
Chapter 18. Temporal Databases

Table of contents

• Objectives
• Introduction

– Temporal databases: The complexities of time
– Concepts of time

∗ Continuous or discrete
∗ Granularity
∗ Time quanta
∗ Timelines, points, duration and intervals

– The important temporal work of Allen (1983)
– Unary intervals
– Relative and absolute times
– Temporal data behaviour

∗ Continuous temporal data
∗ Discrete temporal data
∗ Stepwise constant temporal data
∗ Period-based temporal data

• Temporal database concepts
– Some important concepts

∗ Valid time
∗ Transaction time
∗ Timestamp
∗ Calendar
∗ Time order

• Database representation and reasoning with time
– Snapshot databases
– Rollback databases
– Historical databases
– Temporal databases

• Incorporating time in Relational databases
– Recording changes to databases

∗ Archiving
∗ Time-slicing

– Tuple timestamping
– Attribute timestamping
– UNFOLD and COALESCE: Two useful temporal Relational opera-

tors
∗ UNFOLD
∗ COALESCE

– Further work and application
∗ Review question
∗ Discussion topic

• Additional content and activities

1

– Temporal database design
∗ Entity Relationship Time model

– The ERT-SQL language

Almost all database applications are concerned with the modelling and storage
of data that varies with time. It is not surprising therefore, that a great deal of
research and development, both in industry and in universities, has gone into
developing database systems that support the time-related or temporal aspects
of data processing. In this chapter we shall examine the major issues in the
provision of support for temporal data. We shall explore some of the most
important research that has been done in the area, and identify the influence of
this research on query languages.

Objectives

At the end of this chapter you should be able to:

• Define and use important temporal concepts, such as time point, time
interval, and time-interval operators such as before, after and overlaps.

• Explain the issues involved in modelling a number of time-varying features
of data, such as transaction time, valid time and time granularity.

• Understand the temporal data model at the conceptual level.

• Describe some of the extensions to conventional query languages that have
been proposed to support temporal query processing.

Introduction

Detailed concepts of temporal databases can be found in the book titled “Time
and Relational Theory (Temporal Databases in the Relational Model and SQL),
2nd Edition by C.J. Date, Hugh Darwen and Nikos Lorentzos”

Temporal databases: The complexities of time

A temporal database is generally understood as a database capable of supporting
storage and reasoning of time-based data. For example, medical applications
may be able to benefit from temporal database support — a record of a patient’s
medical history has little value unless the test results, e.g. the temperatures,
are associated to the times at which they are valid, since we may wish to do
reasoning about the periods in time in which the patient’s temperature changed.

Temporal databases store temporal data, i.e. data that is time dependent
(timevarying). Typical temporal database scenarios and applications include
time-dependent/time-varying economic data, such as:

2

• Share prices

• Exchange rates

• Interest rates

• Company profits

The desire to model such data means that we need to store not only the respec-
tive value but also an associated date or a time period for which the value is
valid. Typical queries expressed informally might include:

• Give me last month’s history of the Dollar-Pound Sterling exchange rate.

• Give me the share prices of the NYSE on October 17, 1996.

Many companies offer products whose prices vary over time. Daytime telephone
calls, for example, are usually more expensive than evening or weekend calls.
Travel agents, airlines or ferry companies distinguish between high and low
seasons. Sports centres offer squash or tennis courts at cheaper rate during the
day. Hence, prices are time dependent in these examples. They are typically
summarised in tables with prices associated with a time period.

As well as the user of a database recording when certain data values are valid,
we may wish to store (for backup, or analysis reasons) historical records of
changes made to the database. So each time a change to a database is made the
system may automatically store a transaction timestamp. Therefore a temporal
database may be storing two different pieces of time data for a tuple — the
user-defined period of time for which the data is valid (e.g. October to April
[winter season] rental of tennis courts are 1 US dollar per hour), and the system-
generated transaction timestamp for when the tuple (or part of a tuple) was
changed (e.g. 14:55 on 03/01/1999). A temporal database ability to store these
different kinds of data makes possible many different kinds of temporal-based
queries, as long as its query language and data model are sophisticated enough
to formally model and allow reasoning about temporal data. It is the possible
gains from such temporal querying facilities that has provided the motivation
for research and development into extending the Relational database model for
temporal data (and suggesting alternatives to the Relational model…).

Our everyday life is very often influenced by timetables for buses, trains, flights,
university lectures, laboratory access and even cinema, theatre or TV pro-
grammes. As one consequence, many people plan their daily activities by using
diaries, which themselves are a kind of timetable. Timetables or diaries can be
regarded as temporal relations in terms of a Relational temporal data model.
Medical diagnosis often draws conclusions from a patient’s history, i.e. from the
evolution of his/her illness. The latter is described by a series of values, such as
the body temperature, cholesterol concentration in the blood, blood pressure,
etc. As in the first example, each of these values is only valid during a certain
period of time (e.g. a certain day). Typically a doctor would retrieve a patient’s
values’ history, analyse trends and base diagnosis on such observations. Similar

3

examples can be found in many areas that rely on the observation of evolu-
tionary processes, such as environmental studies, economics and many natural
sciences.

