
Chapter 16. Object-Oriented Database Systems

Table of contents

• Objectives
• Introduction
• Motivation
• What is Object database technology?

– Capturing semantics
• Object-oriented concepts

– Combining structure and behaviour
– Messages
– Methods
– Defining objects - Class definitions
– Inheritance
– Encapsulation

• Implementing an application of Object databases
– Implementing Object databases
– Applications for OO databases
– Problems with the OO model
– The future of OO databases

• The Object-Relational model
– DB2 Relational Extenders
– IBM Informix DataBlades
– Object-Relational features in Oracle 11

∗ Abstract data types
∗ Object tables
∗ Nested tables
∗ Varying arrays
∗ Support for large objects

• Summary
• Discussion topic
• Further work

– Polymorphism

Objectives

At the end of this chapter you should be able to:

• Describe the essential characteristics of Object databases.

• Critically assess the strengths and weaknesses of Object databases with
respect to Relational systems.

• Describe why Object databases appear to be such a good fit for a number
of major growth areas in computing, such as Web-based and multimedia

1

information systems.

• Describe the strategy being adopted by major database supplier Oracle
to address the apparent threat of Object database systems, and critically
compare this approach with a pure Object technology approach.

Introduction

In parallel with this chapter, you should read Chapter 25 and Chapter 26 of
Thomas Connolly and Carolyn Begg, “Database Systems A Practical Approach
to Design, Implementation, and Management”, (5th edn.).

The Object data model provides a richer set of semantics than the Relational
model. Most of the major database vendors are extending the Relational model
to include some of the mechanisms available in Object databases. These ex-
tended Relational databases are often called Object-Relational. In this sense
the Object data model can be seen as an enriching of the Relational model, giv-
ing a wider range of modelling capabilities. The topics of design, concurrency
control, performance tuning and distribution are just as relevant for Object
databases as for Relational systems.

Relational database systems have been the mainstay of commercial systems since
the 80s. Around about the same time, however, developments in programming
languages were giving rise to a new approach to system development. These
developments lead to the widespread use of Object technology, and in particular,
Object-oriented programming languages such as C++ and Java. Many people
expected a similar growth in the commercial use of Object database systems, but
these have been relatively slow to be adopted in industry and commerce. In this
chapter we will explore the reasons why Object databases have not so far had
a major impact in the commercial arena, and examine whether the continuing
growth of the World Wide Web and multimedia information systems could lead
to a major expansion in the use of Object database technology.

Motivation

The Relational database model has many advantages that make it ideally suited
to numerous business applications. Its ability to efficiently handle simple data
types, its powerful and highly optimisable standard query language, and its
good protection of data from programming errors make it an effective model.
However, a number of limitations exist with the model, which have become in-
creasingly clear as more developers and users of database systems seek to extend
the application of DBMS technology beyond traditional transaction processing
applications, such as order processing, financial applications, stock control, etc.

Among the applications that have proved difficult to support within Relational
environments are those involving the storage and manipulation of design data.

2

Design data is often complex and variable in length, may be highly interre-
lated, and its actual structure, as well as its values, may evolve rapidly over
time, though previous versions may be required to be maintained. This is quite
different to the typically fixed-length, slowly evolving data structures which
characterise transaction processing applications.

The query languages used to manipulate Relational databases are computation-
ally incomplete; that is, they cannot be used to perform any arbitrary calculation
that might be needed. The SQL language standard, and its derivative languages,
are essentially limited to Relational Algebra-based operations, providing very
little in the way of computational power to handle numerically complex appli-
cations.

Further to the problems that have been associated with Relational databases
since their inception, a significant problem that has come to light relatively
recently is the need to be able to store and manipulate ever more complicated
data types, such as video, sound, complex documents, etc. This is putting an
increasing strain on the model and restricting the kinds of business solutions
that can be provided. One reason for this increase in data complexity is the
explosion in popularity of the Internet and Web, where it is necessary to store
large quantities of unstructured text, multimedia, images and spatial data.

