
Chapter 17. Web Database Connectivity

Table of contents

• Objectives
• Introduction
• Context

– Basic concepts
– Web-based client-server applications
– Context summary

• Web database architectures
– Components of a database application

∗ Browser layer
∗ Application logic layer
∗ Database connection layer
∗ Database layer

– 2-tier client-server architecture
– 3-tier client-server architecture

• Database gateways
– Client-side solutions
– Server-side solutions

• Client-side Web database programming
– Browser extensions

∗ JavaScript
∗ Java
∗ ActiveX
∗ Plug-ins

– External applications
• Server-side Web database programming

– CGI (Common Gateway Interface)
∗ Advantages and disadvantages of CGI

– Extended CGI
– HTTP server APIs and server modules

∗ Server vendor modules
∗ Advantages of server APIs and modules

– Important issues
– Comparison of CGI, server APIs and modules, and FastCGI
– Proprietary HTTP servers

• Connecting to the database
– Database API libraries

∗ Native database APIs
∗ Database-independent APIs: ODBC
∗ Benefits of database APIs
∗ Shortcomings of database APIs

– Template-driven packages
∗ The approach

1



∗ Benefits of template-driven packages
∗ Shortcomings of template-driven packages

– GUI application builders
∗ The approach
∗ Benefits of visual tools
∗ Shortcomings of visual tools

• Managing state and persistence in Web applications
– Technical options
– The URL approach

∗ Benefits of the URL approach
∗ Shortcomings of the URL approach

– URL QUERY_STRING
∗ Benefits of the hidden fields approach
∗ Shortcomings of the hidden fields approach

– HTTP cookies
∗ Benefits of cookies
∗ Shortcomings of cookies

– Important considerations
∗ Managing state on the client
∗ Managing state on the server

• Security Issues in Web Database Applications
– Proxy servers
– Firewalls
– Digital signatures
– Digital certificates
– Kerberos
– Secure sockets layer (SSL) and secure HTTP (S-HTTP)
– Java security
– ActiveX security

• Performance issues in Web database applications
• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Understand the requirements for connecting database systems to the Web.

• Critically compare a number of approaches that might be used to build
the Web database connectivity.

• Make recommendations for a given company and specific scenario regard-
ing which of the commonly used mechanisms is likely to be most appro-
priate, taking into consideration relative cost, security, likely transaction
volumes and required performance.

2



Introduction

In parallel with this chapter, you should read Chapter 29 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter introduces you to the exciting topic of combining World Wide Web
(WWW) technology with that of databases. It is about bridging a gap between
new technologies and ‘old’ in order to achieve what has never been achievable
before. The emergence of the WWW is arguably one of the most important
technological advances in this century, and since its birth a decade ago, it has
changed many people’s lives and had a profound impact on society.

The Web has been expanding at an incredible speed and even while you are
reading this, hundreds and thousands of people are getting ‘online’ and hooked
to the Web. Reactions to this technology are understandably mixed. People
are excited, shocked, confused, puzzled or even angered by it. Whatever your
reaction might be, you are being affected and benefiting from it. Without the
Web technology, the creation of a global campus would not have been possible.
It is fair to say that the WWW is playing and will continue to play an important
role (perhaps the most important role) in shaping the future world of technology,
business and industry.

The database technology has been around for a long time now, and for many
business and government offices, databases systems have already become an es-
sential and integral part of the organisation. Now the new technology has given
the ‘old’ a shot in the arm, and the combination of the two creates many ex-
citing opportunities for developing advanced database applications, which will
in turn produce additional benefits for the traditional database applications. A
multinational company, for example, can create a Web-based database appli-
cation to enable the effective sharing of information among offices around the
world.

As far as database applications are concerned, a key aspect of the WWW tech-
nology is that it offers a brand new platform to collect, deliver and disseminate
information. Via the Web, a database application can be made available, inter-
actively, to users and organisations anywhere in the world.

In this chapter, we are going to examine the impact that the WWW brings to the
‘traditional’ database technology. We will see how databases can be connected
to the Web, and the most effective way of using the new technology to develop
database applications. We will also study the most commonly used approaches
for creating Web databases, and discuss related issues such as dynamic updating
of Web pages inline with the changes in databases, performance, and security
concerns.

As the Web contains many large, complex, multimedia documents, the mate-
rials covered in this chapter are relevant to the discussion of Object-oriented

3



databases. The reason is that the Object-oriented model is considered the
most suitable for the storage, organisation and retrieval of large sets of Web
documents. Also, the need to process high volumes of queries and updates
over the Web has an important impact on performance considerations. Tradi-
tional techniques need to be adapted or even changed to satisfy performance
requirements of Web applications. Lastly, the discussion about client-server ap-
plications (Chapter 15) is also relevant to this chapter, because Web databases
represent a new type of such applications.

Context

Basic concepts

Before we start to discuss Web database applications, we need to clarify a num-
ber of related terms and concepts.

Internet: It is a worldwide collection of interconnected computer networks,
which belong to various organisations (e.g. educational, business and govern-
ments). It is not synonymous to the WWW. The services that are normally
available on the Internet include email, real-time communication (e.g. confer-
encing and chat), news services, and facilities for accessing remote computers
to send and receive documents.

The WWW or simply the Web: The WWW comprises software (e.g. Web
servers and browsers) and data (e.g. Web sites). It simply represents a (huge)
set of information resources and services that live on the Internet. Each Web site
consists of a set of Web pages, which typically contain multimedia data (e.g. text,
images, sound and video). In addition, a Web page can include hyperlinks to
other Web pages which allow users (also called net surfers) to navigate through
the Web of information pages.

Intranet: A Web site or group of sites which belongs to an organisation and
can only be accessed by members of that organisation. Between the Internet
and an intranet, there is an extra layer of software or hardware called a firewall.
Its main function is to prevent unauthorised access to a private network (e.g. an
intranet) from the Internet.

Extranet: An intranet which allows partial access by authorised users from
outside the organisation via the Internet.

HTTP (HyperText Transfer Protocol): The standard protocol for trans-
ferring Web pages through the Internet. HTTP defines how clients (i.e. users)
and servers (i.e. providers) should communicate.

HTML (HyperText Markup Language): A simple yet powerful language
that is commonly used to format documents which are to be published on the
Web.

4



URL (Uniform Resource Locator): A string of alphanumeric characters
that represents the location of a resource (e.g. a Web page) on the Internet and
how that resource should be accessed.

There are two types of Web pages: static and dynamic.

1. Static: An HTML document stored in a file is a typical example of a static
Web page. Its contents do not change unless the file itself is changed.

2. Dynamic: For a dynamic Web page, its contents are generated each
time it is accessed. As a result, a dynamic Web page can respond to
user input from the browser by, for example, returning data requested by
the completion of a form or returning the result of a database query. A
dynamic page can also be customised by and for each user. Once a user
has specified some preferences when accessing a particular site or page, the
information can be recorded and appropriate responses can be generated
according to those preferences.

From the above, it can be seen that dynamic Web pages are much more powerful
and versatile than static Web pages, and will be a focus for developing Web
database applications. When the documents to be published are dynamic, such
as those resulting from queries to databases, the appropriate hypertext needs to
be generated by the servers. To achieve this, we must write scripts that perform
conversions from different data formats into HTML ‘on-the-fly’. These scripts
also need to recognise and understand the queries performed by clients through
HTML forms and the results generated by the DBMS.

In short, a Web database application normally interacts with an existing
database, using the Web as a means of connection and having a Web browser or
client program on the front end. Typically such applications use HTML forms
for collecting user input (from the client); CGI (Common Gateway Interface,
to be discussed later) to check and transfer the data from the server; and a
script or program which is or calls a database client to submit or retrieve data
from the database. The diagram below gives a graphical illustration of such a
scenario. More will be discussed in later parts of this chapter.

