there is no need to undo any operations, because the transaction has not
affected the database in any way.

The steps involved in the deferred update protocol are as follows:
1. When a transaction starts, write an entry start_ transaction(T) to the log.

2. When any operation is performed that will change values in the database,
write a log entry write_item(T, x, old_ value, new_ value).

3. When a transaction is about to commit, write a log record of the form
commit(T); write all log records to disk.

4. Commit the transaction, using the log to write the updates to the database;
the writing of data to disk need not occur immediately.

5. If the transaction aborts, ignore the log records and do not write the
changes to disk.

The database is never updated until after the transaction commits, and there
is never a need to UNDO any operations. Hence this technique is known as
the NO-UNDO/REDO algorithm. The REDO is needed in case the system
fails after the transaction commits but before all its changes are recorded in the
database. In this case, the transaction operations are redone from the log entries.
The protocol and how different entries are affected can be best summarised as
shown:

Log entry Log written to Changes written to database Changes written on
disk buffer disk

start_transaction(T) | No NSA N/A

read_item(T, x) No N/SA N/A

write_item(T, x) No No No

commit(T) Yes Yes *Yes

checkpoint Yes Undefined Yes(of committed Ts)

*Yes: writing back to disk may occur not immediately.

14

Deferred update in a single-user environment

We first discuss recovery based on deferred update in single-user systems, where
no concurrency control is needed, so that we can understand the recovery process
independently of any concurrency control method. In such an environment, the
recovery algorithm can be rather simple. It works as follows.

Use two lists to maintain the transactions: the committed transactions list,
which contains all the committed transactions since the last checkpoint, and
the active transactions list (at most one transaction falls in this category, be-
cause the system is a single-user one). Apply the REDO operation to all the
write_item operations of the committed transactions from the log in the order
in which they were written to the log. Restart the active transactions.

The REDO procedure is defined as follows:

Redoing a write_item operation consists of examining its log entry
write_item(T, x, old value, new_value) and setting the value of item x
in the database to new_value. The REDO operation is required to be
idempotent, as discussed before.

Notice that the transaction in the active list will have no effect on the database
because of the deferred update protocol, and is ignored completely by the re-
covery process. It is implicitly rolled back, because none of its operations were
reflected in the database. However, the transaction must now be restarted,
either automatically by the recovery process or manually by the user.

The method’s main benefit is that any transaction operation need never be
undone, as a transaction does not record its changes in the database until it
reaches its commit point.

The protocol is summarised in the diagram below:

Action Entry in log

start_transaction(T) | commit(T)
Re-submit Yes No
Redo Yes Yes

The diagram below shows an example of recovery in a single-user environment,
where the first failure occurs during execution of transaction T2. The recovery
process will redo the write_item(T1, D, 20) entry in the log by resetting the
value of item D to 20 (its new value). The write(T2, ..) entries in the log
are ignored by the recovery process because T2 is not committed. If a second
failure occurs during recovery from the first failure, the same recovery process
is repeated from start to finish, with identical results.

15

start_transaction(T1)
write_item(T1, D, 20)
commit({T1)

start_transaction(T2)
write_item(T2, B, 10)
write_item(T2, D 25) | € System crash

T T;
read item(A) read item(B)
read item(D) write_item(B)
write_item(D) read_item(D)

write_item(D)

Deferred update in a multi-user environment

For a multi-user system with concurrency control, the recovery process may be
more complex, depending on the protocols used for concurrency control. In
many cases, the concurrency control and recovery processes are interrelated. In
general, the greater the degree of concurrency we wish to achieve, the more
difficult the task of recovery becomes.

Consider a system in which concurrency control uses two-phase locking (basic
2PL) and prevents deadlock by pre-assigning all locks to items needed by a
transaction before the transaction starts execution. To combine the deferred
update methods for recovery with this concurrency control technique, we can
keep all the locks on items in effect until the transaction reaches its commit
point. After that, the locks can be released. This ensures strict and serialisable
schedules. Assuming that checkpoint entries are included in the log, a possible

16

recovery algorithm for this case is given below.

