
Chapter 15. Distributed Database Systems

Table of contents

• Objectives
• Introduction
• Context
• Client-server databases

– The 2-tier model
∗ The client
∗ The server
∗ Query processing in 2-tier client-server systems
∗ Advantages of the client-server approach
∗ Disadvantages of the client-server approach

– Variants of the 2-tier model
∗ Business (application) logic
∗ Business logic implemented as stored procedures

– The 3-tier architecture
• Distributed database systems

– Background to distributed systems
– Motivation for distributed database systems

• Fragmentation independence
• Replication independence
• Update strategies for replicated and non-replicated data

– Eager (synchronous) replication
∗ Eager replication and distributed reliability protocols
∗ The two-phase commit (2PC) protocol
∗ Read-once / write-all protocol

– Lazy or asynchronous replication
∗ Lazy group replication
∗ Lazy master replication

• Reference architecture of a distributed DBMS
• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Understand what is meant by client-server database systems, and describe
variations of the client-server approach.

• Describe the essential characteristics of distributed database systems.

• Distinguish between client-server databases and distributed databases.

• Describe mechanisms to support distributed transaction processing.

1



• Compare strategies for performing updates in distributed database sys-
tems.

• Describe the reference architecture of distributed DBMSs.

Introduction

In parallel with this chapter, you should read Chapter 22 and Chapter 23 of
Thomas Connolly and Carolyn Begg, “Database Systems A Practical Approach
to Design, Implementation, and Management”, (5th edn.).

Distributed databases have become an integral part of business computing in
the past years. The ability to maintain the integrity of data and provide accu-
rate and timely processing of database queries and updates across multiple sites
has been an important factor in enabling businesses to utilise data in a range
of different locations, sometimes on a global scale. Standardisation of query
languages, and of the Relational and Object models, has assisted the integra-
tion of different database systems to form networks of integrated data services.
The difficulties of ensuring the integrity of data, that updates are timely, and
that users receive a uniform rate of response no matter where on the network
they are situated, remain, in many circumstances, major challenges to database
vendors and users. In this chapter we shall introduce the topic of distributed
database systems. We shall examine a range of approaches to distributing data
across networks, and examine a range of strategies for ensuring the integrity
and timeliness of the data concerned. We shall look at mechanisms for enabling
transactions to be performed across different machines, and the various update
strategies that can be applied when data is distributed across different sites.

Context

Many of the issues considered in other chapters of this module require a de-
gree of further consideration when translated into a distributed context. When
it becomes a requirement to distribute data across a network, the processes
of transaction processing, concurrency control, recovery, security and integrity
control and update propagation become significantly more involved. In this
chapter we shall introduce a number of extensions to mechanisms which we
have previously considered for non-distributed systems.

Client-server databases

For years, serious business databases were monolithic systems running only on
one large machine, accessed by dumb terminals. In the late 1980s, databases
evolved so that an application, called a ‘client’, on one machine could run against
a database, called a ‘server’, on another machine. At first, this client-server

2



database architecture was only used on mini and mainframe computers. Be-
tween 1987 and 1988, vendors like Oracle Corp and Gupta first moved the
client function and then the database server down to microcomputers and local
area networks (LANs).

Today, the client-server concept has evolved to cover a range of approaches
to distributing the processing of an application in a variety of ways between
different machines.

An example of the client-server approach is the SQLserver system, from Mi-
crosoft. The SQLserver system is run on a server machine, which is usually
a fairly powerful PC. A client program is run, usually on a separate machine,
and makes requests for data to SQLserver via a local area network (LAN). The
application program would typically be written in a language such as Visual
Basic or Java. This approach allows multiple client machines on the network
to request the same records from the database on the server. SQLserver will
ensure that only one user at a time modifies any specific record.

The 2-tier model

Client-server architecture involves multiple computers connected in a network.
Some of the computers (clients) process application programs and some com-
puters (servers) perform database processing.

This approach is known as the 2-tier model of client-server computing, as it is
made up of the two types of component, clients and servers. It is also possible
that a machine that acts as a server to some clients, may itself act as a client
to another server. This arrangement also falls under the 2-tier model, as it still
only comprises the two types of machine within the network.

The client

This is the front-end of the client-server system. It handles all aspects of the
user interface — it is the front-end because the client presents the system to the
user. It can also be used to provide PC-based application development tools
used to enter, display, query and manipulate data on the central server, and to
build applications. The client operating system is usually Windows, MACOS,
Linux or Unix.