5



Web-based client-server applications

As mentioned earlier in the Introduction, Web-based database applications are
a new type of client-server application. Some of the traditional client-server
database techniques may still be adapted. However, because of the incorporation
of the Web technology, there are important differences as set out in the following
table.

6



Platform independence: Web clients are platform-independent and do not
require modification to be run on different operating systems. Traditional
database clients, on the other hand, require extensive porting efforts to sup-
port multiple platforms. This is arguably one of the most compelling reasons
for building a Web-based client-server database application.

Interpreted applications: Web applications are written in interpreted lan-
guages (e.g. HTML and Java). This has an adverse effect on performance. In
many applications, however, this is a price worth paying to gain the advantage
of being platform independent. Time-critical applications may not be good
candidates to be implemented on the Web.

No need for installation: Another benefit of Web database applications is
that the need for installing special software is eliminated on the clients’ side.
It is pretty safe to assume that the clients have already had a Web browser
installed, which is the only piece of software needed for the clients to run the
applications.

Simple client: As a client needs just a browser to run a Web-based database
application, the potential complications are minimised.

Common interface across applications: Again, because there is no need
for specialised software, users have the benefit of using a browser for possibly
different applications.

Limited GUI (Graphical User Interface): This is one area in which Web-
based database applications may fall short. Highly customised application inter-
faces and highly interactive clients may not translate well as Web applications.
This is because of the HTML limitations. At the moment, HTML forms do not
offer an extensive feature set. Although JavaScript language can extend the
functionality of HTML-based applications, it is too complex, adds to download-

7



ing time, and degrades performance.

Integrate with other applications: Because of the benefit of being platform
independent, different applications that adhere to the HTML standard can be
integrated without many difficulties.

Non-persistent connection to database: Persistent database connections
are highly efficient data channels between a client and the DBMS, and therefore,
are ideal for database applications. However, Web-based applications do not
have this benefit. A Web-based client maintains its connection to a database
only as long as is necessary to retrieve the required data, and then releases it.
Thus, Web application developers must address the added overhead for creating
new database connections each time a client requires database access.

Apart from the above differences, there are some other important concerns for
Web-based applications:

• Reliability of the Internet: At the moment, there are reliability prob-
lems with the Internet. It may break down; data may be lost on the
net; large amounts of data traffic may slow down or even overwhelm the
network system.

• Security: Security on the Internet is of great concern for any organisation
which has developed Web-based database applications. For example, the
database may be broken into, or confidential data may be intercepted
during transmission by unauthorised parties or even criminals.

At the present, a lot of research and development work is being carried out to
address these concerns. There is no doubt that the potential problems can be
overcome and over time, the Internet will be more reliable and more secure for
connecting the world.

Context summary

In this section, we have drawn an overall picture of Web-based database appli-
cations. We have briefly mentioned how a DBMS can be integrated with the
Web, and what their advantages and disadvantages are as compared to the tra-
ditional client-server applications. In the rest of this chapter, we will study the
details of creating Web database applications and discuss the commonly used
approaches of linking databases to the Web.

Review question 1

• Are the Internet and WWW (Web) the same concept? Why?

• What are intranets and extranets?

• What is a URL?

• Most Web sites have URLs starting with http://……. Why?

8



• What is a dynamic Web page? What are its characteristics?

• What are the major features of a Web-based client-server application?

Web database architectures

Components of a database application

Web database applications may be created using various approaches. However,
there are a number of components that will form essential building blocks for
such applications. In other words, a Web database application should comprise
the following four layers (i.e. components):

• Browser layer

• Application logic layer

• Database connection layer

• Database layer

Browser layer

The browser is the client of a Web database application, and it has two major
functions. First, it handles the layout and display of HTML documents. Second,
it executes the client-side extension functionality such as Java, JavaScript, and
ActiveX (a method to extend a browser’s capabilities).

The three most popular browsers at the present are Mozilla Firefox (Firefox for
short), Google Chrome and Microsoft Internet Explorer (IE).

All three browsers are graphical browsers. During the early days of the Web,
a text-based browser, called Lynx, was popular. As loading graphics over the
Internet can be a slow and time-consuming process, database performance may
be affected. If an application requires a speedy client and does not need to
display graphics, then the use of Lynx may be considered.

All browsers implement the HTML standard. The discussion of HTML is be-
yond this chapter, but you need to know that it is a language used to format
data/documents to be displayed on the Web.

Browsers are also responsible for providing forms for the collection of user input,
packaging the input, and sending it to the appropriate server for processing. For
example, input can include registration for site access, guest books and requests
for information. HTML, Java, JavaScript or ActiveX (for IE) may be used to
implement forms.

9



Application logic layer

The application logic layer is the part of a Web database application with which
a developer will spend the most time. It is responsible for:

• Collecting data for a query (e.g. a SQL statement).

• Preparing and sending the query to the database via the database connec-
tion layer.

• Retrieving the results from the connection layer.

• Formatting the data for display.

Most of the application’s business rules and functionality will reside in this layer.
Whereas the browser client displays data as well as forms for user input, the
application logic component compiles the data to be displayed and processes
user input as required. In other words, the application logic generates HTML
that the browser renders. Also it receives, processes and stores user input that
the browser sends.

Depending on the implementation methods used for the database application,
the application logic layer may have different security responsibilities. If the
application uses HTML for the front end, the browser and server can handle
data encryption (i.e. a security measure to ensure that data will not be able
to be intercepted by unauthorised parties). If the application is a Java applet
and uses Java for the front end, then it itself must be responsible for adopting
transmission encryption.

Database connection layer

This is the component which actually links a database to the Web server. Be-
cause manual Web database programming can be a daunting task, many current
Web database building tools offer database connectivity solutions, and they are
used to simplify the connection process.

The database connection layer provides a link between the application logic
layer and the DBMS. Connection solutions come in many forms, such as DBMS
net protocols, API (Application Programming Interface [see note below]) or
class libraries, and programs that are themselves database clients. Some of
these solutions resulted in tools being specifically designed for developing Web
database applications. In Oracle, for example, there are native API libraries
for connection and a number of tools, such as Web Publishing Assistant, for
developing Oracle applications on the Web.

The connection layer within a Web database application must accomplish a
number of goals. It has to provide access to the underlying database, and also
needs to be easy to use, efficient, flexible, robust, reliable and secure. Different
tools and methods fulfil these goals to different extents.

10



Note

An API consists of a set of interrelated subroutines that provide the functionality
required to develop programs for a target operating environment. For example,
Microsoft provides different APIs targeted at the construction of 16- and 32-bit
Windows applications. An API would provide functions for all aspects of system
activity, such as memory, file and process management. Specialised APIs are
also supplied by software vendors to support the use of their products, such as
database and network management systems.

Database layer

This is the place where the underlying database resides within the Web database
application. As we have already learned, the database is responsible for storing,
retrieving and updating data based on user requirements, and the DBMS can
provide efficiency and security measures.

In many cases, when developing a Web database application, the underlying
database has already been in existence. A major task, therefore, is to link the
database to the Web (the connection layer) and to develop the application logic
layer.

2-tier client-server architecture

Traditional client-server applications typically have a 2-tier architecture as il-
lustrated in the figure below. The client (tier 1) is primarily responsible for
the presentation of data to the user, and the server (tier 2) is responsible for
supplying data services to the client. The client will handle user interfaces and
main application logic, and the server will mainly provide access services to the
underlying database.

11



If such a 2-tier architecture is used to implement a Web database application,
tier 1 will contain the browser layer, the application logic layer and the connec-
tion layer. Tier 2 accommodates the DBMS. This will inevitably result in a fat
client.