Other examples of applications that have proved difficult to implement in Rela-
tional systems include:

• Geographical information systems

• Applications for processing large and inter-related documents

• Databases to support CASE tools

• Image processing applications

What is Object database technology?

Capturing semantics

Although the Relational model enforces referential integrity, as we saw in the
chapter on integrity constraints and database triggers, it has no mechanism for
distinguishing and enforcing the different kinds of relationship which may exist
between entities. Examples of these relationships include:

• Existence-dependency: Where one entity can only exist in relation to
another. An example of such a relationship is that of an order-line entity
instance, which only makes sense within the context of its corresponding
parent order entity.

• Associations: When entities of different types are associated with one
another; for example, when a car entity is associated with a particular

3

person through an ‘owns’ relationship.

• Categorisations: When a number of different entity types are classified
into a particular overall grouping; for example, lecturers, administrators,
deans, professors and administrators are all categorised as university em-
ployees.

Such distinctions between relationship types can be made in a conceptual entity-
relationship model, but not explicitly when mapped to the Relational model. If
such distinctions are made, it is possible to define the semantics of operations
to create, update and delete instances of relationships differently for each case.

Semantic data models are data models that attempt to capture more of the
semantics of the application domain, and are frequently defined as extensions
to the Relational model. Such models enable the representation of different
types of entity, and the description of different types of relationship between
entity types, such as those described above.

Semantic models therefore aim to support a higher level of ‘understanding’ of
the data within the system; however, these models do not increase support
for the manipulation of data. The extended data structuring mechanisms are
accompanied by the same general set of operators (create entity, delete entity
and update entity). We would be able to constrain the data structures more
naturally if we recognised that the data structures that have been defined are
accessed and updated through a fixed set of data-type specific operators. On
creating a new entity it is often necessary to carry out a number of checks on
other entities before allowing the new entity to be created. It may be necessary
to invoke other operations as a consequence of the new entity’s creation. These
checks and operations are entity-type specific.

The next stage in semantic data modelling, is the integration of operator def-
inition with the data structuring facilities, such that operator definitions are
entity-type specific. The Object-oriented paradigm is one possible way to at-
tempt this integration, by providing a mechanism for progressing from a purely
structural model of data towards a more behavioural model, combining facilities
for both the representation and manipulation of data within the same model.

Review questions 1

• Describe some of the shortcomings in the Relational approach to database
systems, which have lead people to look for alternative database technolo-
gies for some applications.

• Identify a further example of each of the three types of relationship men-
tioned in the text: existence dependency, association and categorisation.

4

Object-oriented concepts

Combining structure and behaviour

A basic difference between traditional databases and Object databases, is the
way in which the passive and active elements of the underlying system are im-
plemented. Traditional databases are seen as passive, storing data which is
retrieved by an application, manipulated and then updated on the database.
This is in contrast to the active, Object-oriented approach where the manipula-
tion occurs within the database itself. It is also possible to use Object-oriented
(OO) databases passively; however, this means that they are not necessarily
being used to their full potential.

The inclusion of the behaviour, or processing, related to an object, along with
the definition of the structure of the object, stored within the database itself,
is what distinguishes the Object-oriented approach from semantic data models,
which purely try to improve the level of meaning supported by the data model
of the database system. The way in which active behaviour is supported within
Object databases, is via the message/method feature.

Messages

If object A in the database wants object B to do something, it sends B a message.
The success or failure of the requested operation may be conveyed back from
object B to object A, via a further message. In general, each object has a set
of messages that it can receive and a set of replies it can send. An object does
not need to know anything about the other objects it interacts with, other than
what messages can be sent to them, and what replies it can receive from them.
The internal workings are thus encapsulated into the definition for each object.

Methods

Methods are procedures, internal to each object, which alter an object’s private
state. State here means the values of the data items of the object in question.