The server

Servers perform functions such as database storage, integrity checking and data
dictionary maintenance, and provide concurrent access control. Moreover, they
also perform recovery and optimise query processing. The server controls ac-
cess to the data by enforcing locking rules to ensure data integrity during trans-
actions. The server can be a PC, mini or mainframe computer, and usually

3



employs a multi-tasking operating system such as Ubuntu Server and Windows
Server OS.

Query processing in 2-tier client-server systems

Typically, in a client-server environment, the user will interact with the client
machine through a series of menus, forms and other interface components. Sup-
posing the user completes a form to issue a query against a customer database.
This query may be transformed into an SQL SELECT statement by code run-
ning on the client machine. The client will then transmit the SQL query over
the network to the server. The server receives the command, verifies the syn-
tax, checks the existence and availability of the referenced objects, verifies that
the user has SELECT privileges, and finally executes the query. The resulting
data is formatted and sent to the application, along with return codes (used to
identify whether the query was successful, or if not, which error occurred). On
receipt of the data, the client might carry out further formatting - for example,
creating a graph of the data - before displaying it to the user.

The following diagram illustrates how a user interacts with a client system,
which transmits queries to the database server. The server processes the queries
and returns the results of the query, or a code indicating failure of the query for
some reason.

4



Advantages of the client-server approach

• Centralized storage: Users do not have to retain copies of corporate data
on their own PCs, which would become quickly out of date. They can
be assured that they are always working with the current data, which is
stored on the server machine.

• Improved performance: Processing can be carried out on the machine
most appropriate to the task. Data-intensive processes can be carried
out on the server, whereas data-entry validation and presentation logic
can be executed on the client machine. This reduces unnecessary network
traffic and improves overall performance. It also gives the possibility of
optimising the hardware on each machine to the particular tasks required
of that machine.

• Scalability: If the number of users of an application grows, extra client

5



machines can be added (up to a limit determined by the capacity of the
network or server) without significant changes to the server.

Disadvantages of the client-server approach

• Complexity: Operating database systems over a LAN or wide area net-
work (WAN) brings extra complexities of developing and maintaining the
network. The interfaces between the programs running on the client and
server machines must be well understood. This usually becomes increas-
ingly complex when the applications and/or DBMS software come from
different vendors.

• Security: A major consideration, as preventative measures must be in
place to protect against data theft or corruption on the client and server
machines, and during transmission over the network.

Review question 1

• Explain what is meant by the 2-tier model of client-server computing.

• Why is it sometimes said that client-server computing improves the scal-
ability of applications?

• What additional security issues are involved in the use of a client-server sys-
tem, compared with a traditional mainframe database accessed via dumb
terminals?

Variants of the 2-tier model

Business (application) logic

The relative workload on the client and server machines is greatly affected by
the way in which the application code is distributed. The more application logic
that is placed on client machines, the more of the work these machines will have
to do. Furthermore, more data will need to be transmitted from servers to client
machines because the servers do not contain the application logic that might
have been used to eliminate some of the data prior to transmission. We can
avoid this by transferring some of the application logic to the server. This helps
to reduce the load on both the clients and the network. This is known as the
split logic model of client-server computing. We can take this a stage further,
and leave the client with only the logic needed to handle the presentation of
data to users, placing all of the functional logic on servers; this is known as the
remote presentation model.

Business logic implemented as stored procedures

The main mechanism for placing business logic on a server is known as ‘stored
procedures’. Stored procedures are collections of code that usually include SQL

6



for accessing the database. Stored procedures are invoked from client programs,
and use parameters to pass data between the procedure and invoking program.
If we choose to place all the business logic in stored procedures on the server, we
reduce network traffic, as intermediate SQL results do not have to be returned
to client machines. Stored procedures are compiled, in contrast with uncompiled
SQL sent from the client. A further performance gain is that stored procedures
are usually cached, therefore subsequent calls to them do not require additional
disk access.

2-tier client-server architectures in which a significant amount of application
logic resides on client machines suffer from the following further disadvantages:

• Upgrades and bug fixes must be made on every client machine. This
problem is compounded by the fact that the client machines may vary in
type and configuration.

• The procedural languages used commonly to implement stored procedures
are not portable between machines. Therefore, if we have servers of dif-
ferent types, for example Oracle and Microsoft, the stored procedures will
have to be coded differently on the different server machines. In addition,
the programming environments for these languages do not provide com-
prehensive language support as is found in normal programming languages
such as C++ or Java, and the testing/debugging facilities are limited.