3-tier client-server architecture

In order to satisfy requirements of increasingly complex distributed database
applications, a 3-tier architecture was proposed to replace the 2-tier one. There
are three tiers in this new architecture, each of which can potentially run on a
different platform.

The first tier is the client, which contains user interfaces. The middle tier
accommodates the application server, which provides application logic and data
processing functions. The third tier contains the actual DBMS, which may run
on a separate server called a database server.

12



The 3-tier architecture is more suitable for implementing a Web database ap-
plication. The browser layer can reside in tier 1, together with a small part
of the application logic layer. The middle tier implements the majority of the
application logic as well as the connection layer. Tier 3 is for the DBMS.

Referring to the figure below, for example, it can be seen that the Web Client is
in the first tier. The Web Server and Gateway are in the middle tier and they
form the application server. The DBMS and possibly other data sources are in
the third tier.

13



Having studied the Web database architectures, we should understand that the
most important task in developing a Web database application is to build the
database connection layer. In other words, we must know how to bridge the gap
between the application logic layer and the database layer.

Review question 2

• What is the typical architecture of a Web database application?

• How can a 3-tier client-server architecture be used to implement a Web
database application?

Database gateways

A Web database gateway is a bridge between the Web and a DBMS, and
its objective is to provide a Web-based application the ability to manipulate

14



data stored in the database. Web database gateways link stateful systems
(i.e. databases) with a stateless, connectionless protocol (i.e. HTTP). HTTP
is a stateless protocol in the sense that each connection is closed once the server
provides a response. Thus, a Web server will not normally keep any record about
previous requests. This results in an important difference between a Web-based
client-server application and a traditional client-server application:

• In a Web-based application, only one transaction can occur on a connec-
tion. In other words, the connection is created for a specific request from
the client. Once the request has been satisfied, the connection is closed.
Thus, every request involving access to the database will have to incur the
overhead of making the connection.

• In a traditional application, multiple transactions can occur on the same
connection. The overhead of making the connection will only occur once
at the beginning of each database session.

There are a number of different ways to create Web database gateways. Gener-
ally, they can be grouped into two categories: client-side solutions and server-
side solutions, as illustrated below:

15



Client-side solutions

The client-side solutions include two types of approaches for connections:
browser extensions and external applications.

16



Browser extensions are add-ons to the core Web browser that enhance and
augment the browser’s original functionality. Specific methods include plug-ins
for Firefox, Chrome and IE, and ActiveX controls for IE. Also, all the three types
of browsers (Firefox, Chrome and IE) support Java and JavaScript languages
(i.e. Java applets and JavaScript can be used to extend browsers’ capabilities).

External applications are helper applications or viewers. They are typically
existing database clients that reside on the client machine and are launched
by the Web browser in a particular Web application. Using external applica-
tions is a quick and easy way to bring legacy database applications online, but
the resulting system is neither open nor portable. Legacy database clients do
not take advantages of the platform independence and language independence
available through many Web solutions. Legacy clients are resistant to change,
meaning that any modification to the client program must be propagated via
costly manual installations throughout the user base.

Server-side solutions

Server-side solutions are more widely adopted than the client-side solutions. A
main reason for this is that the Web database architecture requires the client to
be as thin as possible. The Web server should not only host all the documents,
but should also be responsible for dealing with all the requests from the client.

In general, the Web server should be responsible for the following:

• Listening for HTTP requests.

• Checking the validity of the request.

• Finding the requested resource.

• Requesting authentication if necessary.

• Delivering requested resource.

• Spawning programs if required.

• Passing variables to programs.

• Delivering output of programs to the requester.

• Displaying error message if necessary.

The client (browser) should be responsible for some of the following:

• Rendering HTML documents.

• Allowing users to navigate HTML links.

• Displaying image.

• Sending HTML form data to a URL.

17



• Interpreting Java applets.

• Executing plug-ins.

• Executing external helper applications.

• Interpreting JavaScript and other scripting language programs.

• Executing ActiveX controls in the case of IE.

In the following sections, we are going to discuss both client-side and server-side
solutions in some detail.

Review question 3

• What is a gateway in a Web database application and why is it needed?

• Where can we implement a gateway for a Web database application?

Client-side Web database programming

Major tasks of client-side Web database application programming include the
creation of browser extensions and the incorporation of external applications.
These types of gateways take advantage of the resources of the client machine,
to aid server-side database access. Remember, however, it is advantageous to
have a thin client. Thus, the scope of such programming on the client-side
should be limited. A very large part of the database application should be on
the server side.

Browser extensions

Browser extensions can be created by incorporating script language interpreters
to support script languages (e.g. JavaScript), bytecode interpreters to support
Java, and dynamic object linkers to support various plug-ins.

JavaScript

JavaScript is a scripting language that allows programmers to create and cus-
tomise applications on the Internet and intranets. On the client side, it can be
used to perform simple data manipulation such as mathematical calculations
and form validation. JavaScript code is normally sent as a part of an HTML
document and is executed by the browser upon receipt (the browser must have
the script language interpreter).

Note that JavaScript has little to do with Java language. JavaScript was origi-
nally called LiveScript, but it was changed to benefit from the excitement sur-
rounding Java. The only relationship between JavaScript and Java is a gate-
way between the former and Java applets (Web applications written in Java).

18



JavaScript provides developers with a simple way to access certain properties
and methods of Java applets on the same page, without having to understand
or modify the Java source code of the applet.

Connection to databases

As a database gateway, JavaScript on the client side does not offer much without
the aid of a complementary approach such as Java, plug-ins and CGI (Common
Gateway Interface, to be discussed later). For example:

• If a Java applet on a page of HTML has access to a database, a programmer
can write JavaScript code using LiveConnect to manipulate the applet.

• If there is a form on the HTML document and if an action parameter
for that form refers to a CGI program that has access to a database, a
programmer can write JavaScript code to manipulate the data elements
within the form and then submit it (i.e. submit a kind of request to a
DBMS).

Performance

JavaScript can improve the performance of a Web database application if it is
used for client-side state management. It can eliminate the need to transfer state
data repeatedly between the browser and the Web server. Instead of sending an
HTTP request each time it updates an application state, it sends the state only
once as the final action. However, there are some side effects resulting from this
gain in performance. For example, it may result in the application becoming
less robust if state management is completely on the client side. If the client
accidentally or deliberately exits, the session state is lost.

Java

As mentioned earlier, Java applets can be manipulated by JavaScript functions
to access databases. In general, Java applets can be downloaded into a browser
and executed on the client side (the browser should have the bytecode inter-
preter). The connection to the database is made through appropriate APIs
(Application Programming Interface, such as JDBC and ODBC). We will dis-
cuss the details in the next section: Server-Side Web Database Programming.

ActiveX

ActiveX is a way to extend Microsoft IE’s (Internet Explorer) capabilities. An
ActiveX control is a component on the browser that adds functionality which
cannot be obtained in HTML, such as access to a file on the client side, other
applications, complex user interfaces, and additional hardware devices. ActiveX
is similar to Microsoft OLE (Object Linking and Embedding), and ActiveX
controls can be developed by any organisation and individual. At the present,

19



more than one thousand ActiveX controls, including controls for database access,
are available for developers to incorporate into Web applications.

Connection to databases

A number of commercial ActiveX controls offer database connectivity. Because
ActiveX has abilities similar to OLE, it supports most or all the functionality
available to any Windows program.

Performance

Like JavaScript, ActiveX can aid in minimising network traffic. In many cases,
this technique results in improved performance. ActiveX can also offer rich
GUIs. The more flexible interface, executed entirely on the client side, makes
operations more efficient for users.