Concepts of time

Continuous or discrete

From a philosophical point of view we might argue either that time passes
continuously, flowing as if a stream or river of water, or we can think of time
passing in discrete units of time, each with equal duration, as we think of time
when listening to the ticking of a clock. For the purposes of recording and
reasoning about time, many people prefer to work with a conceptual model of
time as being discrete and passing in small, measurable units; however, there
are some occasions and applications where a continuous model of time is most
appropriate.

Granularity

When we think about time as passing in discrete units, depending on the purpose
or application, different-sized units may be appropriate. So the age of volcanoes
may be measured in years, or decades, or hundreds of years. The age of motor
cars may be measured in years, or perhaps months for ‘young’ cars. The age
of babies may be measured in years, or months, or weeks, or days. The age of
bacteria in seconds or milliseconds. The size of the units of time used to refer to a
particular scenario is referred to as the granularity of the temporal units — small
temporal grains refer to short units of time (days, hours, seconds, milliseconds,
etc), and large temporal grains refer to longer units of time (months, years,
decades, etc).

Time quanta

For a particular situation we may wish to define the smallest unit of time which
can be recorded or reasoned about. One way to refer to the chosen, indivisible
unit of time is as ‘time quanta’. Sometimes the term ‘chronon’ or ‘time granule’
is used to refer to the indivisible units of time quanta for a situation or system.
In this chapter we shall use the term time quanta.

Timelines, points, duration and intervals

When attempting to represent and reason about time, four important concepts
are:

• Points: Formally a point in time has no duration; it simply refers to a
particular position in the timeline under discussion. We can talk of the
point in time at which some event begins or ends.

4

• Duration: A duration refers to a number of time quanta; for example, a
week, two months, three years and 10 seconds are all durations. A duration
refers to a particular magnitude (size) of a part of a timeline, but not the
direction (so whether we talk of a week ago or a week beginning in three
days’ time, we are still referring to a length of time of a week).

• Interval: An interval has a start time point and an end time point. Using
more formal notation, we can refer to an interval I(s, e) with start point
‘s’ and end point ‘e’, and for which all points referring to time from s
to e (inclusive) make up the interval. Note that there is an assumption
(constraint) that the timepoint ‘s’ does not occur after the timepoint ‘e’
(an interval of zero time quanta would have a start point and end point
that were equal).

• Timeline: Conceptually we can often imagine time as moving along a line
in one direction. When graphically representing time, it is usual to draw
a line (often with an arrow to show time direction), where events shown
towards the end of the timeline have occurred later than those shown
towards the beginning of the line. Often a graphical timeline is draw like
an axis on a graph (by convention, the X-axis represents time) and the
granularity of the time units is marked (and perhaps labelled) along the
X-axis.

You may find the following diagram useful in illustrating these four concepts:

Looking at the figure, there are two events, E1 and E2. We see that event E1
starts at the time point ‘d2’ and ends at time point ‘d7’, therefore event E1 is
an example of an interval. All that is written for event E2 is that it lasts four
days, so event E2 is a duration (although we might attempt to infer from the
X-axis that E2 appears to start at d4 and end at d7, but perhaps E2 is four days
measured back from d7). The X-axis is a labelled arrow ‘time’, and represents
a timeline. There are units labelled on the X-axis from ‘d1’ to ‘d8’, and a note
indicates that these units are time quanta representing one day each.

5

Since the time quanta are a day each for this model, we are not able to model
any time units of less that one day (so even if it looked like an event started
halfway between two units on the diagram, we could not meaningfully talk of
day 1 plus 12 hours or whatever). This does raise an issue when attempting to
convert from a model of one time granularity to anothe. For example, if all data
from the model above were to be added to a database where the time quanta
was in terms of hours, what hour of the day would ‘d3’ represent? Would it
be midnight when the day started, or midday, or 09:00 in the morning (the
start of a working day)? Such questions must be answered by any data analyst
if converting between different temporal models, which is one reason why it is
so important to choose an appropriate granularity of time quanta. It might
seem reasonable, just in case, to choose a very small time quanta, such as
seconds or milliseconds,but there may be significant memory implications for
such a choice (e.g. if the database system had to use twice as much memory to
record millisecond timestamps for each attribute of each tuple, rather than just
recording the day timestamp).

The important temporal work of Allen (1983)

Much of the recent work in the fields of time-based computing (both for
databases and other areas such as artificial intelligence) is based on the work of
J. F. Allen. A publication by Allen that is frequently cited in literature about
time-based reasoning is:

Maintaining Knowledge about Temporal Intervals, J. F. Allen, CACM (Com-
munications of the Association for Computing Machinery) Volume 16 number
11, November 1983.

