
Chapter 20. Database Administration and Tun-
ing

Table of contents

• Objectives
• Introduction
• Functions of the DBA

– Management of data activity
– Management of database structure
– Tables and tablespaces
– Data fragmentation
– Designing for the future
– Information dissemination
– Supporting application developers
– Use of the data dictionary

∗ The Oracle data dictionary
∗ Core system tables
∗ Data dictionary views
∗ Application

– Control of redundancy
– Configuration control
– Security
– Summary of DBA functions

∗ Documentation
∗ Documentation for use throughout the organisation
∗ Documentation for use within the DBA function
∗ Qualities and roles of the DBA function

• Administration of client-server systems
– Tools used in DBA administration

∗ Data dictionary
∗ Stored procedures
∗ Data buffering
∗ Asynchronous data writing
∗ Data integrity enforcement on a server
∗ Concurrency control features
∗ Communications and connectivity

– Client-server security
∗ Server security
∗ Client security
∗ Network security
∗ Checking of security violations

• Database tuning
– Tuning SQL

∗ Guidelines

1



– Tuning disk I/O
– Tuning memory
– Tuning contention
– Tools to assist performance tuning

∗ Software monitors
∗ Hardware monitors

– Other performance tools
– Concluding remarks on database tuning

• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Describe the principle functions of a database administrator.

• Discuss how the role of the database administrator might be partitioned
among a group of people in a larger organisation.

• Discuss the issues in tuning database systems, and describe examples of
typical tools used in the process of database administration.

Introduction

In parallel with this chapter, you should read Chapter 9 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

The functions of the database administrator (DBA) impact on every aspect
of database usage within an organisation, and so relate closely to most of the
chapters of this module. Database administrators often use the SQL language
for the setting up of users, table indexes and other data structures required to
support database applications. They will often work closely with analysts and
programmers during the design and implementation phases of database applica-
tions, to ensure that the decisions made during these processes are appropriate
in the context of the organisation-wide use of the database system. The DBA
will work with management and key users in developing security policy, and will
be responsible for the effective implementation of that policy in respect of the
use of the databases in the organisation. In the common situation where client-
server systems or a fully distributed database system are being used, the DBA
is likely to be the one who determines important aspects relating to how the
processing and/or data are distributed within the system, including, for exam-
ple, the frequency with which replicas are updated in a DDBMS. This activity
will be undertaken in close consultation with users and developers within the
organisation, so that the strategy is informed by a good understanding of the
priorities of the organisation as a whole. Furthermore, a good understanding of

2



the potential of new database technology, such as Object databases, is impor-
tant to the DBA role, as it enables the DBA to advise budget holders within the
organisation of the potential benefits and pitfalls of new database technology.

Modern database management systems (DBMSs) are complex software systems.
When considered within the context of an organisational environment, they are
usually key to the success of the organisation, enabling personnel at all levels of
the organisation to perform essential tasks. In order for the database systems
within an organisation to remain well aligned to requirements and provide a high
degree of availability and efficiency, the system needs to be administrated effec-
tively. The importance of the tasks of database administration was highlighted
from the early days of database systems, in the writings of James Martin and
others. With the increased complexity and frequent need in present systems to
enable multiple databases to combine to provide an efficient overall service, the
importance of database administration cannot be over-stressed. In this chapter
we shall examine the tasks involved in the administration of database systems.
We shall start by examining each of the major aspects of the job of a database
administrator (DBA), and go on to explore the way in which the tasks involve
the DBA in working with people from all levels of an organisation. In larger
organisations, the functions of the DBA are sufficiently numerous to warrant
being split among a number of different individuals who will form the members
of a DBA group. We shall look at the ways that the job of the DBA might be
partitioned, and explore the issue of what level within an organisation the DBA
functions should be placed.

One of the most important and technically demanding aspects of database ad-
ministration is the performance tuning for the database. This involves ensuring
that the database is running efficiently, and providing a reliable and responsive
service to the users of the system. In the later part of the chapter, we will dis-
cuss the major aspects of database tuning, using examples drawn from current
systems.

Functions of the DBA

Management of data activity

The term ‘data activity’ refers to the way in which data is accessed and used
within an organisation. Within medium to large organisations, formal policies
are required to define which users should be authorised to access which data,
and what levels of access they should be given; for example, query, update, copy,
etc. Processes also need to be defined to enable users to request access to data
which they would not normally be able to use. This will involve the specification
of who has responsibility for authorising users to have data access. This might
typically involve the line manager of the user requesting access, who should be
in a position to verify that access is genuinely required, plus the authorisation
of the user identified as the owner of the data, who should be in a position to

3



be aware of any implications of widening the access to the data. From time to
time, conflicts may arise during the processing of requests for access to data. For
example, a user may request access to particularly sensitive sales or personnel
data, which the data owner refuses. In these circumstances, the DBA may be
involved as one of those responsible for resolving the conflict in the best interests
of the organisation as a whole.