Plug-ins

Plug-ins are Dynamic Link Libraries (DLL) that give browsers additional func-
tionality. Plug-ins can be installed to run seamlessly inside the browser window,
transparent to the user. They have full access to the client’s resources, because
they are simply programs that run in an intimate symbiosis with the Web
browser.

To create a plug-in, the developer writes an application using the plug-in API
and native calls. The code is then compiled as a DLL. Installing a plug-in is
just a matter of copying the DLL into the directory where the browser looks
for plug-ins. The next time that the browser is run, the MIME type(s) that the
new plug-in supports will be opened with the plug-in. One plug-in may support
multiple MIME types.

There are a number of important issues concerning plug-ins:

• Plug-ins incur installation requirements. Because they are native code,
not packaged with the browser itself, plug-ins must be installed on the
client machine.

• Plug-ins are platform dependent. Whenever a change is made, it must be
made on all supported platforms.

Connection to databases

Plug-ins can operate like any stand-alone applications on the client side. They
can be used to create direct socket connections to databases via the DBMS net
protocols (such as SQL *Net for Oracle). Plug-ins can also use JDBC, ODBC,
OLE and any other methods to connect to databases.

Performance

Plug-ins are loaded on demand. When a user starts up a browser, the installed
plug-ins are registered with the browser along with their supported MIME types,

20



but the plug-ins themselves are not loaded. When a plug-in for a particular
MIME type is requested, the code is then loaded into memory. Because plug-
ins use native code, their executions are fast.

External applications

External helper applications can be new or legacy database clients, or a terminal
emulator. If there are existing traditional client-server database applications
which reside on the same machine as the browser, then they can be launched
by the browser and execute as usual.

This approach may be an appropriate interim solution for migrating from an
existing client-server application to a purely Web-based one. It is straightfor-
ward to configure the browser to launch existing applications. It just involves
the registration of a new MIME type and the associated application name. For
organisations that cannot yet afford the time and funds needed to transfer ex-
isting database applications to the Web, launching legacy applications from the
browser provides a first step that requires little work.

Maintenance issues

Using the external applications approach, the existing database applications
need not be changed. However, it means that all the maintenance burdens
associated with traditional client-server applications will remain. Any change
to the external application will require a very costly reinstallation on all client
machines. Because this is not a pure Web-based solution, many advantages
offered by Web-based applications cannot be realised.

Performance

Traditional client-server database applications usually offer good performance.
They do not incur the overhead of requiring repeated connections to the
database. External database clients can make one connection to the remote
database and use that connection for as many transactions as necessary for the
session, closing it only when finished.

Review question 4

What are the major tasks involved in client-side Web database programming?

Server-side Web database programming

CGI (Common Gateway Interface)

CGI is a protocol for allowing Web browsers to communicate with Web servers,
such as sending data to the servers. Upon receiving the data, the Web server
can then pass them to a specified external program (residing on the server

21



host machine) via environment variables or standard input stream (STDIN).
The external program is called a CGI program or CGI script. Because CGI
is a protocol, not a library of functions written specifically for any particular
Web server, CGI programs/scripts are language independent. As long as the
program/script conforms to the specification of the CGI protocol, it can be
written in any language such as C, C++ or Java. In short, CGI is the protocol
governing communications among browsers, servers and CGI programs.

In general, a Web server is only able to send documents and to tell a browser
what kinds of documents it is sending. By using CGI, the server can also launch
external programs (i.e. CGI programs). When the server recognises that a URL
points to a file, it returns the contents of that file. When the URL points to a
CGI program, the server will execute it and then send back the output of the
program’s execution to the browser as if it were a file.

Before the server launches a CGI program, it prepares a number of environment
variables representing the current state of the server which is requesting the ac-
tion. The program collects this information and reads STDIN. It then carries
out the necessary processing and writes its output to STDOUT (the standard
output stream). In particular, the program must send the MIME header infor-
mation prior to the main body of the output. This header information specifies
the type of the output.

Refer to the figure under the Basic Concepts section. The CGI approach en-
ables access to databases from the browser. The Web client can invoke a CGI
program/script via a browser, and then the program performs the required ac-
tion and accesses the database via the gateway. The outcome of accessing the
database is then returned to the client via the Web server. Invoking and ex-
ecuting CGI programs from a Web browser is mostly transparent to the user.
The following steps need to be taken in order for a CGI program to execute
successfully:

• The user (Web client) calls the CGI program by clicking on a link or by
pressing a button. The program can also be invoked when the browser
loads an HTML document (hence being able to create a dynamic Web
page).

• The browser contacts the Web server, asking for permission to run the
CGI program.

• The server checks the configuration and access files to ensure that the
program exists and the client has access authorisation to the program.

• The server prepares the environment variables and launches the program.

• The program executes and reads the environment variables and STDIN.

• The program sends the appropriate MIME headers to STDOUT, followed
by the remainder of the output, and terminates.

22



• The server sends the data in STDOUT (i.e. the output from the program’s
execution) to the browser and closes the connection.

• The browser displays the information received from the server.

As mentioned earlier, when preparing data for the browser to display, the CGI
program has to include a header as the first line of output. It specifies how the
browser should display the output. This header may be one of the following
types:

Primarily, there are four methods available for passing information from the
browser to a CGI program. In this way, clients’ input (representing users’ spe-
cific requirements) can be transmitted to the program for actions.

1. Passing parameters on the command line.

2. Passing environment variables to CGI programs.

3. Passing data to CGI programs via STDIN.

4. Using extra path information.

Detailed discussions on these methods are beyond the scope of this chapter.
Please refer to any book dealing specifically with the CGI topic.

Advantages and disadvantages of CGI

Advantages

CGI is the de facto standard for interfacing Web clients and servers with external
applications, and is arguably the most commonly adopted approach for interfac-
ing Web applications to data sources (such as databases). The main advantages
of CGI are its simplicity, language independence, Web server independence and
its wide acceptance.

Disadvantages

23



The first notable drawback of CGI is that the communication between a client
(browser) and the database server must always go through the Web server in
the middle, which may cause a bottleneck if there is a large number of users
accessing the Web server simultaneously. For every request submitted by a Web
client or every response delivered by the database server, the Web server has to
convert data from or to an HTML document. This incurs a significant overhead
to query processing.

The second disadvantage of CGI is the lack of efficiency and transaction support
in a CGI program. For every query submitted through CGI, the database server
has to perform the same logon and logout procedure, even for subsequent queries
submitted by the same user. The CGI program could handle queries in batch
mode, but then support for online database transactions that contain multiple
interactive queries would be difficult.

The third major shortcoming of CGI is due to the fact that the server has to
generate a new process or thread for each CGI program. For a popular site (like
Yahoo), there can easily be hundreds or even thousands of processes compet-
ing for memory, disk and processor time. This situation can incur significant
overhead.

Last but not least, extra measures have to be taken to ensure server security.
CGI itself does not provide any security measures, and therefore developers of
CGI programs must be security conscious. Any request for unauthorised action
must be spotted and stopped.

Extended CGI

As discussed in the previous section, one of the major concerns with CGI is
its performance. With CGI, a process is spawned on the server each time a
request is made for a CGI program. There is no method for keeping a spawned
process alive between successive requests, even if they are made by the same
user. Furthermore, CGI does not inherently support distributed processing, nor
does it provide any mechanism for sharing commonly used data or functionality
among active and future CGI requests. Any data that exists in one instance of
a CGI program cannot be accessed by another instance of the same program.

In order to overcome these problems, an improved version of CGI, called
FastCGI, has been developed with the following features:

• Language independence: As with CGI, FastCGI is a protocol and not
dependent on any specific language.