Though the use of stored procedures improves performance (by reducing the
load on the clients and network), taking this too far will limit the number of
users that can be accommodated by the server — i.e. there will reach a point
at which the server becomes a bottleneck because it is overloaded with the
processing of application transactions.

The 3-tier architecture

The 3-tier architecture introduces an applications server, which is a computer
that fits in the middle between the clients and server. With this configuration,
the client machines are freed up to focus on the validation of data entered by
users, and the formatting and presentation of results. The server is also freed to
concentrate on data-intensive operations, i.e. the retrieval and update of data,
query optimisation, processing of declarative integrity constraints and database
triggers, etc. The new middle tier is dedicated to the efficient execution of the
application/business logic.

The application server can perform transaction management and, if required,
ensure distributed database integrity. It centralises the application logic for
easier administration and change.

The 3-tier model of client-server computing is best suited to larger installations.
This is true because smaller installations simply do not have the volume of
transactions to warrant an intermediate machine dedicated to application logic.

7



The following diagram illustrates how a user interacts with a client system,
which deals with the validation of user input and the presentation of query
results. The client system communicates with a middle tier system, the ap-
plications server, which formulates queries from the validated input data and
sends queries to the database server. The database server processes the queries
and sends to the applications server the results of the query, or a code indicat-
ing failure of the query for some reason. The application server then processes
these results (or code) and sends data to the client system to be formatted and
presented to the user.

Activity 1 – Investigating stored procedures

Read the documentation of the DBMS of your choice and investigate stored
procedures as implemented in the environment. A visit to the software’s website

8



maybe also be useful. Identify the types of situations in which stored procedures
are used, and by looking at a number of examples of stored procedures, develop
an overall understanding for the structure of procedures and how they are called
from a PL/SQL program.

Distributed database systems

Background to distributed systems

A distributed database system consists of several machines, the database itself
being stored on these machines, which communicate with one another usually via
high-speed networks or telephone lines. It is not uncommon for these different
machines to vary in both technical specification and function, depending upon
their importance and position in the system as a whole. Note that the generally
understood description of a distributed database system given here is rather
different from the client-server systems we examined earlier in the chapter. In
client-server systems, the data is not itself distributed; it is stored on a server
machine, and accessed remotely from client machines. In a distributed database
system, on the other hand, the data is itself distributed among a number of
different machines. Decisions therefore need to be made about the way in which
the data is to be distributed and also about how updates are to be propagated
over multiple sites.

The distribution of data by an organisation throughout its various sites and
departments, allows data to be stored where it was generated, or indeed is most
used, while still being easily accessible from elsewhere. The general structure of
a distributed system is shown below:

9



In effect, each separate site in the example is really a database system site in
its own right, each location having its own databases, as well as its own DBMS
and transaction management software. It is commonly assumed when discus-
sion arises concerning distributed database systems, that the many databases
involved are widely spread from each other in geographical terms. Importantly,
it should be made clear that geographical distances will have little or no effect
upon the overall operation of the distributed system; the same technical prob-
lems arise whether the databases are simply logically separated or if separated
by a great distance.

Motivation for distributed database systems

So why have distributed databases become so desirable? There are a number
of reasons that promote the use of a distributed database system; these can
include such factors as:

• The sharing of data

• Local autonomy

• Data availability

• Improving performance

• Improving system reliability

Furthermore, it is likely that the organisation that has chosen to implement the
system will itself be distributed. By this, we mean that there are almost always
several departments and divisions within the company structure. An illustrative
example is useful here in clarifying the benefits that can be gained by the use
of distributed database systems.

Scenario banking system

Imagine a banking system that operates over a number of separate sites; for the
sake of this example, let us consider two offices, one in Manchester and another
in Birmingham. Account data for Manchester accounts is stored in Manchester,
while Birmingham’s account data is stored in Birmingham. We can now see
that two major benefits are afforded by the use of this system: efficiency of
processing is increased due to the data being stored where it is most frequently
accessed, while an increase in the accessibility of account data is also gained.

The use of distributed database systems is not without its drawbacks, however.
The main disadvantage is the added complexity that is involved in ensuring
that proper co-ordination between the various sites is possible. This increase in
complexity can take a variety of forms:

10



• Greater potential for bugs: With a number of databases operating
concurrently, ensuring that algorithms for the operation of the system are
correct becomes an area of great difficulty. The potential is there for the
existence of extremely subtle bugs.

• Increased processing overhead: The additional computation required
in order to achieve inter-site co-ordination is a considerable overhead not
present in centralised systems.