Much of the DBA’s activity will be focused on supporting the production en-
vironment of the organisation, where the operational programs and data are
employed in the daily business of the organisation. However, in medium to
large organisations, there will be significant activity to support developers in
the processing of writing and/or testing new software.

Data activity policies formulated to address these issues need to be clearly doc-
umented and disseminated throughout the organisation. The policies might in-
clude agreements about the availability of data, specific times at which databases
may be taken offline for maintenance, and the schedules for migrating new pro-
grams and data into the production environment.

A further aspect of data activity policy is the determination of procedures for
the backup and recovery of data. The DBA will require a detailed knowledge of
the options provided by the DBMSs being used regarding the backup of data,
the logging of transactions, and the recovery procedures in light of a range of
different types of failure.

Management of database structure

Another fundamental area of activity for the DBA concerns the definition of
the structure of the databases within the organisation. The extent to which
this is required will vary greatly depending on how mature the organisation is
in terms of existing database technology. If the organisation is in the process
of acquiring and setting up a database or databases for the first time, many
fundamental decisions need to be taken regarding how best this should be done.
Most organisations have progressed well beyond these fundamental issues today;
however, even in such organisations, the effectiveness of those initial decisions
needs to be monitored to ensure that the computer-based information within
the organisation provides a good fit for the needs of its users. Among the key
decisions to be taken during the process of establishing database systems within
an organisation are the following:

• Which type of database systems best suit the organisation? There is no
doubt that Relational database systems dominate the current marketplace,
but for some organisations, particularly those specialising in engineering
or design, there is certainly a case for examining the potential of Object-
based systems, either instead of or running alongside a Relational system.

• How many databases are required? In the early days of database systems,

4



most organisations used one single database system, and the data on that
system could be considered to provide the data model for the enterprise as
a whole. Today, it is much more often the case that a number of database
systems are employed, sometimes from different vendors, and sometimes
with different underlying data models. This usually implies the need to
transfer at least some of the data between these different systems.

• Is it necessary to establish a number of different database environments
to support different types of activity within the organisation? This might,
for example, involve the creation of development and production environ-
ments mentioned above, or may require a different organisation of work,
such as, for example in a chemical company, the setting up of one environ-
ment to support online transaction processing, and another environment
to enable the research and development of models of chemical and manu-
facturing processes.

• The interfaces between different database systems must be defined to al-
low transfer of data between them. Furthermore, interfaces between each
database system and any other important software components, such as
groupware and/or office information systems, need to be established.

The above decisions can be seen as arising at the strategic level of database
administration, and will be considered in conjunction with senior members of
the company and/or department in which the DBA is based. Nearer to the
operational level, there is a range of important decisions concerning the struc-
ture of individual database systems within the organisation. Some of these are
described below.

Tables and tablespaces

A ‘tablespace’ is a unit of disk space which contains a number of database tables.
Usually each tablespace is allocated to data of a particular type; for example,
there may be a tablespace established to contain user data, and another one to
contain temporary data, i.e. data that is only in existence for a short time and
is usually required in order to enable specific processes such as data sorting to
take place. A further example might be in a university database, where separate
tablespaces might be established respectively to support student, teaching staff
and administrative users.

As an aside, the pattern of usage of tables in the student tablespace of a uni-
versity database is very different to that typically seen in a commercial system.
Very generally speaking, in a commercial system, data activity in a production
environment might be characterised as comprising the following:

• Access to a relatively small number of fairly large tables.

• Regular executions of a predefined set of transactions.

5



• Several transactions may regularly scan large volumes of data.

In contrast, data activity in a student tablespace during a database class might
be characterised as comprising:

• Many different tables, each of which contains only a few rows.

• Irregular and different types of transactions.

• Very small numbers of records processed by each transaction.

Tablespaces are an extremely important unit of access in database administra-
tion. In many systems they are a unit of recovery, and, for example, it may be
necessary to take the whole tablespace offline in order to carry out recovery or
data reorganisation operations to data in that tablespace.

A further important consideration is the way in which tables, indexes and ta-
blespaces are allocated to physical storage media such as disks. This will be
discussed further later in this chapter, in the section on database tuning. It
is important here to point out that the DBA requires a good understanding
of the volume of query and update transactions to be made on the tables in
a tablespace, so that the allocation of physical storage space can be made in
such a way that no physical device such as a disk becomes a major bottleneck
in limiting the throughput of transactions.