• Open standard: Like CGI, FastCGI is positioned as an open standard.
It can be implemented by anyone. The specifications, documentation
and source code (in different languages) can be obtained at the Web site
https://soramimi.jp/fastcgi/fastcgispec.html.

24



• Independence from the Web server architecture: A FastCGI application
need not be modified when an existing Web server architecture changes.
As long as the new architecture supports the FastCGI protocol, the appli-
cation will continue to work.

• Distributed computing: FastCGI allows the Web application to be run on
a different machine from the Web server. In this way, the hardware can
be tuned optimally for the software.

• Multiple, extensible roles: In addition to the functionality offered by CGI
(i.e. receiving data and returning responses), FastCGI can fill multiple roles
such as a filter role and an authoriser role. A FastCGI application can
filter a requested file before sending it to the client; the authoriser program
can make an access control decision for a request, such as looking up a
username and password pair in a database. If more roles are needed, more
definitions and FastCGI programs can be written to fulfil them.

• Memory sharing: In some cases, a Web application might need to refer
to a file on disk. Under CGI, the file would have to be read into the
memory space of that particular instance of the CGI program; if the CGI
program were accessed by multiple users simultaneously, the file would
be loaded and duplicated into different memory locations. With FastCGI,
different instances of the same application can access the same file from
the same section of memory without duplication. This approach improves
performance.

• Allocating processes: FastCGI applications do not require the Web server
to start a new process for each application instance. Instead, a certain
number of processes are allotted to the FastCGI application. The number
of processes dedicated for an application is user-definable. These processes
can be initiated when the Web server is started or on demand.

FastCGI seems to be a complete solution for Web database programming, as it
includes the best features of CGI and server APIs. In the following sections, a
number of CGI-alternative approaches are discussed.

HTTP server APIs and server modules

HTTP server (Web server) APIs and modules are the server equivalent of
browser extensions. The central theme of Web database sites created with
HTTP server APIs or modules is that the database access programs coexist
with the server. They share the address space and run-time process of the
server. This approach is in direct contrast to the architecture of CGI, in which
CGI programs run as separate processes and in separate memory spaces from
the HTTP server.

Instead of creating a separate process for each CGI program, the API offers a
way to create an interface between the server and the external programs using

25



dynamic linking or shared objects. Programs are loaded as part of the server,
giving them full access to all the I/O functions of the server. In addition, only
one copy of the program is loaded and shared among multiple requests to the
server.

Server vendor modules

Server modules are just prefabricated applications written in some server APIs.
Developers can often purchase commercial modules to aid or replace the devel-
opment of an application feature. Sometimes, the functionality required in a
Web database application can be found as an existing server module.

Vendors of Web servers usually provide proprietary server modules to support
their products. There are a very large number of server modules that are com-
mercially available, and the number is still rising. For example, Oracle pro-
vides the Oracle PL/SQL module, which contains procedures to drive database-
backed Web sites. The Oracle module supports both NSAPI and ISAPI.

Advantages of server APIs and modules

Having database access programs coexist with the HTTP server improves Web
database access due to improved speed, resource sharing, and the range of func-
tionality.

• Server speed

API programs run as dynamically loaded libraries or modules. A server
API program is usually loaded the first time the resource is requested,
and therefore, only the first user who requests that program will incur the
overhead of loading the dynamic libraries. Alternatively, the server can
force this first instantiation so that no user will incur the loading overhead.
This technique is called preloading. Either way, the API approach is more
efficient than CGI.

• Resource sharing

Unlike a CGI program, a server API program shares address space with
other instances of itself and with the HTTP server. This means that
any common data required by the different threads and instances need
exist only in one place. This common storage area can be accessed by
concurrent and separate instances of the server API program.

The same principle applies to common functions and code. The same set
of functions and code are loaded just once and can be shared by multi-
ple server API programs. The above techniques save space and improve
performance.

• Range of functionality

26



A CGI program has access to a Web transaction only at certain limited
points. It has no control over the HTTP authentication scheme. It has
no contact with the inner workings of the HTTP server, because a CGI
program is considered external to the server.

In contrast, server API programs are closely linked to the server; they
exist in conjunction with or as part of the server. They can customise the
authentication method as well as transmission encryption methods. Server
API programs can also customise the way access logging is performed,
providing more detailed transaction logs than are available by default.

Overall, server APIs provide a very flexible and powerful solution to extending
the capabilities of Web servers. However, this approach is much more complex
than CGI, requiring specialised programmers with a deep understanding of the
Web server and sophisticated programming skills.

Important issues

• Server architecture dependence

Server APIs are closely tied to the server they work with. The only way to
provide efficient cross-server support is for vendors to adhere to the same
API standard. If a common API standard is used, programs written for
one server will work just as well with another server. However, setting up
standards involves compromises among competitors. In many cases, they
are hard to come by.

• Platform dependence

Server APIs and modules are also dependent on computing platforms.
Some servers are supported on multiple platforms. Nevertheless, each
supporting version is dependent on that platform. Similarly, the Microsoft
server is only available for various versions of Windows.

• Programming language

Most Web servers can be extended using a variety of programming lan-
guages and facilities. In addition, Microsoft provides an application en-
vironment called Active Server Pages. Active Server Pages is an open,
compile-free application environment in which developers can combine
HTML, scripts and reusable ActiveX server components to create dynamic
and powerful Web-based business solutions.

Comparison of CGI, server APIs and modules, and FastCGI

The following table provides a straightforward comparison among approaches
of CGI, server APIs and modules, and FastCGI:

27



Proprietary HTTP servers

A proprietary HTTP server is defined as a server application that handles HTTP
requests and provides additional functionality that is not standard or common
among available HTTP servers. The functionality includes access to a particular
database or data source, and translation from a legacy application environment
to the Web.

Examples of proprietary servers include IBM Domino, Oracle Application Ex-
press Listener and Hyper-G. These products were created for specific needs. For
Domino, the need is tight integration with legacy Lotus Notes applications, al-
lowing them to be served over the Web. Oracle Application Express Listener
was designed to provide highly efficient and integrated access to back-end Ora-
cle databases. For Hyper-G, the need is to have easily maintainable Web sites
with automatic link update capabilities.

The main objectives of creating proprietary servers are to meet specialised and
customised needs, and to optimise performance. However, the benefits of pro-
prietary servers must be carefully weighed against their exclusive ties to a Web
database product (which may bring many shortcomings). It requires a thorough
understanding of the business requirements in order to determine whether or
not a proprietary Web server is appropriate in a project.

Review question 5

28



• What is CGI?

• What are the typical steps in the procedure by a Web client of invoking a
CGI program?

• What are Web server APIs and server modules?

• Compare the features of CGI, FastCGI, and server APIs and modules.

Connecting to the database

In previous sections, we have studied various approaches that enable browsers
(Web clients) to communicate with Web servers, and in turn allow Web clients
to have access to databases. For example, CGI, FastCGI or API programs can
be invoked by the Web client to access the underlying database. In this section,
we are going to discuss how database connections can actually be made via those
CGI/FastCGI/API programs. We will learn what specific techniques, tools and
languages are available for making the connections. In short, we will see how
the database connection layer is built for the underlying database.

In general, database connectivity solutions include the use of:

• Native database APIs

• Database-independent APIs

• Template-driven database access packages

• Third-party class libraries

Do not be confused with the concepts of Web server APIs and database APIs.
Web server APIs are used to write server applications, in which database
APIs are used specifically for connecting to and accessing the database. Also,
database APIs can be used to write a CGI program which allows developers
to create a Web application with a database back end. Similarly, a template-
driven database access package, along with a program written in a Web server’s
API (e.g. NSAPI, ISAPI), is another way to link a Web front end to a database
back end.