Date (1999) gives the ‘fundamental principle’ behind a truly distributed
database:

*“to the user; a distributed system should look exactly like a NONdistributed
system.”“*

In order to accomplish this fundamental principle, twelve subsidiary rules have
been established. These twelve objectives are listed below:

1. Local autonomy

2. No reliance on a central site

3. Continuous operation

4. Location independence

5. Fragmentation independence

6. Replication independence

7. Distributed query processing

8. Distributed transaction management

9. Hardware independence

10. Operating system independence

11. Network independence

12. DBMS independence

These twelve objectives are not all independent of one another. Furthermore,
they are not necessarily exhaustive and, moreover, they are not all equally sig-
nificant.

Probably the major issue to be handled in distributed database systems is the
way in which updates are propagated throughout the system. Two key concepts
play a major role in this process:

• Data fragmentation: The splitting up of parts of the overall database
across different sites.

• Data replication: The process of maintaining updates to data across
different sites.

11



Fragmentation independence

A system can support data fragmentation if a given stored relation can be
divided up into pieces, or ‘fragments’, for physical storage purposes. Fragmen-
tation is desirable for performance reasons: data can be stored at the location
where it is most frequently used, so that most operations are purely local and
network traffic is reduced.

A fragment can be any arbitrary sub-relation that is derivable from the original
relation via restriction (horizontal fragmentation – subset of columns) and pro-
jection (vertical fragmentation – subset of tuples) operations. Fragmentation in-
dependence (also known as fragmentation transparency), therefore, allows users
to behave, at least from a logical standpoint, as if the data were not fragmented
at all. This implies that users will be presented with a view of the data in which
the fragments are logically combined together by suitable joins and unions. It
is the responsibility of the system optimiser to determine which fragment needs
to be physically accessed in order to satisfy any given user request.

Replication independence

A system supports data replication if a given stored relation - or, more generally,
a given fragment - can be represented by many distinct copies or replicas, stored
at many distinct sites.

Replication is desirable for at least two reasons. First, it can mean better
performance (applications can operate on local copies instead of having to com-
municate with remote sites); second, it can also mean better availability (a given
replicated object - fragment or whole relation - remains available for processing
so long as at least one copy remains available, at least for retrieval purposes).

What problems are associated with data replication and fragmenta-
tion?

Both data replication and fragmentation have their related problems in imple-
mentation. However, distributed non-replicated data only has problems when
the relations are fragmented.

The problem of supporting operations, such as updating, on fragmented rela-
tions has certain points in common with the problem of supporting operations
on join and union views. It follows too that updating a given tuple might cause
that tuple to migrate from one fragment to another, if the updated tuple no
longer satisfies the relation predicate for the fragment it previously belonged to
(Date, 1999).

Replication also has its associated problems. The major disadvantage of replica-
tion is that, when a given replicated object is updated, all copies of that object
must be updated — the update propagation problem. Therefore, in addition to
transaction, system and media failures that can occur in a centralised DBMS,

12



a distributed database system (DDBMS) must also deal with communication
failures. Communication failures can result in a site that holds a copy of the
object being unavailable at the time of the update.

Furthermore, the existence of both system and communication failures poses
complications because it is not always possible to differentiate between the two
(Ozsu and Valduriez, 1996).

Update strategies for replicated and non-replicated data

There are many update strategies for replicated and fragmented data. This
section will explore these strategies and will illustrate them with examples from
two of the major vendors.

Eager (synchronous) replication

Gray et al (1996) states that eager replication keeps all replicas exactly syn-
chronised at all nodes (sites) by updating all the replicas as part of one atomic
transaction. Eager replication gives serialisable execution, therefore there are
no concurrency anomalies. But eager replication reduces update performance
and increases transaction times, because extra updates and messages are added
to the transaction. Eager replication typically uses a locking scheme to detect
and regulate concurrent execution.

With eager replication, reads at connected nodes give current data. Reads at
disconnected nodes may give stale (out-of-date) data. Simple eager replication
systems prohibit updates if any node is disconnected. For high availability, eager
replication systems allow updates among members of the quorum or cluster.
When a node joins the quorum, the quorum sends the node all replica updates
since the node was disconnected.

Eager replication and distributed reliability protocols

Distributed reliability protocols (DRPs) are implementation examples of eager
replication. DRPs are synchronous in nature (ORACLE, 1993), and often use
remote procedure calls (RPCs).