Use two lists of transactions maintained by the system: the committed trans-
actions list which contains all committed transactions since the last checkpoint,
and the active transactions list. REDO all the write operations of the commit-
ted transactions from the log, in the order in which they were written into the
log. The transactions in the active list that are active and did not commit are
effectively cancelled and must be resubmitted.

The REDO procedure is the same as defined earlier in the deferred update in
the single-user environment.

The diagram below shows an example schedule of executing transactions. When
the checkpoint was taken at time t1, transaction T1 had committed, whereas
transaction T3 and T4 had not. Before the system crash at time t2, T3 and
T2 were committed but not T4 and T5. According to the deferred update
method, there is no need to redo the write operations of transaction T1 or any
transactions committed before the last checkpoint time t1. Write operations of
T2 and T3 must be redone, however, because both transactions reached their
commit points after the last checkpoint. Recall that the log is force-written
before committing a transaction. Transaction T4 and T5 are ignored: they are
effectively cancelled and rolled back because none of their write operations were
recorded in the database under the deferred update protocol.

Ts
T;

T3

T;
Ts

-
»

t; (Checkpoint) T, (System crash)

Ty.: Succeeds
T.and T;: redo write operations

Tsand Ts:ignore and resubmit

Transaction actions that do not affect the database

In general, a transaction will have actions that do not affect the database, such
as generating and printing messages or reports from information retrieved from
the database. If a transaction fails before completion, we may not want the user
to get these reports, since the transaction has failed to complete. Hence, such

17

reports should be generated only after the transaction reaches its commit point.
A common method of dealing with such actions is to issue the commands that
generate the reports but keep them as batch jobs. The batch jobs are executed
only after the transaction reaches its commit point. If the transaction does not
reach its commit point because of a failure, the batch jobs are cancelled.

Exercise 1: Deferred update protocol

Given the operations of the four concurrent transactions in (1) below and the
system log at the point of system crash in (2), discuss how each transaction
recovers from the failure using deferred update technique.

1. The read and write operations of four transactions:

T, T, T; T,

read item(A)

read item(B)

read item(A)

read item(B)

read item(D)

write_item(B)

write_itemn(A)

write_item(B)

write_itemn(D)

read item(D)

read item(C)

read item(A)

write_item(D)

write_item(C)

write_item(A)

2. System log at the point of crash:

18

start_transaction(T,)

write_item(T,, D, 20)

commit{T,)

checkpoint

start_transaction(T,)

write_item(T,, B, 15)

commit(T,)

start_transaction(T,

)
write_item(T,, B, 12)
start transaction(T;)

write_item(Ts, A, 30)
5)

write_item(T,, D, 2 € System crash

Exercise 2: Recovery management using deferred update with incre-
mental log

Below, a schedule is given for five transactions A, B, C, D and E.

Assume the initial values for the variables are a=1, b=2, ¢=3, d=4 and e=5.

Using an incremental log with deferred updates, for each operation in each of
the transactions, show:

Ll s

5.

The log entries.

Whether the log is written to disk.
Whether the output buffer is updated.
Whether the DBMS on disk is updated.

The values of the variables on the disk.

Discuss how each transaction recovers from the failure.

19

A B C D E Log Log to| Buffer | DEMS |a(b|c|d|e
entries disc | changed on
disk
changed

start A Start A
ead value a| read value a

L]

a=a*2

write value |write value
Gl a2
commit A |commit &

start B
read value b

B

Check

point
commit B
start D
ad value d
=gd*2
write value
commit D
FAIL
LURE

Review question 3

1. Use your own words to describe the deferred update method for recovery
management in a multi-user environment. Complete the following table
to show how the deferred update protocol affects the log on disk, database
buffer and database on disk.

Log entry Log written to Changes written to database | Changes written on
disk buffer disk

Start_transaction(T)
Read_itemi(T, %)
Write_itemiT, x)
Commit(T)
Checkpoint

20

2. How can recovery handle transaction operations that do not affect the
database, such as the printing of reports by the transaction?