Allen’s contribution to those wishing to represent and reason about time-based
information consisted of the formalisation of possible relationships between pairs
of intervals. Although the following, informal overview may seem obvious from
an intuitive perspective, Allen presented these concepts in a rigorous, formal
way which has been the basis for much temporal reasoning and computer system
design since.

Consider two events, E1 and E2. Each event has a starting point in time and an
ending point in time — therefore each event takes place as an interval in time.
The following are the possible relationships between two intervals (events):

• E1 starts and ends before E2 begins.

• E1 ends at the same point in time that E2 begins — the two events are
temporally contiguous. We can say that the end of E1 meets the beginning
of E2.

• E1 starts before E2 starts, but the end of E1 overlaps with the beginning
of E2. E2 ends after E1 has ended.

6

• E1 takes place entirely during the period that E2 exists, i.e. E1 starts after
E2 and E1 finishes before E2.

• E1 occurs after E2 has ended.

• Both E1 and E2 may start at the same time (likewise, both E1 and E2
might finish at the same time).

Each of these relationships can be formally defined as an operation between
intervallic events, and these operators are often referred to as ‘Allen’s operators’.
Each of the above is perhaps more easily understood in graphical representa-
tions.

• E1 BEORE E2 — E1 occurs before E2

• E1 MEETS E2 — The end of E1 meets the beginning of E2

• E1 OVERLAPS E2 — E1 overlaps with E2

7

• E1 DURING E2 — E1 takes place during E2 (E1 and E1 may start and finish
at the same time)

• E1 AFTER E2 — E1 occurs after E2 has ended

• E1 STARTS E2 — E1 starts at the same time that E2 starts (and E1 does
not end after E2)

8

• E1 FINISHES E2 — E1 finishes at the same time that E2 ends (and E1 does
not start before E2)

Unary intervals

For certain formal reasoning and temporal relational operators, the concept of
a unary interval is important. A unary interval has a duration of one time unit
(one time quantum). For example:

Interval_A(t4, t4)

The interval Interval_A has a start time of ‘t4’ and an end time of ‘t4’. Therefore
it starts at the beginning of the time quantum t4, and ends at the end of the
time quantum t4, and so has a duration of 1 time quantum. Other examples of
unary intervals include:

Interval_B(t1, t1) Interval_C(t9, t9) and so on.

Any interval with start time ‘s’ and end time ‘e’ can be ‘unfolded’ into a sequence
of unary intervals. For example, some Interval_D(t3, t7), which starts at t3
and ends at t7, can be thought of as being the same as the set of unary intervals:

9

(t3, t3) (t4, t4) (t5, t5) (t6, t6) (t7, t7)

We shall return to the use of the unary interval concept when relational temporal
operators are investigated.

Relative and absolute times

A reference to a duration or interval can be absolute or relative to some time
point or other interval. The position on the time axis of a period or of an instant
can be given as an absolute position, such as the calendric time (e.g. “Blood
pressure taken on 3November 1996”). This is a common approach adopted by
data models underlying temporal medical databases.

However, it also is common in medicine to reason with relative time references:
“Heartbeat measurement taken after a long walk”, “the day after tomorrow”,
etc. The relationship between times can be qualitative (before, after, etc) as
well as quantitative (three days before, 397 years after, etc.). Examples include:

• Mary’s salary was raised yesterday.

• It happened sometime last week.

• It happened within three days of Easter.

• The French revolution occurred 397 years after the discovery of America.

Temporal data behaviour

In general, the behaviour of temporal entities can be classified into one of four
basic categories, namely:

• Discrete

• Continuous

• Stepwise constant

• Period based

These can be depicted graphically as shown in the figures below. We shall
consider each category of temporal data individually.

Continuous temporal data

Continuous behaviour is observed where an attribute value is recorded con-
stantly over time such that its value may be constantly changing. Continuous
behaviour can often be found in monitoring systems recording continuous char-
acteristics - for example, a speedometer of a motorcar.

10

Discrete temporal data

Discrete data attributes are recorded at specific points in time but have no
definition at any other points in time. Discrete data is associated with individual
events such as “A complete check-up was on a particular date”.

Stepwise constant temporal data

Stepwise constant data consists of values that change at a point in time, then
remain constant until being changed again - for example, blood pressure mea-
surement.

11

Period-based temporal data

Period-based data models the behaviour of events that occur over some period
of time but, at the end of this period, become undefined. An example of period-
based data would be patient drug usage records, where a patient takes a drug
for a prescribed period of time and then stops taking it.

Exercises

Exercise 1 - Temporal terms and concepts

State whether each of the following is a point, duration or interval:

• 10 seconds

• 14.45 on 3/Feb/2007

• Three days

• From 1/3/99 to 5/1/99

Exercise 2 - Granularity

Which is the smaller level of temporal granularity: seconds or days?

Exercise 3 - Time quanta

What are time quanta? Are seconds or days examples of time quanta?