DRPs enforce atomicity (the all-or-nothing property) of transactions by imple-
menting atomic commitment protocols such as the two-phase commit (2PC)
(Gray, 1979). Although a 2PC is required in any environment in which a single
transaction can interact with several autonomous resource managers, it is par-
ticularly important in a distributed system (Ozsu and Valduriez, 1996). 2PC
extends the effects of local atomic commit actions to distributed transactions,
by insisting that all sites involved in the execution of a distributed transaction

13



agree to commit the transaction before its effects are made permanent. There-
fore, 2PC is an example of one copy equivalence, which asserts that the values of
all physical copies of a logical data item should be identical when the transaction
that updates it terminates.

The inverse of termination is recovery. Distributed recovery protocols deal with
the problem of recovering the database at a failed site to a consistent state when
that site recovers from failure (Ozsu and Valduriez, 1996). The 2PC protocol
also incorporates recovery into its remit.

Exercise 1

What is meant by the terms ‘atomic commitment protocol’ and ‘one copy equiv-
alence’?

The two-phase commit (2PC) protocol

The 2PC protocol works in the following way (adapted from Date, 1999): COM-
MIT or ROLLBACK is handled by a system component called the Co-ordinator,
whose task it is to guarantee that all resource managers commit or rollback the
updates they are responsible for in unison - and furthermore, to provide that
guarantee even if the system fails in the middle of the process.

Assume that the transaction has completed its database processing successfully,
so that the system-wide operation it issues is COMMIT, not ROLLBACK. On
receiving the COMMIT request, the Co-ordinator goes through the following
two-phase process:

1. First, the Co-ordinator instructs all resource managers to get ready either
to commit or rollback the current transaction. In practice, this means that
each participant in the process must force-write all log entries for local
resources used by the transaction out to its own physical log. Assuming
the force-write is successful, the resource manager now replies ‘OK’ to the
Co-ordinator, otherwise it replies ‘Not OK’.

2. When the Co-ordinator has received replies from all participants, it force-
writes an entry to its own physical log, recording its decision regarding
the transaction. If all replies were ‘OK’, that decision is COMMIT; if any
replies were ‘Not OK’, the decision is ROLLBACK. Either way, the Co-
ordinator then informs each participant of its decision, or each participant
must then COMMIT or ROLLBACK the transaction locally, as instructed.

If the system or network fails at some point during the overall process, the
restart procedure will look for the decision record in the Co-ordinator’s log. If it
finds it, then the 2PC process can pick up where it left off. If it does not find it,
then it assumes that the decision was ROLLBACK, and again the process can
complete appropriately. However, in a distributed system, a failure on the part
of the Co-ordinator might keep some participants waiting for the Co-ordinator’s

14



decision. Therefore, as long as the participant is waiting, any updates made by
the transaction via that participant are kept locked.

Review question 2

• Explain the role of an application server in a 3-tier client-server network.

• Distinguish between the terms ‘fragmentation’ and ‘replication’ in a dis-
tributed database environment.

• Describe the main advantage and disadvantage of eager replication.

• During the processing of the two-phase commit protocol, what does the
Co-ordinator do if it is informed by a local resource manager process that
it was unable to force-write all log entries for the local resources used by
the transaction out to its own physical log?

Read-once / write-all protocol

A further replica-control protocol that enforces one-copy serialisability is known
as read-once / write-all (ROWA) protocol. ROWA protocol is simple, but it
requires that all copies of a logical data item be updated before the transaction
can terminate.

Failure of one site may block a transaction, reducing database availability.

A number of alternative algorithms have been proposed that reduce the require-
ment that all copies of a logical data item be updated before the transaction
can terminate. They relax ROWA by mapping each write to only a subset of
the physical copies. One well-known approach is quorum-based voting, where
copies are assigned votes, and read and write operations have to collect votes
and achieve a quorum to read/write data.

Three-phase commit is a non-blocking protocol which prevents the 2PC blocking
problem from occurring by removing the uncertainty for participants after their
votes have been placed. This is done through the inclusion of a pre-commit
phase that relays information to participants, advising them that a commit will
occur in the near future.

Lazy or asynchronous replication

Eager replication update strategies, as identified above, are synchronous, in the
sense that they require the atomic updating of some number of copies. Lazy
group replication and lazy master replication both operate asynchronously.

If the users of distributed database systems are willing to pay the price of some
inconsistency in exchange for the freedom to do asynchronous updates, they will
insist that:

1. the degree of inconsistency be bounded precisely, and that

15



2. the system guarantees convergence to standard notions of ‘correctness’.