Recovery techniques based on immediate update
Immediate update

In the immediate update techniques, the database may be updated by the oper-
ations of a transaction immediately, before the transaction reaches its commit
point. However, these operations are typically recorded in the log on disk by
force-writing before they are applied to the database, so that recovery is possi-
ble.

When immediate update is allowed, provisions must be made for undoing the
effect of update operations on the database, because a transaction can fail after
it has applied some updates to the database itself. Hence recovery schemes based
on immediate update must include the capability to roll back a transaction by
undoing the effect of its write operations.

1. When a transaction starts, write an entry start_ transaction(T) to the log;

2. When any operation is performed that will change values in the database,
write a log entry write_item(T, x, old_ value, new_ value);

. Write the log to disk;
. Once the log record is written, write the update to the database buffers;

. When convenient, write the database buffers to the disk;

S Ut e W

. When a transaction is about to commit, write a log record of the form
commit(T);

7. Write the log to disk.

The protocol and how different entries are affected can be best summarised
below:

Log entry Log written to Changes written to database Changes written on
disk buffer disk

start_transaction(T} | No N/A N/A&

read_item(T, x) No N/A N/A&

write_item(T, x) Yes Yes *Yes

commit(T) Yes Undefined Undefined

Checkpoint Yes Undefined Yes{of committed Ts)

=¥es: writing back to disk may not occur immediately

In general, we can distinguish two main categories of immediate update algo-
rithms. If the recovery technique ensures that all updates of a transaction

21

are recorded in the database on disk before the transaction commits, there is
never a need to redo any operations of committed transactions. Such an al-
gorithm is called UNDO/NO-REDO. On the other hand, if the transaction is
allowed to commit before all its changes are written to the database, we have
the UNDO/REDO method, the most general recovery algorithm. This is also
the most complex technique. Recovery activities are summarised below:

Action Entry in log

start_transaction(T] | commit|{T)
Undo and resubmit T Yes No
Redo Yes Yes

Immediate update in a single-user environment

We first consider a single-user system so that we can examine the recovery
process separately from concurrency control. If a failure occurs in a single-user
system, the executing transaction at the time of failure may have recorded some
changes in the database. The effect of all such operations must be undone as
part of the recovery process. Hence, the recovery algorithm needs an UNDO
procedure, described subsequently, to undo the effect of certain write operations
that have been applied to the database following examination of their system
log entry. The recovery algorithm also uses the redo procedure defined earlier.
Recovery takes place in the following way.

Use two lists of transaction maintained by the system: the committed transac-
tions since the last checkpoint, and the active transactions (at most one trans-
action will fall in this category, because the system is single user). Undo all
the write operations of the active transaction from the log, using the UNDO
procedure described hereafter. Redo all the write operations of the committed
transactions from the log, in the order in which they were written in the log,
using the REDO procedure.

The UNDO procedure is defined as follows:

Undoing a write operation consists of examining its log entry write_item(T, x,
old_value, new_ value) and setting the value of x in the database to old_ value.
Undoing a number of such write operations from one or more transactions from
the log must proceed in the reverse order from the order in which the operations
were written in the log.

22

Immediate update in a multi-user environment

When concurrency execution is permitted, the recovery process again depends
on the protocols used for concurrency control. The procedure below outlines a
recovery technique for concurrent transactions with immediate update. Assume
that the log includes checkpoints and that the concurrency control protocol
produces strict schedules — as, for example, the strict 2PL protocol does. Recall
that a strict schedule does not allow a transaction to read or write an item unless
the transaction that last wrote the item has committed. However, deadlocks can
occur in strict 2PL, thus requiring UNDO of transactions.

Use two lists of transaction maintained by the system: the committed trans-
actions since the last checkpoint, and the active transactions. Undo all the
write operations of the active (uncommitted) transaction from the log, using
the UNDO procedure. The operations should be undone in the reverse of the
order in which they were written into the log. Redo all the write operations
of the committed transactions from the log, in the order in which they were
written in the log, using the REDO procedure.

Exercise 3: Immediate update protocol

Given the same transactions and system log in exercise 1, discuss how each
transaction recovers from the failure using immediate update technique.