Exercise 4 - Interval operators

Consider the following scenario:

• Event E1 (s1, e1), where

1. the time E1 starts is t2, i.e. s1=t2

2. the time E1 ends is t7, i.e. e1=t7

• event E2 (s2, e2), where

1. the time E2 starts is t5=t4, i.e. s2=t7

2. the time E2 ends is t7, i.e. e2=t7

12

• event E2 starts at t4 and ends at t7

In terms of Allen’s operators, what can we say about the relationship(s) between
E1 and E2?

Draw a diagram showing the two events on the timeline t1, t2, … t8, to illustrate
the relationship between the intervals.

Exercise 5 - Relative and absolute time

Which of the following are absolute and which are relative times?

• 7th May 1991

• The day after tomorrow

• 14:13 on Monday 14th April 2010

• A week after last Tuesday

• 10 minutes after we finish work

Exercise 6 - Category of temporal data behaviour

What kind of temporal data behaviour does the following graph represent?

Temporal database concepts

A database might be informally defined as a collection of related data. This data
corresponds to some piece of the Universe of Discourse (UoD) — i.e. the data
we record represents a model of those parts of the real world (or an imagined
world) which we are interested in, and wish to reason about. An example of a
Universe of Discourse might be the patients, doctors, operating theatres, booked
operations and available drugs in a hospital. Another UoD might be a basketball
competition made up of each team, player, set of fixtures and results of games
played to date.

The figure below illustrates that at a particular point in time, the Universe of
Discourse is in a particular state, and we create a database at this point in time
recording details of the state of the UoD:

13

As time passes, the UoD is subject to events that change its state (i.e. events
that change one or more of the component objects that populate our UoD).
These changes are also reflected within the database, as shown in the next
figure - assuming, of course, that we maintain the equivalence of the UoD with
the database. So for example, a new patient arriving in the hospital means a
change in our UoD. We will wish to update our database (with new patient
details) to record and model the changes in our UoD. Therefore the state of the
UoD and the state of our database changes with events that occur over time.

14

To give another example, assume that the UoD, and thus the database, contains
information about employees and their salaries (see figure below). At time t-1
employee E1 has salary S1. At time t, the employee is given a salary increase
and thus, his salary becomes S2. Later, at time t+1, the employee actually
changes department and manager and his new salary becomes S3.

A temporal database is a database that deals with not only the ‘current’ state
(in this example, t+1) but also with all the previous states of the salary history.
To achieve that, we need to be able to model and reason about the time axis,
and also be able to model and reason about the evolution of the data over time
(usually referred to as the data or database history).

In order to deal with the time axis, the temporal database should have con-
structs to model the different notions of time (e.g. point, intervals, granularity

15

and calendar units) and reason about them through temporal operators such
as DURING and BEFORE. In the last two decades, the Relational data model
has become the most popular database model because of its simplicity and solid
mathematical foundation. However, the Relational data model originally pro-
posed does not address the temporal dimension of data. Since there is a need for
temporal data, many temporal extensions to Relational data models and query
languages have been proposed. The incorporation of the temporal dimension
has taken a number of different forms. One approach is the strategy of extend-
ing the schema of the relation to include one or more distinguished temporal
attributes (e.g. START TIME, END TIME) to represent the intervals of time
a tuple was ‘true’ for the database. This approach is called tuple timestamping.
Another approach, referred to as attribute timestamping, involves adding ad-
ditional attributes to the schema, with the domain of each attribute extended
from simple values to complex values to incorporate the temporal dimension.

Some important concepts

In this section we shall define some important concepts resulting from the pre-
vious discussions.

Valid time

The valid time of a fact is the time when the fact is true in the modelled reality.
A fact may have associated any number of instants and time intervals, with
single instants and intervals being important special cases. Valid times are
usually supplied by the user.

An example would be that Fred Bloggs was employed as marketing director at
Matrix Incorporated from 1/3/1999 to 5/6/1999 — i.e. the valid time interval
for a tuple recording that Fred Bloggs was marketing director is from 1/3/1999
to 5/6/1999.

The valid time has nothing to do with the time that data has been added to the
database, so for example, we may have recorded this data and valid time about
Fred Bloggs on 28/2/1999.

The valid time for data can be changed — e.g. perhaps Fred Bloggs comes out
of retirement, and so a second interval from 12/10/2000 to 1/6/2001 is added
to the valid times for his employment as marketing director.

Transaction time

A database fact is stored in a database at some point in time. A transaction time
of a data fact is the time at which the information about a modelled object or
event is stored in the database. The transaction time is automatically recorded
by the DBMS and cannot be changed. If a fact is updated to a database at

16

10:15 on 4/2/1999, this transaction time never changes. If the data is changed
at a later time, then a second transaction time is generated for the change, and
so on. In this way a history of database changes based on transaction time
timestamps is built up.

Timestamp

A timestamp is a time value associated with some object, e.g. an attribute value
or a tuple. The concept may be specialised to valid timestamp, transaction
timestamp or, for a particular temporal data model, some other kind of times-
tamp.