Without such properties, the system in effect becomes partitioned as the replicas
diverge more and more from one another (Davidson et al, 1985).

Lazy group replication

Lazy group replication allows any node to update any local data. When the
transaction commits, a transaction is sent to every other node to apply the root
transaction’s updates to the replicas at the destination node. It is possible for
two nodes to update the same object and race each other to install their updates
at other nodes. The replication mechanism must detect this and reconcile the
two transactions so that their updates are not lost (Gray et al, 1996).

Timestamps are commonly used to detect and reconcile lazy-group transactional
updates. Each object carries the timestamp of its most recent update. Each
replica update carries the new value and is tagged with the old object times-
tamp. Each node detects incoming replica updates that would overwrite earlier
committed updates. The node tests if the local replica’s timestamp and the
update’s old timestamp are equal. If so, the update is safe. The local replica’s
timestamp advances to the new transaction’s timestamp and the object value is
updated. If the current timestamp of the local replica does not match the old
timestamp seen by the root transaction, then the update may be ‘dangerous’. In
such cases, the node rejects the incoming transaction and submits it for recon-
ciliation. The reconciliation process is then responsible for applying all waiting
update transactions in their correct time sequence.

Transactions that would wait in an eager replication system face reconciliation in
a lazy group replication system. Waits are much more frequent than deadlocks
because it takes two waits to make a deadlock.

Lazy master replication

Another alternative to eager replication is lazy master replication. Gray et al
(1996) states that this replication method assigns an owner to each object. The
owner stores the object’s correct value. Updates are first done by the owner
and then propagated to other replicas. When a transaction wants to update
an object, it sends a remote procedure call (RPC) to the node owning the
object. To achieve serialisability, a read action should send read-lock RPCs
to the masters of any objects it reads. Therefore, the node originating the
transaction broadcasts the replica updates to all the slave replicas after the
master transaction commits. The originating node sends one slave transaction
to each slave node. Slave updates are timestamped to assure that all the replicas
converge to the same final state. If the record timestamp is newer than a replica
update timestamp, the update is ‘stale’ and can be ignored. Alternatively, each
master node sends replica updates to slaves in sequential commit order.

16



Review question 3

When an asynchronous update strategy is being used, if two copies of a data
item are stored at different sites, what mechanism can be used to combine the
effect of two separate updates being applied to these different copies?

Reference architecture of a distributed DBMS

In chapter 1 we looked at the ANSI_SPARC three-level architecture of a DBMS.
The architecture reference shows how different schemas of the DBMS can be
organised. This architecture cannot be applied directly to distributed environ-
ments because of the diversity and complexity of distributed DBMSs. The
diagram below shows how the schemas of a distributed database system can be
organised. The diagram is adopted from Hirendra Sisodiya (2011).

Reference architecture for distributed database

17



1. Global schema

The global schema contains two parts, a global external schema and a
global conceptual schema. The global schema gives access to the entire
system. It provides applications with access to the entire distributed
database system, and logical description of the whole database as if it
was not distributed.

2. Fragmentation schema

The fragmentation schema gives the description of how the data is parti-
tioned.

3. Allocation schema

Gives a description of where the partitions are located.

4. Local mapping

The local mapping contains the local conceptual and local internal schema.
The local conceptual schema provides the description of the local data.
The local internal schema gives the description of how the data is physi-
cally stored on the disk.

Review question 4

List the characteristics of applications that can benefit most from:

• synchronous replication

• asynchronous replication

Discussion topics

1. We have covered the client-server and true distributed database ap-
proaches in this chapter. Client-server systems distribute the processing,
whereas distributed systems distribute both the processing and the data.
Discuss the proposition that most commercial applications are adequately
supported by a clientserver approach, and do not require the additional
features of a truly distributed database system.

2. Discuss the proposition that, in those situations where a distributed
database solution is required, most applications are adequately provided
for by a lazy or asynchronous replication strategy, and do not require the
sophistication of an eager or synchronous replication system. Discuss the
implications for end users of synchronous and asynchronous updating.

18


	Chapter 15. Distributed Database Systems
	Objectives
	Introduction
	Context
	Client-server databases
	The 2-tier model
	Variants of the 2-tier model
	The 3-tier architecture

	Distributed database systems
	Background to distributed systems
	Motivation for distributed database systems

	Fragmentation independence
	Replication independence
	Update strategies for replicated and non-replicated data
	Eager (synchronous) replication
	Lazy or asynchronous replication

	Reference architecture of a distributed DBMS
	Discussion topics