Examples of methods

Some examples of commonly found methods are as follows:

• Constructors: These are used whenever a new instance of an object is cre-
ated. They initialise the data items contained within the object instance.
It is possible for objects to have a number of different constructors, if it
is required that they should sometimes be created with different starting
values for their data items.

5

• Destructors: These methods are used when an instance of an object
is deleted. They ensure that any resources that are held by the object
instance, such as storage space, are released.

• Transformers: These methods are used to change an object’s internal
state. There may be a number of transformer methods used to bring about
changes to the data items of an object instance.

The Object-oriented approach, therefore, provides the ability to deal with ob-
jects and operations on those objects, that are more closely related to the real
world. This has the effect of raising the level of abstraction from that used in
Relational constructs, such as tables, theoretically making the data model easier
to understand and use.

Defining objects - Class definitions

In the Object-oriented approach, everything can, in some way, be described
as an object. The term usually applies to a person, place or thing that a
computer application may need to deal with. In traditional database terms, an
object can be likened to an entity in an E-R diagram, but instead of the entity
merely containing attributes, it can also contain methods, sometimes known as
operations. These methods are fragments of program code, which are used to
carry out operations relevant to the object in question. For example, a Customer
object, as well as having the traditional data items we might expect to see in a
Customer table, may include operations such as CREATE A NEW CUSTOMER
INSTANCE (constructor), REMOVE A CUSTOMER INSTANCE (destructor),
CHANGE CUSTOMER DETAILS (transformer), etc.

The attributes and methods for groups or classes of objects of the same type are
described in a class definition. Each particular object is known as an instance
of that class. The class definition is like a template, therefore, which defines
the set of data items and methods available to all instances of that class of
object. Some Object database systems also permit the definition of database
constraints within class definitions, a feature which might be considered to be
a specific case of method definition.

Example of class definition

Consider the object type ‘book’ as might exist in a library database. Information
to be held on a book include its title, date of publication, publisher and author.
Typical operations on a book might be:

• Take a book out on loan.

• Reserve a book for taking out on loan when available.

• A Boolean function which returns true if the book is currently on loan and
false otherwise. The above operations will be implemented as methods of
class ‘book’.

6

The class book may be defined by the following structure:

class book
properties

title : string;

date_of_Publication : date;

published_by : publisher;

written_by : author;

operations

create () -> book;

loan (book, borrower, date_due);

reserve (book, borrower, date_reserved);

on_loan (book) -> boolean;

end book;

A method can receive additional information, called parameters, to perform its
task. In the above class, loan method expects a book, borrower and date due
for it to perform the loan operation. Parameters are put in the parenthesis of
a method. When a method performs its task, it can return data back to the
caller method.

An important point to note here is that data abstraction as provided by the class
mechanism allows one to define properties of entities in terms of other entities.
Thus we see from the above example that the properties published_by and writ-
ten_by are defined in terms of the classes ‘publisher’ and ‘author’ respectively.
Outline class definitions for author and publisher could be as follows:

class author
properties

surname : string;

initials : string;

nationality : country;

year_of_birth : integer;

year_of_death : integer;

operations

create () -> author;

end author.

7

class publisher
properties

name : string;

location : city;

operations

create () -> publisher;

end publisher.

Inheritance

When defining a new class, it can either be designed from scratch, or it can
extend or modify other classes - this is known as inheritance. For example, the
class ‘manager’ could inherit all the characteristics of the class ‘employee’, but
also be extended to encompass features specific to managers. This is a very pow-
erful feature, as it allows the reuse and easy extension of existing data definitions
and methods (note that inheritance is not just restricted to data; it can apply
equally to the methods of a class). Some systems only permit the inheritance
of the data items (sometimes called the state or properties) of a class definition,
while others allow inheritance of both state and behaviour (the methods of a
class). Inheritance is a powerful mechanism, as it provides a natural way for
applications or systems to evolve. For example, if we wish to create a new class
of product, we can easily make use of any previous development work that has
gone into the definition of data structures and methods for existing products,
by allowing the definition of the new class to inherit them.