Calendar

A calendar provides a human interpretation of time. As such, calendars ascribe
meaning to temporal values where the particular meaning or interpretation is
relevant to the user — in particular, the mapping between human-meaningful
time values and underlying timeline. Calendars are most often cyclic, allowing
human-meaningful time values to be expressed succinctly. For example, dates
in the common Gregorian calendar may be expressed in the form <day, month,
year> (for the UK) or <month, day, year> (for the US), where each of the fields
‘day’ and ‘month’ cycle as time passes (although year will continue to increase
as time passes).

Time order

Different properties can be associated with a time axis composed from instants.
Time is linear when the set of time points is completely ordered, also branching
for the tasks of diagnosis, projection or forecasting (such as prediction of a
medical evolution over time). Circular time describes recurrent events, such as
“taking regular insulin every morning”.

Review question 1

• What are the differences between valid time and transaction time?

• What are the differences between an absolute time and relative time? Give
examples.

• What are the differences between a time period and time interval? Give
examples.

• What are the differences between a time point and time period?

17

Database representation and reasoning with time

Four types of databases can be identified, according to the ability of a database
to support valid time and/or transaction time, and the extent to which the
database can be updated with regard to time.

Snapshot databases

A snapshot database can support either valid time or transaction time, but not
both. It contains a ‘snapshot’ of the state of the database at a point in time.
The term ‘snapshot’ is used to refer to the computational state of a database at
a particular point in time.

If the data stored in the database represents a correct model of the world at
this current point in time, then the database state represents transaction time

— i.e. the database contents are the representation of the world for the current
timestamp of the DBMS.

If the data stored in the database is valid or true at this current point in time,
then the database state represents valid time.

Results from database operations take effect from commit time and past states
are forgotten (overwritten). Snapshot databases are what one would usually
think of as a database (with no recording of changes or past data values).

Rollback databases

A rollback database has a sequence of states that are indexed by transaction
time, i.e. the time the information was stored in the database. A rollback
database preserves the past states of the database but not those of the real
world. Therefore, it cannot correct errors in past information, nor represent
that some facts will be valid for some future time.

Each time a change is made to a database, the before and after states are
recorded for the transaction timestamp at the time the change takes place — so
that at a later date, the database can be returned to a previous state.

Historical databases

These support only valid time. As defined earlier,valid time of a fact is the time
when the fact is true in the modelled reality. The semantics of valid time are
closely related to reality and, therefore, historical databases can maintain the
history of the modelled Universe of Discourse and represent current knowledge
about the past. However, historical databases cannot view the database as it
was at some moment in the past.

18

In other words, a historical database can record that some fact F was valid from
1/1/1996 to 4/5/1998, but it is not recorded when these valid times were added
to the database, so it is not possible to state that on 1/1/1997 it was recorded
that fact F was true — perhaps we have retrospectively recorded when fact F
was true at some time after 1/1/1997. Thus it is possible to reason about what
we think was true for a given point of time, but not possible to answer questions
about when we knew the facts were true, since no changes to the database have
been recorded.

A historical database could be thought of as a snapshot of our beliefs about
the past — at this point in time, we believe fact F was valid from 1/1/1996 to
4/5/1998 and that is all we can say.

Temporal databases

These represent both transaction time and valid time and thus are both histori-
cal and rollback. So temporal databases record data about valid time (e.g. that
we believe fact F is valid from 1/1/1996 to 4/5/1998) and the transaction time
when such data was entered into the database (e.g. that we added this belief
on 4/6/1997). This means that we can now rollback our temporal database to
find out what our valid time beliefs were for any given past transaction time
(e.g. what did we believe about fact F on 2/3/1997?).

Temporal databases allows retroactive update — i.e. coming into effect after
the time to which the data was referenced. Temporal databases also support
proactive update — i.e. coming into effect before the time to which the data was
referenced. Thus, in a temporal database, we can represent explicitly a scenario
such as the following:

• On January 17, 1997 (transaction time), the physician entered in the pa-
tient’s record the fact that on January 12, 1997 (valid time) the patient
had an allergic reaction to a sulfa-type drug, and that the physician be-
lieved that the patient would take a non-sulfa type drug from January
20 to February 20. If on February 1st the physician decides the patient
no longer needs the drug, the database will be amended to show that the
patient only took the non-sulfa drug from January 20th to February 1st.

Review question 2

• What are the differences between relative and absolute times?

• What are the differences between a snapshot database and a historical
database?

• What are the differences between a snapshot database and a temporal
database?

19

Incorporating time in Relational databases

In this final section, we briefly look at ways in which time data may be recorded
and queried using extensions to the Relational model. It is not necessary to
understand the fine details of temporal Relational query statements, but you
should understand the different kinds of timestamping approaches, and the con-
cepts around the two suggested temporal Relational operators, COALESCE and
UNFOLD.

Recording changes to databases

Let us now examine how the different types of temporal databases may be rep-
resented in the Relational model. A conventional relation can be visualised
as a two-dimensional structure of tuples and attributes. Adding time as a
third dimension to a conventional relation will change the relation into a three-
dimensional structure. There have been many attempts in the past to find a
suitable design structure that would be able to cope with handling the extra
time dimension. We will describe these attempts in general, pointing out their
successes and failures.