Exercise 4: Recovery management using immediate update with in-
cremental log

The same schedule and initial values of the variables in exercise 2 are given;
use the immediate update protocol for recovery to show how each transaction
recovers from the failure.

Review question 4

1. Use your own words to describe the immediate update method for recovery
management in a multi-user environment. Complete the following table to
show how the immediate update protocol affects the log on disk, database
buffer and database on disk.

Log entry Log written to Changes written to Changes written on
disk database huffer disk

Start_transaction(T)
Read itemiT, x}
Write_item(T, x)
Commit(T)
Checkpoint

2. In general, we can distinguish two main categories of immediate update
algorithms. If the recovery technique ensures that all updates of a transac-

23

tion are recorded in the database on disk before the transaction commits,
there is never a need to redo any operations of committed transactions.
Such an algorithm is called UNDO/NO-REDO. On the other hand, if the
transaction is allowed to commit before all its changes are written to the
database, we have the UNDO/REDO method.

Recovery in multidatabase transactions

So far, we have implicitly assumed that a transaction accesses a single database.
In some cases a single transaction, called a multidatabase transaction, may
require access to multiple database. These databases may even be stored on dif-
ferent types of DBMSs; for example, some DBMSs may be Relational, whereas
others are hierarchical or network DBMSs. In such a case, each DBMS involved
in the multidatabase transaction will have its own recovery technique and trans-
action manager separate from those of the other DBMSs. This situation is
somewhat similar to the case of a distributed database management system,
where parts of the database reside at different sites that are connected by a
communication network.

To maintain the atomicity of multidatabase transaction, it is necessary to have
a two-level recovery mechanism. A global recovery manager, or coordinator,
is needed in addition to the local recovery managers. The coordinator usually
follows a protocol called the two-phase commit protocol, whose two phases can
be stated as follows.

PHASE 1: When all participating databases signal the coordinator that the
part of the multidatabase transaction involving them has concluded, the coor-
dinator sends a message “prepare for commit” to each participant to get ready
for committing the transaction. Each participating database receiving that mes-
sage will force-write all log records to disk and then send a “ready to commit”
or “OK?” signal to the coordinator. If the force-writing to disk fails or the local
transaction cannot commit for some reason, the participating database sends a
“cannot commit” or “not OK” signal to the coordinator. If the coordinator does
not receive a reply from a database within a certain time interval, it assumes a
“not OK” response.

PHASE 2: If all participating databases reply “OK”, the transaction is suc-
cessful, and the coordinator sends a “commit” signal for the transaction to the
participating databases. Because all the local effects of the transaction have
been recorded in the logs of the participating databases, recovery from failure
is now possible. Each participating database completes transaction commit
by writing a commit(T) entry for the transaction in the log and permanently
updating the database if needed. On the other hand, if one or more of the
participating databases have a “not OK” response to the coordinator, the trans-
action has failed, and the coordinator sends a message to “roll back” or UNDO
the local effect of the transaction to each participating database. This is done

24

by undoing the transaction operations, using the log.

The net effect of the two-phase commit protocol is that either all participating
databases commit the effect of the transaction or none of them do. In case any
of the participants — or the coordinator — fails, it is always possible to recover
to a state where either the transaction is committed or it is rolled back. A
failure during or before phase 1 usually requires the transaction to be rolled
back, whereas a failure during phase 2 means that a successful transaction can
recover and commit.

Review question 5

Describe the two-phase commit protocol for multidatabase transactions.

Additional content and exercise
Shadow paging

In the shadow page scheme, the database is not directly modified but a copy,
stored on permanent storage (e.g. disk), is made of the portion of the database
to be modified and all modifications are made to this copy. Meanwhile, the
old version of the database remains intact. Once the transaction commits, the
modified copy replaces the original in an atomic manner, i.e. the replacement
is carried out in its entirety or not at all. If a system crashes at this point, the
old version is still available for recovery.