Example of class definitions to illustrate inheritance:

As an example, we might take the object classes ‘mammal’, ‘bird’ and ‘insect’,
which may be defined as subclasses of ‘creature’. The object class ‘person’ is a
subclass of ‘mammal’, and ‘man’ and ‘woman’ are subclasses of ‘person’. Class
definitions for this hierarchy might take the following form:

class creature
properties

type : string; weight : real;

habitat : (… some habitat type such as swamp, jungle, urban);

operations

create () -> creature;

predators (creature) -> set (creature);

life_expectancy (creature) -> integer;

8

end creature.

class mammal inherit creature;
properties

gestation_period : real;

operations

end mammal.

class person inherit mammal;
properties

surname, firstname : string;

date_of_birth : date;

origin : country;

end person.

class man inherit person;
properties

wife : woman;

operations

end man.

class woman inherit person;
properties

husband : man;

operations

end woman.

The inheritance mechanism may be used not only for specialisation as described
above, but for extending software modules to provide additional services (oper-
ations). For example, if we have a class (or module) A with subclass B, then B
provides the services of A as well as its own. Thus B may be considered as an
extension of A, since the properties and operations applicable to instances of A
are a subset of those applicable to instances of B.

This ability of inheritance to specify system evolution in a flexible manner is
invaluable for the construction of large software systems. For database appli-
cations, inheritance has the added advantage of providing the facility to model
natural structure and behaviour.

9

It is possible in some systems, to inherit state and/or behaviour from more than
one class. This is known as multiple inheritance; it is only supported in some
Object-oriented systems.

Encapsulation

Encapsulation in object oriented means an object contains both the data struc-
tures and the methods to manipulate the data structures. The data structures
are internal to the object and are only accessed by other objects through the
public methods. Encapsulation ensures that changes in the internal data struc-
ture of an object does not affect other objects provided the public methods
remains the same. Encapsulation provides a form of data independence.

Review question 2

• Describe the difference between methods and messages in Object-oriented
systems.

• Describe a situation in which it may be necessary to provide two different
constructor methods for instances of an object.

• Describe the main advantages of inheritance.

• Describe the concept of encapsulation in Object-oriented systems.

Implementing an application of Object databases

Implementing Object databases

An important difference between databases and OO languages is that OO lan-
guages create objects in memory, and when an OO application ends, all objects
created by the application are destroyed and the data must be written to files
in order to be used at a later date. Conversely, databases require access to
persistent data. Pure Object-oriented databases make use of Object technology
by adding persistence to existing Object-oriented languages; this allows data to
be stored as objects even when a program is not running.

In order to implement and manipulate an OO database, it is necessary to use
a language that is capable of handling OO concepts. According to Silberschatz
(1997) there are several ways in which to do this:

• An existing Relational data-manipulation language can be extended to
handle complex data-types and Object-orientation. This leads to Object-
Relational systems, discussed later in this chapter.

• A purer OO alternative is to extend an existing OO language to deal with
databases, and so it becomes a persistent programming language. C++
and other languages have all had persistent versions implemented.

10

• The Object database system may be built as such from the beginning.
db4objects, DTS/S1, Perst, etc, are examples of pure Object database
systems which have been built using this approach.

The use of OO languages allows programmers to directly manipulate data with-
out having to use an embedded data manipulation language such as SQL. This
gives programmers a language that is computationally complete and therefore
provides greater scope for creating effective business solutions.