Archiving

One of the earliest methods of maintaining time-based data for a database was
to backup (archive) all the data stored in the database at regular intervals;
i.e. the entire database was copied, with a timestamp, weekly or daily. However,
information between backups is lost and retrieval of achieved information is slow
and clumsy, since an entire version of the database needs to be loaded/searched.

Time-slicing

The time-slicing method works if the database is stored as tables, such as in the
Relational database model. When a change to the database occurs, at least one
attribute of at least one tuple (record) from a particular table is changed. The
time-slicing approach simply stores the entire table prior to the event and gives
it a timestamp. Then a duplicate but updated copy is created and becomes
part of the ‘live’ database state. Time-slicing is more efficient and easier to
implement than archiving, since only those tables which are changed are copied
with a timestamp. However, there still a lot of data redundancy in the time-
slicing approach. This data redundancy is a result of duplicating a whole table
when, for example, only one attribute value of one tuple was changed. With
time-slicing, it is not possible to know the lifespan of a particular database state.

20

Tuple timestamping

Tuple timestamping means that each relation is augmented with two time at-
tributes representing a time interval, as illustrated in the figure below (the two
attributes are the time points a tuple was ‘live’ for the database, i.e. starting
time point and ending time point).

The entire table does not need to be duplicated; new tuples are simply added
to the existing table when an event occurs. These new tuples are appended at
the end of the table.

Examples:

Example with data:

21

Attribute timestamping

Attribute timestamping is implemented by attribute values consisting of two
components, a timestamp and the data value. Some approaches to attribute
timestamping use time intervals instead of timestamps, which express lifespan
better than other constructs. Using time intervals can avoid the main problem
of tuple timestamping, which breaks tuples into unmatched versions within or
across tables. Retrieval is fast for single attributes, but poor for complete tuples.

UNFOLD and COALESCE: Two useful temporal Relational operators

The temporal Relational operators UNFOLD and COALESCE are important
core concepts in most suggested extensions to the Relational model for temporal
databases. The UNFOLD operator makes use of the concept of unary intervals
introduced earlier in the chapter, and the COALECSE operator is the logical
opposite of UNFOLD. We shall investigate each below.

UNFOLD

The temporal Relational operator UNFOLD works on a set of tuples with valid
or transaction time intervals (i.e. start and end time attributes) and expands
the relation so that the data has a tuple for each unary interval appearing in any
of the intervals for the data. This is probably best understood with an example.
Consider the following temporal relation, NIGHTSHIFT, recording employees
who are security guards for particular factory sites for particular dates (we will
use valid dates in this example):

22

We can see intuitively from the table that employee #0027 has been on duty at
site S03 for 2, 3, 4, 5 and 8, 9 March 1999. The UNFOLD operator makes this
formal and explicit by replacing the tuples with intervals greater than one time
quantum with multiple, unary intervals as follows:

The usefulness of such an operator means that once a table has been UN-
FOLDED it becomes a simple query to find out whether a tuple was valid
for any given time quantum.

COALESCE

The COALESCE temporal Relational operator is the logical opposite of UN-
FOLD in that it attempts to reduce the number of tuples to the minimum,
i.e. wherever a sequence of intervals can be summarised in a single interval, this
is done. Consider the following set of tuples for our NIGHTSHIFT relation:

23

We might assume that employee #0027 came in for extras days on 4/3/99 to
cover a colleague’s sick leave; likewise for employee #0102 on 4/3/99.

We can see intuitively that employee #0027 was working from 2/3/99 until
4/3/99, and from 8/3/99 until 11/3/99. The COALESCE temporal Relational
operator formalises this concept of using the minimum number of tuples to
represent the intervals when data is valid. The result of the COALESCE query
on the relation is as follows:

Result of query: NIGHTSHIFT COALESCE StartVDate, FinishVDate

You may wish to refer to the recommended reading for this chapter to investigate
further the details of these two temporal Relational operators.

Further work and application

Review question

Consider the following statements spoken in 2015.

“Two days ago, I was seven years old,” said a little girl. “Next year, I’ll be 10!”

Can this be true? If so, what was the date the little girl was born, and what
was the date when she was speaking?

Discussion topic

Discuss how time instants and time periods can be use to model time-oriented
medical data.

24

Additional content and activities

Temporal database design

Amongst many existing data models, we have chosen the Entity Relationship
Time (ERT) model for its simplicity and the support of the SQL language.

Entity Relationship Time model

The Entity Relationship Time model (ERT) is an extended entity-relationship
type model that additionally accommodates ‘complex objects’ and ‘time’. The
ERT model consists of the following concepts:

• Entity: Anything, concrete or abstract, uniquely identifiable and being
of interest during a certain time period.

• Entity class: The collection of all the entities to which a specific defini-
tion and common properties apply at a specific time period.

• Relationship: Any permanent or temporary association between two
entities or between an entity and a value.