Page management

Before we discuss this scheme, a review of the paging scheme as used in the
operating system for virtual memory management is appropriate. The memory
that is accessed by a process (a program in execution is a process) is called
virtual memory. Virtual memory is divided into pages that are all of a certain
size (commonly 4096 bytes or 4K). The virtual or logical pages are mapped onto
physical memory blocks (i.e. disk physical records) of the same size as the pages.
The mapping is achieved by consulting a page table (or directory). The page
table lists each logical page identifier and the address of the physical blocks
that actually stores the logical page. The advantage of this scheme is that the
consecutive logical pages need not be mapped onto consecutive physical blocks.

Shadow paging scheme considers the database to be made up of a number of
fixed-size disk pages (or disk blocks) — say, n — for recovery purposes. A page
table (or directory) with n entries is constructed, where the ith page table entry
points to the ith database page on disk. The page table is kept in main memory
if it is not too large, and all references — reads or writes — to database pages on
disk go through the page table.

25

Shadow paging scheme in a single-user environment

In the shadow page scheme, two page tables are used. The original page table
(shadow page table) and the current page table. Initially, both page tables point
to the same blocks of physical storage. The current page table is the only route
through which a transaction can gain access to the data stored on disk. That
is, a transaction always uses the current page table to retrieve the appropriate
database blocks.

page Sold)
1 1
7 "‘————_1 page 1 7
3 3

page 4
4 4
3 page 2 (old) 3
fi fi

page 3

page &

page 2 (hew)

page 5 (hew)

During transaction execution, the shadow page table is never modified. When
a write operation is performed, a new copy of the modified database page is
created, but the old copy of that page is not overwritten. Instead, the new page
is written elsewhere — on some previously unused disk block. The current page
table entry is modified to point to the new disk block, whereas the shadow page
table is not modified and continues to point to the old unmodified disk block.
The diagram above illustrates the concepts of a shadow page table and a current
page table. For pages updated by the transaction, two versions are kept. The
old version is referenced by the shadow page table and the new version by the
current page table.

To recover from a failure during transaction execution, it is sufficient to free the
modified database pages and to discard the current page table. The state of
the database before transaction execution is available through the shadow page
table, and that state is recovered by reinstating the shadow page table so that
it becomes the current page table once more. The database thus is returned to
its state prior to the transaction that was executing when the crash occurred,

26

and any modified pages are discarded. Committing a transaction corresponds
to discarding the previous shadow page table and freeing old page tables that it
references. Since recovery involves neither undoing nor redoing data items, this
technique is called the NO-UNDO/NO-REDO recovery technique.

The advantage of shadow paging is that it makes undoing the effect of the exe-
cuting transaction very simple. There is no need to undo or redo any transaction
operations. In a multi-user environment with concurrent transactions, logs and
checkpoints must be incorporated into the shadow paging technique. One dis-
advantage of shadow paging is that the updated database pages change location
on disk. This makes it difficult to keep related database pages close together on
disk without complex storage management strategies. Furthermore, if the page
table (directory) is large, the overhead of writing shadow page tables to disk
as transactions commit is significant. A further complication is how to handle
garbage collection when a transaction commits. The old pages referenced by
the shadow page that has been updated must be released and added to a list of
free pages for future use. These pages are no longer needed after the transaction
commits, and the current page table replaces the shadow page table to become
the valid page table.

Extension exercise 1: Shadow paging

What is a current page table and a shadow page table? Discuss the advantages
and disadvantages of the shadow paging recovery scheme.

27

	Chapter 14. Backup and Recovery
	Objectives
	Relationship to other chapters
	Context
	Introduction
	A typical recovery problem
	Transaction logging
	System log
	Committing transactions and force-writing
	Checkpoints
	Undoing
	Redoing
	Activity 1 - Looking up glossary entries

	Recovery outline
	Recovery from catastrophic failures
	Recovery from non-catastrophic failures
	Transaction rollback

	Recovery techniques based on deferred update
	Deferred update
	Deferred update in a single-user environment
	Deferred update in a multi-user environment
	Transaction actions that do not affect the database

	Recovery techniques based on immediate update
	Immediate update
	Immediate update in a single-user environment
	Immediate update in a multi-user environment

	Recovery in multidatabase transactions
	Additional content and exercise
	Shadow paging
	Page management
	Shadow paging scheme in a single-user environment
	Extension exercise 1: Shadow paging