Typically, database systems provide a number of parameters that can be used
to specify the size of tablespaces and tables. These often include the following:

• Initial extents: The amount of disk space initially made available to the
structure.

• Next extents: The value by which the amount of storage space available
to the structure will be increased when it runs out of space.

• Max extents: The maximum amount of space to be made available to the
structure, beyond which further growth can only be enabled by further
intervention by the DBA.

Note: An extent is a term referring to a contiguous area of disk space. For any
specific DBMS, it will consist of a number of data blocks which will be stored
together in the same extent.

Data fragmentation

Over a period of time during which a database table is being used, it is likely
to experience a significant number of inserts, updates and deletions of data.
Because it is not always possible to fit new data into the gaps left by previously
removed data, the net effect of these changes is that the storage area used to
contain the table is left rather fragmented, containing a number of small areas
which are hard to insert new data into them. This phenomenon is called ‘data

6



fragmentation’. The effect of data fragmentation in the long run is to slow down
the performance of transactions accessing data in the fragmented table, as it
takes longer to locate data in the fragmented storage space. Some database
systems provide utilities (small programs) that can be used to remove these
pockets of unusable space, consolidating the table once more into one contiguous
storage structure — this is known as defragmentation. In other DBMSs, where
no defragmentation utility is available, it may be necessary to export the table
to an operating system file, and re-import it into the database, so that the
pockets of unusable free space are removed.

Review question 1

• Describe the difference between production and development environ-
ments.

• Make a list of the range of different types of failure that the DBA needs
to plan for in determining adequate backup and recovery strategies.

• Describe typical parameters that can be used to control the growth of
tables and tablespaces.

• What is gained when a table is defragmented?

Designing for the future

An important overall principle to be applied when trying to estimate the re-
quirements for storage and performance tuning is to design for the future. It
will be part of the DBA’s role to collect information from those responsible for
the introduction of new database applications, about the volumes of data and
processing involved. Producing such estimates can be extremely difficult, but
even when these are correct, it is a mistake to plan on the basis of these figures
alone. It is more realistic to base estimates of the volume of data and processing
required on what they might be expected to have reached in a year’s time, and
to provide sufficient storage and processing capacity on that basis. This avoids
being caught by surprise, should the volume of activity within the application
grow much faster than was initially anticipated.

Information dissemination

Communication is an essential aspect of the role of the DBA. When new re-
leases of DBMSs are introduced within the organisation, or new applications or
upgrades come into use, it is important that the DBA is sensitive to the needs of
the user population as a whole, and produces usable documentation to describe
the changes that are taking place, including the possible side effects on users and
developers. An equally important role in communicating information relates to
the development and dissemination of information about programming and test-
ing standards that may be required within an organisation. This may include

7



specifications of who is able to access which data structures, and standards for
the use of query and update transactions throughout the organisation.

Supporting application developers

The DBA plays an important role in assisting those involved with the devel-
opment and/or acquisition of software for the organisation. As well as being
the gatekeeper of database resources, and monitoring future requirements for
database processing (as exemplified in activity 1 further on), the DBA can pro-
vide ongoing advice to analysts and programmers about the best use of database
resources. Typical issues that this may involve are the following:

• Information on the different types and instances of databases in the or-
ganisation, including the interfaces between them, any regular times when
databases are unavailable, etc.

• Advice on the details of existing tables and tablespaces in the databases
of the organisation.

• Advice on the use of indexes, different index types available and indexes
currently set up.

• Details of security standards and procedures.

• Details of existing standards and procedures for the use of programming
languages (including query languages).

• Details of migration procedures used for moving programs and data in
and out of production.

Use of the data dictionary

The data dictionary is a key resource for database administration. It contains
data about the tablespaces, tables, indexes, users and their privileges, database
constraints and triggers, etc. Database administrators should develop a good
knowledge of the most commonly used tables in the dictionary, and reference
it regularly to retrieve information about the current state of the system. The
way in which dictionaries are organised varies greatly between different DBMSs,
and may change significantly with different releases of the same DBMS.

The Oracle data dictionary

The Oracle data dictionary is a set of tables that the Oracle DBMS uses to record
information about the structure of the database. There is a set of core system
tables, which are owned by the Oracle user present on all Oracle databases,
the SYS user. SYS is rarely used, even by DBAs, for maintenance or enquiry
work. Instead, another Oracle user with high-level system privileges is used.