• Relationship class: The collection of all the relationships to which a
specific definition applies at a specific time period.

• Value: An object perceived individually, which is only of interest when
it is associated with an entity. That is, values cannot exist on their own.

• Value class: The proposition establishing a domain of values.

• Time period: A pair of time points expressed at the same abstraction
level.

• Time period class: A collection of time periods.

• Complex object: A complex value or a complex entity. A complex entity
is an abstraction (aggregation or grouping) of entities and relationships.
A complex value is an abstraction (aggregation or grouping) of simple
values.

• Complex object class: A collection of complex objects. That is, it can
be a complex entity or a complex value class.

The time structure denotes the granularity of the timestamp. Various types of
granularity are provided including: second, minute, hour, day, month and year.
The default granularity type is the second. Obviously, if the user specifies a
granularity type for a timestamped ERT object, this granularity type supports
all the super types of it. For example, if the day granularity type is specified,
the actual timestamp values will have a year, a month and a day reference.
Furthermore, the time structure can be user-defined, e.g. a granularity of a
week may be necessary.

25

Besides the temporal dimension, ERT differs from the entity-relationship model
in that it regards any association between objects as the unified form of a re-
lationship, thus avoiding the unnecessary distinction between attributes and
relationships. A relationship class denotes a set of associations between two
entity classes or between an entity class and a value class, and in that, all re-
lationships are binary and each relationship has its inverse. Additionally, for
every relationship class, apart from the objects participating, the relationship
involvements of the objects and the cardinality constraints should be specified.

The relationship involvements specify the roles of the object in the specified rela-
tionship e.g. Employee works_for Department, Department employs Employee.
Furthermore, for each relationship involvement, a user-supplied constraint rule
must be defined which restricts the number of times an entity or a value can
participate in this involvement. This constraint is called a cardinality constraint
and it is applied to the instances of the relationship by restricting its popula-
tion. As an example, consider the case where the constraint for relationship
(Employee, works_for, Department) is 1:N. This is interpreted as: one Em-
ployee can be associated to at least one instance of Department, while there is
no upper limit to the number of Departments an Employee is associated with.

Another additional feature of the ERT model is the concept of complex object
(entity or value class). The basic motivation for the inclusion of the complex
object class in the external formalism, is to abstract away detail, which in several
cases is not of interest. In addition, no distinction is made between aggregation
and grouping, but rather a general composition mechanism is considered which
involves relationships/attributes. For the modelling of complex objects, a special
type of relationship class is provided, named IsPartOf.

An entity or relationship class can be derived. This implies that its instances
are not stored by default, but for each such derivable component, there is a
corresponding derivation rule which gives the instances of this class at any time.
Derived schema components are one of the fundamental mechanisms in semantic
models for data abstraction and encapsulation.

The graphical representation of ERT constructs is depicted below.

The construct of timestamp is modelled as a pair (a,b), where a denotes the
temporal semantic category (TSC) while b denotes the time structure. Three
different temporal semantic categories have been identified, namely:

• Decomposable

• Nondecomposable

• time points

The ERT notation for the three concepts is TPI for the decomposable time
periods, TI for the nondecomposable time interval and TP for the time point.
The time structure denotes the granularity of the timestamp.

26

An example ERT schema is depicted in the figure above. Several entity classes
can be found in the diagram, namely: Employee, Manager, Secretary, Depart-
ment and Car. These are represented using a rectangle with the addition of a
‘time box’, which shows that the entity is time varying. Complex entity classes
are represented using double rectangles, e.g. Car, while for derived entity class
the rectangle is dashed, e.g. Best_Department. For the entity classes partici-
pating in a hierarchy, an arrow is used for specifying the parent entity class.

Relationship classes are represented using a small filled rectangle and can be
time varying (with the addition of ‘T’) or not. In addition, for every relationship
class, relationship involvements and cardinality constraints are specified.

Value classes e.g. Name, Address or Dept_ID, are represented with rectangles
which have a small black triangle at the bottom right corner. Complex value
classes e.g. Address are represented using double rectangles.

Every complex object can be further analysed into its components. The notation
used is the same as in the top-level schema, adding the special type relationship
IsPartOf. The complex entity class Car is illustrated in the first figure below,
while the complex value class Address is illustrated in the second figure below.

27

An example of a derived entity class is illustrated in the figure below, and
population of entity class Employee and entity class Department are shown in
the two tables below that.

28

The ERT-SQL language

In this section, we describe the temporal query language ERT-SQL primarily
used for manipulating an ERT-based database. The ERT-SQL is based on the
standard SQL2 and on the valid time SQL (VT-SQL) language.

The ERT-SQL statements are divided into three language groups:

• Data Definition Language (DDL): These statements are used to de-
fine the ERT schema, by specifying one by one all ERT components (for
example, CREATE ENTITY, CREATE RELATIONSHIP).

• Data Manipulation Language (DML): DML statements are used to
query or update data of an ERT database (for example, SELECT, IN-
SERT).