Applications for OO databases

There are many fields where it is believed that the OO model can be used to
overcome some of the limitations of Relational technology, where the use of
complex data types and the need for high performance are essential. These
applications include:

• Computer-aided design and manufacturing (CAD/CAM)

• Computer-integrated manufacturing (CIM)

• Computer-aided software engineering (CASE)

• Geographic information systems (GIS)

• Many applications in science and medicine

• Document storage and retrieval

Problems with the OO model

One of the key arguments against OO databases is that databases are usually
not designed to solve specific problems, but need the ability to be used to solve
many different problems not always apparent at the design stage of the database.
It is for this reason that OO technology, and its use of encapsulation, can often
limit its flexibility. Indeed the ability to perform ad hoc queries can be made
quite difficult, although some vendors do provide a query language to facilitate
this.

The use of the same language for both database operations and system opera-
tions can provide many advantages, including that of reducing the impedance
mismatch: the difference in level between set-at-a-time and record-at-a-time
processing. Date (2000), however, does not agree that this is best achieved by
making the database language record-at-a-time; he even goes as far as to say
that “record-at-a-time is a throwback to the days of pre-Relational systems such
as IMS and IDMS”. Instead, he proposes that set-at-a-time facilities be added
to programming languages. Nonetheless, it could be argued that one of the
advantages of pre-Relational systems was their speed. The procedural nature of

11

OO languages can still lead to serious difficulties when it comes to optimisation,
however.

Another problem associated with pure OO databases is that in many cases its
use is comparable to that of using a sledgehammer to crack a nut. A large
proportion of organisations do not currently deal with the complex data types
that OO technology is ideally suited too, and therefore do not require complex
data processing. For these companies, there is little incentive for them to move
towards Object technology when Relational databases and online analytical pro-
cessing tools will be sufficient to satisfy their data processing requirements for
several years to come. Of course, it is always possible that these companies will
find a use for the technology as its popularity becomes more widespread.

The future of OO databases

Many applications falling into the categories cited earlier have been successfully
implemented using pure OO techniques. However, the aforementioned problems
associated with the OO database model have led to some people doubting as
to whether pure OO really is the way forward for databases, particularly with
regard to mainstream business applications. Date (2000) is a particularly vehe-
ment opponent of pure OO technology, arguing instead that the existing Rela-
tional model should evolve to include the best features of Object-orientation and
that OO in itself does not herald the dawn of the third generation of database
technology.

The Object-Relational model

Perhaps the best hope for the immediate future of database objects is the
Object-Relational model. A recent development, stimulated by the advent of
the Object-oriented model, the Object-Relational model aims to address some
of the problems of pure OO technology - such as the poor support for ad hoc
query languages - and open database technology, and provide better support for
existing relational products, by extending the Relational model to incorporate
the key features of Object-orientation. The Object-Relational model also pro-
vides scope for those using existing Relational databases to migrate towards the
incorporation of objects, and this perhaps is its key strength, in that it provides
a path for the vast number of existing Relational database users gradually to
migrate to an Object database platform, while maintaining the support of their
Relational vendor.

A major addition to the Relational model is the introduction of a stronger type
of system that can accommodate the use of complex data types, which still
allow the Relational model to be preserved. Several large database suppliers,
including IBM Informix and Oracle, have embraced the Object-Relational model
as the way forward.

12

DB2 Relational Extenders

IBM DB2 Relational Extenders are built on the Object/Relational facilities
first introduced in DB2 version2. These facilities form the first part of IBM’s
implementation of the emerging SQL3 standard. It includes UDTs (User Defined
Types), UDFs (User Defined Functions), large objects (LOBs), triggers, stored
procedure and checks.

The DB2 Relational Extenders are used to define and implement new complex
data types. The Relational Extenders encapsulate the attribute structure and
behaviour of these new data types, storing them in table columns of a DB2
database. The new data types can be accessed through SQL statements in the
same manner as the standard DB2 data types. The DBMS treats these data
types in a strongly typed manner, ensuring that they are only used where data
items or columns of the particular data type are anticipated. A DB2 Relational
Extender is therefore a package consisting of a number of UDTs, UDFs, triggers,
stored procedures and constraints.