8



The DBA does not usually use the SYSTEM user, which is also automatically
defined when the database is created. This is because product-specific tables
are installed in SYSTEM, and accidental modification or deletion of these tables
can interfere with the proper functioning of some of the Oracle products.

Core system tables

The core data dictionary tables have short names, such as tab$, col$, ind$.
These core system tables are rarely referenced directly, for the information is
available in more easily usable forms in the data dictionary views defined when
the database is created. To obtain a complete list of the data dictionary views,
query the DICT view, as shown in the section on data dictionary views below.

Data dictionary views

The data dictionary views are based on the X$ and V$ tables. They make infor-
mation available in a readable format. The names of these views are available
by selecting from the DICT data dictionary view. Selecting all the rows from
this view shows a complete list of the other accessible views.

SQL*DBA is an Oracle product from which many of the database administra-
tion tasks can be performed. However, SQL*Plus provides basic column format-
ting, whereas the SQL*DBA utility does not. Therefore, you use SQL*Plus for
running queries on these views. If you are not sure which data dictionary view
contains the information that you want, write a query on the DICT_COLUMNS
view.

Most views used for day-to-day access begin with USER, ALL or DBA. The
USER views show information on objects owned by the Oracle user running
the query. The data dictionary views beginning with ALL show information
on objects owned by the current Oracle user as well as objects to which the
user has been given access. If you connect to a more privileged Oracle account
such as SYS or SYSTEM, you can access the DBA data dictionary views. The
DBA views are typically used only by the DBA. They show information for all
the users of the database. The SELECT ANY TABLE system privilege enables
other users to access these views. Querying the DBA_TABLES view shows the
tables owned by all the Oracle user accounts on the database.

Application

Activity 1 - Capturing requirements for application migration

Imagine you are a database administrator working within a large organisation
multinational. The Information Systems department is responsible for the in-
house development and purchase of software used throughout the organisation.
As part of your role, you require information about the planned introduction of
software that will run in the production database environment. You are required

9



to develop a form which must be completed by systems analysts six weeks before
their application is moved into production. Using a convenient word processing
package, develop a form to capture the data that you think may be required in
order for the DBA team to plan for any extra capacity that might be required
for the new application.

Activity 2 - Examining dictionary views available from your user ac-
count

Query the DICT_COLUMNS table to examine the list of tables including the
string USER visible from your own Oracle account. Remember to put USER
in upper case in the query. The output should contain quite a lot of views. To
avoid the information scrolling off the top of the screen, issue the command

Set pause on

prior to issuing the query. The information should then appear 24 lines at a
time. You can view the next 24 lines by pressing the Enter key on your PC.

Activity 3 - Examining the details of available tables

Log into your Oracle account. Issue the following command to view the details
of tables that you own:

SELECT * FROM USER_TABLES;

Examine the columns of the results that are returned.

To explore any further tables that are available to you, issue the following query:

SELECT * FROM ALL_TABLES;

To examine any of these tables further, use the DESCRIBE command, or issue
further SELECT commands on the specific tables you find.

Control of redundancy

We have seen from the chapters on database design that a good overall database
design principle is to store one fact in one place. This reduces the chances of
data inconsistency, and avoids wasted space. There are, however, situations
in which it can be appropriate to store redundant information. One major
example of this we have seen in connection with the storage of replicas or copies
of data at different sites in a truly distributed database system. Even within
a non-distributed system, data may sometimes be duplicated, or derived data
stored, in order to improve overall performance. An example of storing derived
data to improve performance, might be where a value which normally could
be calculated from base values in an SQL query is actually stored explicitly,
avoiding the need for the calculation. For example, we might store net salary
values, rather than relying on transactions to calculate the value by subtracting
various deductions (for tax, national insurance, etc) from gross pay. This reduces

10



the processing load on the system, at the expense of the extra storage space
required to hold the derived values. The issue of calculating derived values
every time from the underlying base values is generally more of a significant
problem than the provision of the extra storage space required. The DBA will
play an important role in advising developers about the use of redundant and
derived data, and will maintain control of these issues, as part of the overall
responsibility for ensuring the database runs efficiently.