Database API libraries

Before we look at specific API database connectivity solutions, let’s give back-
ground to database API libraries.

Database API libraries are at the core of every Web database application and
gateway. Regardless how a Web database application is built (whether by man-
ually coding CGI programs or by using a visual application builder), database
API libraries are the foundation of database access.

29



The approach

Database API libraries are collections of functions or object classes that pro-
vide source code access to databases. They offer a method of connecting to
the database engine (under a username and password if user authentication is
supported by the DBMS), sending queries across the connection, and retrieving
the results and/or error messages in a desired format.

Traditional client-server database applications have already employed database
connectivity libraries supplied by vendors and third-party software companies
(i.e., third party class libraries). Because of this fact of wider user base, database
APIs have the advantage over other gateway solutions for Web database con-
nectivity.

The Web database applications that require developers to use database API
libraries are mainly CGI, FastCGI or server API programs. Web database
application building tools, including template-driven database access packages
and visual GUI builders, use database APIs as well as the supporting gateways
(such as CGI and server API), but all these interactivities are hidden from the
developers.

Native database APIs

Native database APIs are platform-dependent as well as programming language
dependent. However, most popular databases (such as Oracle) support mul-
tiple platforms in the first place, and therefore, the porting between different
platforms should not require excessive effort.

In general, programs that use native database APIs are faster than those using
other methods, because the libraries provide direct and low-level access. Other
database access methods tend to be slower, because they add another layer of
programming to provide the developer a different, easier, or more customised
programming interface. These additional layers slow the overall transaction
down.

Native database API programming is not inherently dependent on a Web server.
For example, a CGI program using native API calls to Oracle that works with
the Netscape server should also work with other types of servers. However, if
the CGI program also incorporates Web server-specific functions or modules, it
will be dependent on that Web server.

Database-independent APIs: ODBC

The most popular standard database-independent API was pioneered by Mi-
crosoft. It is called ODBC (Open Database Connectivity) and is supported by
all of the most popular databases such as Microsoft Access and Oracle.

30



ODBC requires a database-specific driver or client to be loaded on the database
client machine. In a Java application that accesses Oracle, for example, the
server that hosts the Java application would need to have an Oracle ODBC
client installed. This client would allow the Java application to connect to the
ODBC data source (the actual database) without knowing anything about the
Oracle database.

In addition to the database-specific ODBC driver being installed on the client
machine, Java requires that a JDBC-ODBC bridge (i.e. another driver. JDBC
stands for Java Database Connectivity) be present on the client machine. This
JDBC-ODBC driver translates JDBC to ODBC and vice versa, so that Java
programs can access ODBC-compliant data sources but still use their own JDBC
class library structure.

Having the database-specific ODBC driver on the client machine dictates that
Web database Java applications or applets using ODBC be 3-tiered. The
database client of the Web application must reside on a server: either the same
server as the Web server or a remote server. Otherwise, the database-specific
ODBC driver would have to exist on every user’s computer, which is a very
undesirable situation. The diagram below provides a graphical illustration of
such an architecture.

Benefits of database APIs

Database APIs (native or independent) arguably offer the most flexible way
in which Web database applications are created. Applications created with
native database APIs are more efficient than those with database-independent
APIs. This database connectivity solution is the fastest way to access database
functionality and has been tested rigorously in the database software industry.
It is worth noting that database APIs have been used successfully for years even
before the invention of the Web.

Shortcomings of database APIs

The most notable disadvantage of programming in database API is complexity.
For rapid application development and prototyping, it is better to use a high-
level tool, such as template-driven database access software or visual application
builders.

Another disadvantage is with ODBC. Because ODBC standardises access to
databases from multiple vendors, applications using ODBC do not have access
to native SQL database calls that are not supported by the ODBC standard.
In some cases, this can be inconvenient and may even affect application perfor-
mance.

31



32



Template-driven packages

The approach

Template-driven database connectivity packages are offered by database vendors
and third-party developers to simplify Web database application programming.
Such a package usually consists of the following components:

• Template consisting of HTML and non-standard tags or directives

• Template parser

• Database client daemons

Template-driven packages are very product dependent. Different DBMSs re-
quire database access templates in different formats. An application developed
for one product will be strongly tied to it. Migrating from one product to an-
other is very difficult and requires a rewrite of all the database access, flow
control and output-formatting commands.

An example of a template-driven package is PHP.

Benefits of template-driven packages

The most important benefit from using a template-driven package is speed of
development. Assuming an available package has been installed and configured
properly, it takes as little time as a few hours to create a Web site that displays
information directly from the database.

Shortcomings of template-driven packages

The structures of templates are normally predetermined by vendors or third-
party developers. As a result, they only offer a limited range of flexibility and
customisability. Package vendors provide what they feel is important function-
ality, but, as with most off-the-shelf tools, such software packages may not let
you create applications requiring complex operations.

Although templates offer a rapid path to prototyping and developing simple
Web database applications, the ease of development is obtained for the cost of
speed and efficiency. Because the templates must be processed on demand and
require heavy string manipulation (templates are of a large text type or string
type; they must be parsed by the parser), using them is slow compared with
using direct access such as native database APIs.

The actual performance of an application should be tested and evaluated before
the usefulness of such a package is ruled out. The overhead of parsing templates
may be negligible if using high-performance machines. Other factors, such as
development time or development expertise, may be more important than a
higher operational speed.

33



GUI application builders

Visual Web database building tools offer an interesting development environ-
ment for creating Web database applications. For developers accustomed to
point-and-click application programming, these tools help speed the develop-
ment process. For instance, Visual Basic and/or Microsoft Access developers
should find such a tool intuitive and easy to use.

The approach

The architectures of visual building tools vary. In general, they include a user-
friendly GUI (Graphical User Interface), allowing developers to build a Web
database application with a series of mouse clicks and some textual input. These
tools also offer application management so that a developer no longer needs to
juggle multiple HTML documents and CGI, NSAPI or ISAPI programs manu-
ally.

At the end of a building session, the tool package can generate applications using
various techniques. Some applications are coded using ODBC; some use native
database APIs for the databases they support; and others may use database net
protocols.

Some of these tools create their own API, which can be used by other developers.
Some generate code that works but can still be modified and customised by
developers using various traditional IDEs, compilers and debuggers.

A building tool may generate a CGI program or a Web server API program
(such as NSAPI and ISAPI). Some sophisticated tools even offer all the options.
The developer can choose what he/she wants.

Unlike native database APIs or template-driven database connectivity packages,
visual Web database development tools tend to be as open as possible. Many
offer development support for the popular databases.

Benefits of visual tools

Visual development tools can be of great assistance to developers who are fa-
miliar and comfortable with visual application development techniques. They
offer rapid application development and prototyping, and an organised way to
manage the application components. Visual tools also shield the developer from
low-level details of Web database application development. As a result, a de-
veloper can create a useful Web application without the need to know what is
happening in the code levels.

Shortcomings of visual tools

34



Depending on the sophistication of the package used, the resulting programs
may be slower to execute than similar programs coded by an experienced pro-
grammer. Visual application building tools, particularly Object-oriented ones,
tend to generate fat programs with a lot of unnecessary sub-classing.

Another potential drawback is cost. A good visual tool may be too expensive
for a small one-off development budget.

Review question 6

• What are database APIs? Who uses them and why?

• Why are template-driven packages useful for building database connec-
tions? What are the shortcomings?

• How can we benefit from using visual development tools to build database
connections?