When installing a Relational Extender on a database, various files are copied
into the server’s directories, including the function library containing the UDFs.
Then an application is run against the database to define the Relational Exten-
der’s database definition to the server. These include scripts to define the UDTs
and UDFs making up the Relational Extender.

IBM Informix DataBlades

The DataBlades are standard software modules that plug into the database and
extend its capabilities. A DataBlade is like an Object-oriented package, similar
to a C++ class library that encapsulates a data object’s class definition. The
DataBlade not only allows the addition of new and advanced data types to the
DBMS, but it also enables specification of new, efficient and optimised access
and processing methods for these data types.

A DataBlade includes the data type definition (or structure) as well as the
methods (or operations) through which it can be processed. It also includes the
rules (or integrity constraints) that should be enforced, similar to a standard
built-in data type.

A DataBlade is composed of UDT, a number of UDFs, access methods, inter-
faces, tables, indexes and client code.

Object-Relational features in Oracle 11

Important

The object features described in the following can only be used with Oracle
Enterprise edition. In particular, if you are using Personal Oracle edition for

13

this module, you will not be able to create the objects described. You will
however be able to perform the required activities, as these involve examining
sample scripts that are included in the Oracle Personal Edition package. If your
Learning Support Centre has a version of Oracle running on a mainframe or
minicomputer, it is possible that access to the Enterprise Edition of Oracle can
be provided. This is not necessary for completion of the activities and exercises
of this chapter, but would be necessary if you wish to consolidate the information
given here with some practical experience of Oracle’s object features.

We shall examine in some detail the facilities incorporated in Oracle11, as these
provide a good example of how one of the major database vendors is seeking
to increase the level of Object support within the DBMS, while maintaining
support for the Relational model.

Abstract data types

Abstract data types (ADTs) are provided to enable users to define complex data
types, which are structures consisting of a number of different elements, each
of which uses one of the base data types provided within the Oracle product.
For example, an abstract data type could be created to store addresses. Such
a data type might consist of three separate base attributes, each of which is
of type varchar(30). From the time of its creation, an ADT can be referred to
when creating tables in which the ADT is to be used. The address ADT would
be established with the following definition in Oracle 8:

CREATE TYPE ADDRESS_TYPE AS OBJECT (STREET VARCHAR2(30),

CITY VARCHAR2(30),

COUNTRY VARCHAR2(30));

ADTs can be nested (their definitions can make use of other ADTs). For exam-
ple, if we wished to set up an ADT to describe customers, we could make use
of the address ADT above as follows:

CREATE TYPE CUSTOMER_TYPE AS OBJECT (CUST_NO NUM-
BER(6),

NAME VARCHAR2(50),

BIRTHDATE DATE,

GENDER CHAR,

ADDRESS ADDRESS_TYPE);

The advantages of ADTs are that they provide a standard mechanism for defin-
ing complex data types within an application, and facilitate reuse of complex
data definitions.

14

Object tables

These are tables created within Oracle11 which have column values that are
based on ADTs. Therefore, if we create a table which makes use of the customer
and address ADTs described above, the table will be an object table. The code
to create such a table would be as follows:

CREATE TABLE CUSTOMER OF CUSTOMER_TYPE;

Note that this CREATE TABLE statement looks rather different to those en-
countered in the chapter on SQL Data Definition Language (DDL). It is very
brief, because it makes use of the previous work we have done in establishing
the customer and address ADTs.

It is extremely important to bear in mind the distinction between object tables
and ADTs.

ADTs are the building blocks on which object tables can be created. ADTs
themselves cannot be queried, in the same way that the built-in data types in
Oracle such as number and varchar2 cannot be queried. ADTs simply provide
the structure which will be used when objects are inserted into an object table.
Object tables are the element which is queried, and these are established using a
combination of base data types such as varchar2, date, number and any relevant
ADTs as required.