• Schema Manipulation Language (SML): These statements are used
to alter the ERT schema (for example DROP ENTITY, ALTER EN-
TITY).

Full description of ERT-SQL is beyond the scope of this chapter. Thus, in the

29

rest of this section, the capabilities of ERT-SQL are illustrated with a number
of examples.

The CREATE statement has the structure and facilities similar to that of the
standard SQL, but it is extended in order to be able to capture the temporal
and structural semantics of the ERT model.

“Create entity employee class, employee and also relationship class (employee,
department).”

CREATE ENTITY Employee (TPI,DAY)

(VALUE,Name,CHAR(20),has,1,1,of,1,1)

(VALUE,Salary,INTEGER,has,1,N,of,1,N(TPI,DAY))

(COMPLEX VALUE,Address,has,1,1,of,1,N(TPI,DAY))

CREATE RELATIONSHIP (Employee,Department,works_for,1,1,employs,1,N(TI,MONTH))

The SELECT statement also has the structure and facilities similar to that of
the standard, with temporal capability.

“Give the periods during which the employee ‘Ali’ had been working for the
‘Toys’ department.”

SELECT [Employee, Department, works_for].TIMESTAMP

FROM Employee, Department

WHERE Dept_Name = ‘Toys’ AND Name=‘Ali’

The INSERT statement is used to add instances both to entity and to relation-
ship classes.

“Insert the ‘Toys’ department with existence period from the first day of 1994
and Profit £10000.”

INSERT INTO Department

VALUES

Dept_ID = ‘D151294’

Dept_Name = ‘Toys’ ‘[1/1/1994,)’

Profit = 10000

TIMESTAMP = ‘[1/1/1994,)’

“Insert the information that the employee with name ‘Ali’ has been working for
the ‘Toys’ department from 5/4/1994 to 1/5/1996.”

INSERT INTO RELATIONSHIP (Employee, Department, works_for)

TIMESTAMP = ‘[5/4/1994, 1/5/1996)’

WHERE (Name = (‘Ali’)) AND (Dept_Name = ‘Toys’)

30

The DELETE statement is used to delete particular instances from an entity
class or from a relationship class.

“Delete the information that the employee ‘Ali’ had worked for the ‘Toys’ de-
partment for the period [1/1/1990,1/2/1990).”

DELETE FROM RELATIONSHIP (Employee,Department,works_for)

WHERE (TIMESTAMP = ‘[1/1/1990, 1/2/1990)’) AND (Name = ‘Ali’) AND
(Dept_Name = ‘Toys’)

The UPDATE statement is used to alter the contents of an instance either of
an entity class or of a relationship class.

“The department ‘Toys’ had this name for the period ‘[1/1/1970,1/1/1987)’ and
not for the ‘[1/1/1960,1/1/1990)’. Enter the correct period.”

UPDATE RELATIONSHIP(Department, Dept_Name, has)

SET TIMESTAMP = ‘[1/1/1970,1/1/1987)’

WHERE(TIMESTAMP=‘[1/1/1960,1/1/1990)’) AND (Dept_Name=‘Toys’)

The DROP statement is used to remove entity classes (simple, complex or de-
rived) or relationship classes from an ERT schema.

“Remove the Department entity class.”

DROP ENTITY Department

“Remove the relationship class between entities Employee and Car with role
name ‘owns’.”

DROP RELATIONSHIP (Employee, Car, owns)

The ALTER statement is used to add and remove value classes or to add a new
component to a complex object.

“Add to the entity Employee, value class ‘Bank_Account’.”

ALTER ENTITY Employee

ADD (VALUE,Bank_Account,INTEGER,has,1,1,of,1,N)

“Alter timestamped relationship between Employee and Department. Set tem-
poral semantic category to TPI and granularity to DAY.”

ALTER RELATIONSHIP

(Employee, Department, works_for)

TIMESTAMP (TPI,DAY)

Additional review questions

1. Using the employee database example in the Extend section, express the
following query in ERT-SQL language:

31

• “Insert the information that the employee with name ‘Ali’ has been work-
ing for the ‘Toys’ department from 5/4/1994 to 1/5/1996.”

• “Alter timestamped relationship between Employee and Department. Set
temporal semantic category to TPI and granularity to DAY.”

2. What are the three language groups of ERT-SQL?

32

	Chapter 18. Temporal Databases
	Objectives
	Introduction
	Temporal databases: The complexities of time
	Concepts of time
	The important temporal work of Allen (1983)
	Unary intervals
	Relative and absolute times
	Temporal data behaviour

	Temporal database concepts
	Some important concepts

	Database representation and reasoning with time
	Snapshot databases
	Rollback databases
	Historical databases
	Temporal databases

	Incorporating time in Relational databases
	Recording changes to databases
	Tuple timestamping
	Attribute timestamping
	UNFOLD and COALESCE: Two useful temporal Relational operators
	Further work and application

	Additional content and activities
	Temporal database design
	The ERT-SQL language