Managing state and persistence in Web applications

State is an abstract concept of being, which can be explained by a set of rules,
facts or truisms. A state in a database application includes a set of variables
and/or other means to record who the user/client is, what tasks he/she has
been doing, at what position he/she is at a particular instance in time, and
many other useful pieces of information about a database session. Persistence is
the capability of remembering a state and tracking state changes across different
applications or different periods of time within an instance of an application or
multiple instances.

The requirement of state maintenance in Web database applications results in
the increased complexity. As mentioned before in the Context section, HTTP is
connectionless, which means that once an HTTP request is sent and a response
is received, the connection to the server is closed. If a connection were to be
kept open between client and server, the server could at any time query the
client for state information and vice versa. The server would be able to know
the identity of the user throughout the session once the user logged in. However,
the reality is that there is no constant connection throughout the session. Thus,
the server cannot have memory of the user’s identity even after user login. In
this situation, programmers must find a way to make session state persist.

Technical options

There are several options available to programmers to maintain state. They
range from open systems options defined in HTTP and CGI standards, to pro-
prietary mechanisms written from scratch.

35



The most important task in maintaining persistence is to keep track of the
identity of the user. If the identity can persist, any other data/information can
usually be made to persist in exactly the same manner.

The URL approach

It works as follows:

• A registration or login page is delivered to the user.

• The user types in a username and password, and then submits the page.

• The username and password pair are sent to a server-side CGI program,
which extracts the values from the QUERY_STRING environment vari-
able.

• The values are checked by the server to determine whether or not the user
is authenticated.

• If he/she is authenticated, the authenticated state is reflected in a ran-
domly generated session ID (SID), which is stored in a database along
with other necessary data to describe the state of the user session.

• The SID can then be stored in all URLs within HTML documents returned
by the server to the client, therefore tracking the identity of the user
throughout the session.

Benefits of the URL approach

The URL approach is easy to use to maintain state. To retrieve a state, the
receiving CGI program need only collect the data from environment variables
in the GET method and act on it as necessary. To pass on, set or change the
state, the program simply creates new URLs with the appropriate data.

Shortcomings of the URL approach

If the state information has to be kept in the URL, the URL becomes very
long and can be very messy. Also, such a URL displays part of the application
code and low-level details. This causes security concerns, and may be used by
hackers.

If an application manages state on the client side using the URL method, the
state will be lost when the user quits the browser session unless the user book-
marks the URL. A bookmark saves the URL in the browser for future retrieval.
If state is maintained solely in the URL without any server-side state data
management, bookmarking is sufficient to recreate the state in a new browser
session. However, having the user perform this maintenance task is obviously
undesirable.

36



URL QUERY_STRING

This is another popular method of maintaining state. A registered user in a site
has a hidden form appended to each page visited within the site. This form
contains the username and the name of the current page. When the user moves
from one page to another, the hidden form moves as well and is appended to
the end of the succeeding HTML page.

Benefits of the hidden fields approach

Like the URL approach, it is easy to use to maintain state. In addition, because
the fields are hidden, the user has a seamless experience and sees a clean URL.

Another advantage of using this approach is that, unlike using URLs, there is
no limit on the size of data that can be stored.

Shortcomings of the hidden fields approach

As with the URL approach, users can fake states by editing their own version of
the HTML hidden fields. They can bring up the document source in an editor,
change the data stored, and then submit the tampered form to the server. This
raises serious security concerns.

Data is also lost between sessions. If the entire session state is stored in hidden
fields, that state will not be accessible after the user exits the browser unless the
user specifically saves the HTML document to disk or with a bookmark. Again,
it is undesirable to involve users in this kind of maintenance task.

HTTP cookies

An HTTP cookie is a technique that helps maintain state in Web applications.
A cookie is in fact a small text file containing:

• Name of the cookie

• Domains for which the cookie is valid

• Expiration time in GMT

• Application-specific data such as user information

Cookies are sent by the server to the browser, and saved to the client’s disk.
Whenever necessary, the server can request a desired cookie from the client.
The client browser will check whether it has it. If it does, the browser will send
the information stored in the cookie to the server.

37



Benefits of cookies

Cookies can be completely transparent. As long as a user does not choose the
browser option to be alerted before accepting cookies, his/her browser will han-
dle incoming cookies and place them on the client disk without user intervention.

Cookies are stored in a separate file, whose location is handled by the browser
and difficult for the user to find. Also, cookies are difficult to tamper with. This
increases security.

Because cookies are stored on the client disk, the cookie data is accessible even
in a new browser session. It does not require theuser to do anything.

If a programmer chooses to set an expiration date or time for a cookie, the
browser will invalidate the cookie at the appropriate time.

Shortcomings of cookies

The amount of data that can be stored with a cookie is usually limited to 4
kilobytes. If an application has very large state data, other techniques must be
considered.

Because cookies are physically stored on the client disk, they cannot move with
the user. This side effect is important for applications whose users often change
machines.

Although cookies are difficult to tamper with, it is still possible for someone to
break into them. Remember a cookie is just a text file. If a user can find it and
edit it, it can still cause security problems.

Important considerations

Managing state on the client

An application can maintain all of its state on the client-side with any of the
methods discussed in the previous section.

• Benefits of the client-side maintenance

On attraction of maintaining state on the client is simplicity. It is easier to
keep all the data in one place, and by doing it on the client, it eliminates
the need for server database programming and maintenance.

If an application uses client-side extensions to maintain state, it can also
provide a faster response to the user because the need to network access
is eliminated.

• Shortcomings of the client-side maintenance

38



If all the state data is on the client-side, there is a danger that users
can somehow forge state information by editing URLs, hidden fields, and
cookies. This leads to security risks in server programs.

With the exception of the cookie approach to maintaining state, there is
no guarantee that the necessary data will be saved when the client exits
unexpectedly. Thus, the robustness of the application is compromised.

Managing state on the server

This approach for maintaining state actually involves using both the client and
the server. Usually a small piece of information, either a user ID or a session
key is stored on the client-side. The server program uses this ID or key to look
up the state data in a database.

• Benefits of the server-side maintenance

Maintaining state on the server is more reliable and robust than the client-
side maintenance. As long as the client can provide an ID or a key, the
user’s session state can be restored, even between different browsing ses-
sions.

Server-side maintenance can result in thin clients. The less dependent a
Web database application is on the client, the less code needs to exist on
or be transmitted to the client.

Server-side maintenance also leads to better network efficiency, because
only small amounts of data need to be transmitted between the client and
the server.

• Shortcomings of the server-side maintenance

The main reason an application would not be developed using server-side
state maintenance is its complexity, because it requires the developer to
write extensive code. However, the benefits of implementing server-side
state management outweigh the additional work required.

Review question 7

• What is state and persistence management in Web database applications?

• What are the technical options available for managing state and persis-
tence?

Security Issues in Web Database Applications

Security risks exist in many areas of a Web database application. This is because
the very foundations of the Internet and Web – TCP/IP and HTTP – are
very weak with respect to securities. Without special software, all Internet
traffic travels in the open and anyone with a little bit skill can intercept data

39



transmission on the Internet. If no measures are taken, there will be many
security loopholes that can be explored by malicious users on the Internet.

In general, security issues in Web database applications include the following:

• Data transmission (communication) between the client and the server is
not accessible to anyone else except the sender and intended receiver (pri-
vacy).

• Data cannot be changed during transmission (integrity).

• The receiver can be sure that the data is from the authenticated sender
(authenticity).

• The sender can be sure the receiver is the genuinely intended one (non-
fabrication).

• The sender cannot deny he/she sent it (non-repudiation).

• The request from the client should not ask the server to perform illegal or
unauthorised actions.

• The data transmitted to the client machine from the server must not be
allowed to contain executables that will perform malicious actions.