Nested tables

A nested table is a table within a table. It is a collection of rows, represented as
a column in the main table. For each record in the main table, the nested table
may contain multiple rows. This can be considered as a way of storing a one-
to-many relationship within one table. For example, if we have a table storing
the details of departments, and each department is associated with a number
of projects, we can use a nested table to store details about projects within the
department table. The project records can be accessed directly through the
corresponding row of the department table, without needing to do a join. Note
that the nested table mechanism sacrifices first normal form, as we are now
storing a repeating group of projects associated with each department record.
This may be acceptable, if it is likely to be a frequent requirement to access
departments with their associated projects in this way.

Varying arrays

A varying array, or varray, is a collection of objects, each with the same data
type. The size of the array is preset when it is created. The varying array is
treated like a column in a main table. Conceptually, it is a nested table, with
a preset limit on its number of rows. Varrays also then allow us to store up to
a preset number of repeating values in a table. The data type for a varray is
determined by the type of data to be stored.

15

Support for large objects

Large objects, or LOBs as they are known in Oracle8, are provided for by a
number of different predefined data types within Oracle11. These predefined
data types are as follows:

• Blob: Stores any kind of data in binary format. Typically used for multi-
media data such as images, audio and video.

• Clob: Stores string data in the database character set format. Used for
large strings or documents that use the database character set exclusively.
Characters in the database character set are in a fixed-width format.

• Nclob: Stores string data in National Character Set format. Used for large
strings or documents in the National Character Set. Supports characters
of varying-width format.

• Bfile: Is a pointer to a binary file stored outside of the database in the
host operating system file system, but accessible from database tables.

It is possible to have multiple large objects (including different types) per table.

Summary

Despite the advances made in OO technology and its widespread acceptance
in general programming use, pure Object-orientation has only achieved serious
acceptance in a limited number of specialised fields and not general, industrial-
strength applications. The two main reasons for this appear to be the problems
that moving to OO introduces, in addition to the fact that Relational technol-
ogy still has a great deal to offer. The way forward for the use of objects in
databases seems to be the Object-Relational model, extending the existing Rela-
tional model to incorporate the best features of OO technology, thus delivering
the best of both worlds.

Discussion topic

There are a number of applications, such as engineering design, for which Object-
oriented database systems are clearly superior to Relational systems. For a
number of commercial applications, however, the advantage is perhaps less clear.
Imagine you are starting up a company, which requires to keep data about
customers, orders, products and sales. Discuss with your colleagues whether
you would prefer to go for a Relational, Object-Relational or Object-oriented
database solution. Factors you should take into account are as follows:

• The nature of the products to be sold.

• Whether the database is to be connected to the Internet.

16

• The volume of the data (both in terms of the numbers of records of each
type, and the frequency of transactions to be supported).

Consider in your discussions the way in which each of these factors might affect
your decision.

Further work

Polymorphism

Object-orientation contains a number of new concepts and terminology, most
of which have been introduced to some extent in this chapter. One important
area that has not been covered in detail, is the ability to provide alternative
implementations of computer processing. For example, it may be required to
calculate the salary of full-time employees in one way, and of part-time employees
in another. This facility can be provided in Object-oriented systems through the
mechanism of polymorphism. Using the core text for the module, investigate
the concept of polymorphism, and identify two further situations where it might
be applied.

17

	Chapter 16. Object-Oriented Database Systems
	Objectives
	Introduction
	Motivation
	What is Object database technology?
	Capturing semantics

	Object-oriented concepts
	Combining structure and behaviour
	Messages
	Methods
	Defining objects - Class definitions
	Inheritance
	Encapsulation

	Implementing an application of Object databases
	Implementing Object databases
	Applications for OO databases
	Problems with the OO model
	The future of OO databases

	The Object-Relational model
	DB2 Relational Extenders
	IBM Informix DataBlades
	Object-Relational features in Oracle 11

	Summary
	Discussion topic
	Further work
	Polymorphism