At the present, there are a number of measures that can be taken to address
some of the above issues. These measures are not perfect in the sense that
they cannot cover every eventuality, but they should help get rid of some of
the loopholes. It must be stressed that security is the most important but least
understood aspect of Web database programming. More work still needs to be
done to enhance security.

Proxy servers

A proxy server is a system that resides between a Web browser and a Web
server. It intercepts all requests to the Web server to determine if it can fulfil
the requests itself. If not, it forwards the requests to the Web server.

Due to the fact that the proxy server is between browsers and the Web server,
it can be utilised to be a defence for the server.

Firewalls

Because a Web server is open for access by anyone on the Internet, it is normally
advised that the server should not be connected to the intranet (i.e., an organi-
sation’s internal network). This way, no one can have access to the intranet via
the Web server.

However, if a Web application has to use a database on the intranet, then the
firewall approach can be used to prevent unauthorised access.

40



A firewall is a system designed to prevent unauthorised access to or from a
private network (intranet). It can be implemented in either hardware, software,
or both. All data entering or leaving the intranet (connected to the Internet)
must pass through the firewall. They are checked by the firewall system and
anything that does not meet the specified security criteria is blocked.

A proxy server can act as a firewall because it intercepts all data in and out,
and can also hide the address of the server and intranet.

Digital signatures

A digital signature consists of two pieces of information: a string of bits that is
computed from the data (message) that is being signed along with the private
key of the requester for the signature.

The signature can be used to verify that the data is from a particular individual
or organisation. It has the following properties:

• Its authenticity is verifiable using a computation based on a corresponding
public key.

• If the private key is kept secret, the signature cannot be forged.

• It is unique for the data signed. The computation will not produce the
same result for two different messages.

• The signed data cannot be changed, otherwise the signature will no longer
verify the data as being authentic.

The digital signature technique is very useful for verifying authenticity and
maintaining integrity.

Digital certificates

A digital certificate is an attachment to a message used for verifying the sender’s
authenticity. Such a certificate is obtained from a Certificate Authority (CA),
which must be a trust-worthy organisation.

When a user wants to send a message, he/she can apply for a digital certificate
from the CA. The CA issues an encrypted certificate containing the applicant’s
public key and other identification information. The CA makes its own key
publicly available.

When the message is received, the recipient uses the CA’s public key to decode
the digital certificate attached to the message, verifies it as issued by the CA, and
then obtains the sender’s public key and identification information held within
the certificate. With this information, the recipient can send an encrypted reply.

41



Kerberos

Kerberos is a server of secured usernames and passwords. It provides one cen-
tralised security server for all data and resources on the network. Database
access, login, authorisation control, and other security measures are centralised
on trusted Kerberos servers. The main function is to identify and validate a
user.

Secure sockets layer (SSL) and secure HTTP (S-HTTP)

SSL is an encryption protocol developed by Netscape for transmitting private
documents over the Internet. It works by using a private key to encrypt data
that is to be transferred over the SSL connection. Netscape, Firefox, Chrome
and Microsoft IE support SSL.

Another protocol for transmitting data securely over the Internet is called Secure
HTTP, a modified version of the standard HTTP protocol. Whereas SSL creates
a secure connection between a client and a server, over which any amount of
data can be sent securely, S-HTTP is designed to transmit individual messages
securely.

In general, the SSL and S-HTTP protocols allow a browser and a server to
establish a secure link to transmit information. However, the authenticity of
the client (the browser) and the server must be verified. Thus, a key component
in the establishment of secure Web sessions using SSL or S-HTTP protocols
is the digital certificate. Without authentic and trustworthy certificates, the
protocols offer no security at all.

Java security

If Java is used to write the Web database application, then many security mea-
sures can be implemented within Java. Three Java components can be utilised
for security purposes:

• The class loader: It not only loads each required class and checks it is
in the correct format, but also ensures that the application/applet does
not violate system security by allocating a namespace. This technique can
effectively define security levels for each class and ensure that a class with
a lower security clearance can never be in place of a class with a higher
clearance.

• The bytecode verifier: Before the Java Virtual Machine (JVM) will al-
low an application/applet to execute, its code must be verified to ensure:
compiled code is correctly formatted; internal stacks will not overflow or
underflow; no illegal data conversions will occur; bytecode instructions are
correctly typed; and all class member accesses are valid.

42



• The security manager: An application-specific security manager can be
defined within a browser, and any applets downloaded by this browser are
subject to its (security manager’s) security policies. This can prevent a
client from being attacked by dangerous methods.

ActiveX security

For Java, security for the client machine is one of the most important design
factors. Java applet programming provides as many features as possible without
compromising the security of the client. In contrast, ActiveX’s security model
places the responsibility for the computer’s safety on the user (client). Before
a browser downloads an ActiveX control that has not been digitally signed or
has been certified by an unknown CA, it displays a dialog box warning the user
that this action may not be safe. It is up to the user to decide whether to abort
the downloading, or continue and accept a potential damaging consequence.

Review question 8

• What are the major security concerns in Web database applications?

• What are the measures that can be taken to address the security concerns?

Performance issues in Web database applications

Web database applications are very complex, more so than stand-alone or tra-
ditional client-server applications. They are a hybrid of technology, vendors,
programming languages, and development techniques.

Many factors work together in a Web database application and any one of
them can hamper the application’s performance. It is crucial to understand the
potential bottlenecks in the application as well as to know effective, well-tested
solutions to address the problems.

The following is a list of issues concerning performance:

• Network consistency: The availability and speed of network connec-
tions can significantly affect performance.

• Client and server resources: This is the same consideration as in the
traditional client-server applications. Memory and CPU are the scarce
resources.

• Database performance: It is concerned with the overhead for establish-
ing connections, database tuning, and SQL query optimisation.

• Content delivery: This is concerned with the content’s download time
and load time. The size of any content should be minimised to reduce
download time; and appropriate format should be chosen for a certain

43



document (mainly images and graphics) so that load time can be min-
imised.

• State maintenance: It should always minimise the amount of data trans-
ferred between client and server and minimise the amount of processing
necessary to rebuild the application state.

• Client-side processing: If some processing can be carried out on the
client-side, it should be done so. Transmitting data to the server for
processing that can be done on the client-side will degrade performance.

• Programming language: A thorough understanding of the tasks at
hand and techniques available can help choose the most suitable language
for implementing the application.

Discussion topics

In this chapter, we have studied various approaches for constructing the Web
database connectivity, including GUI-based development tools. Both Oracle
and Microsoft offer visual development tools. Discuss:

1. What are the pros and cons of using GUI-based tools?

2. Do you prefer programming using APIs or visual tools? Why?

44


	Chapter 17. Web Database Connectivity
	Objectives
	Introduction
	Context
	Basic concepts
	Web-based client-server applications
	Context summary

	Web database architectures
	Components of a database application
	2-tier client-server architecture
	3-tier client-server architecture

	Database gateways
	Client-side solutions
	Server-side solutions

	Client-side Web database programming
	Browser extensions
	External applications

	Server-side Web database programming
	CGI (Common Gateway Interface)
	Extended CGI
	HTTP server APIs and server modules
	Important issues
	Comparison of CGI, server APIs and modules, and FastCGI
	Proprietary HTTP servers

	Connecting to the database
	Database API libraries
	Template-driven packages
	GUI application builders

	Managing state and persistence in Web applications
	Technical options
	The URL approach
	URL QUERY_STRING
	HTTP cookies
	Important considerations

	Security Issues in Web Database Applications
	Proxy servers
	Firewalls
	Digital signatures
	Digital certificates
	Kerberos
	Secure sockets layer (SSL) and secure HTTP (S-HTTP)
	Java security
	ActiveX security

	Performance issues in Web database applications
	Discussion topics