Configuration control

In a modern database environment, there are usually several products which
are used to provide the range of functions required. These will typically include
the database server, and various additional products such as a GUI forms-based
interface, report writing tool, data graphing tool, software to assist the design
of new applications, utilities for migrating programs and data in and out of pro-
duction, etc. All of these different software components will be upgraded from
time to time, and it is likely that some of them will come from different vendors.
Many of the problems that occur in developing Information Systems arise when
trying to enable two or more software components to communicate effectively.
For this reason, it is essential that the DBA maintains a record of which versions
of which software components have been and are currently running. In general,
this area of work is known as configuration control. The information needed to
be maintained to carry out successful configuration control is, as a minimum,
the following:

• For currently running software components, a note of the name, exact
release number, date put into production, vendor, and the details of any
parameter values or activities that have been necessary in order to estab-
lish interfaces with other products, including the release numbers of those
products and the dates during which these changes were effective.

• For software components that have been used previously: the name, exact
release number, dates introduced and withdrawn from production, vendor,
and as above, any details required of parameter values or other activities
required to enable this component to communicate effectively with other
products, including the release numbers of those products and the dates
during which these values, etc, were in effect.

Even when all of the products have been purchased from the same vendor, proper
configuration control is extremely important to ensure the correct running of the
environment. Having this information available gives the option that, should
a problem arise involving incompatibilities of software components, it may be
possible to revert back to a previously stable configuration, maintaining a service
to users while the incompatibility problem is resolved.

11



Security

Security is a major issue in database systems, and the DBA is the foremost per-
son with responsibility for ensuring the day-to-day security of the stored data.
This process begins with the DBA working in conjunction with managers, key
users and owners of the organisations data, to establish appropriate security
mechanisms and procedures. This will be a process of determining how to make
the most appropriate use within the organisation of the security mechanisms
provided by the DBMS and other software in use, plus a clear definition and
documentation of supporting policies and processes to ensure that data and pro-
grams are properly protected. Typical issues that should be addressed include:

• Procedures for the allocation of passwords. Many database systems pro-
vide considerable flexibility in the use of passwords, enabling them to be
set from the database level right down to the individual attribute level.
Procedures need to be defined regarding how passwords are allocated, in-
cluding any rules regarding the format of passwords; e.g. whether they
should exceed a certain length, and how long they can be used for be-
fore they expire and need to be reset. The requirements for passwords
may vary hugely, from a development environment in which a number
of standard user accounts have been established requiring no password
protection, right through to highly secure production situations such as
records of bank account details, in which two passwords may be required
to access a particularly sensitive attribute. In general, a very important
consideration to keep in mind with all security mechanisms, is the set of
procedures and practices that are used within the organisation for the
use and communication of security information. For example, there is no
point in having a very sophisticated software protection system to prevent
people from discovering one another’s passwords, if it is commonplace for
people to write their passwords on their PCs or in other places in their
work area, where they can be easily read by anybody.

• Procedures for the administration of database privileges, such as the grant-
ing and revocation of access to tables, query and update transactions.

• The use of encryption techniques for encoding data while it is being trans-
mitted over networks, including any intranet and the Internet.

• As discussed earlier, the establishment of procedures for transaction log-
ging and recovery from a range of different failures.

Summary of DBA functions

Documentation

We have seen that the job of the database administrator impacts on many
aspects of an organisation’s work. Depending on the geographical spread of an

12



organisation, and its size in terms of personnel, the person or people undertaking
the DBA role may be required to produce a significant amount of documentation,
in order to describe various aspects of database activity to users as a whole. This
documentation is likely to include the following elements:

Documentation for use throughout the organisation

• Security standards and procedures.

• Details of forthcoming changes to DBMSs being used or of DBMSs to be
introduced.

• Database change procedures for developers.

• Meeting documentation to clarify agreed developments and changes with
users.

• Programming and query language standards.

Documentation for use within the DBA function

• Documentation for configuration control.

• Records of changes made to the database structure and system.

• Records of test procedures and test runs after changes.

Qualities and roles of the DBA function

The DBA is clearly a key player in the success or failure of a company. The role
encompasses a wide range of technical and political/social skills. In medium to
large organisations, it is extremely likely that the job of database administration
will be split into a number of different parts, and be performed by a group of
between 3-5 people. Each of these individuals will take responsibility for specific
aspects of database administration. Among the qualities that would be required
collectively of this group of people, we would expect to see the following:

• Good communications. The DBA needs to communicate effectively with
people throughout the entire spectrum of the organisation. Communi-
cations with high-level management is required, in order that the DBA
function can be sufficiently informed about strategic directions, so that
the database strategy for the organisation can be closely aligned with the
business strategy. Frequent communications will be needed with many
other levels of the organisation, including Information Systems personnel,
end-users and their managers.

• Technical knowledge. In addition to the need to have a sound knowledge
of the various utilities and database languages being used to administer
user privileges and monitor database activity, a detailed understanding of

13



the interfaces to other database systems is often required. The knowledge
used to tune the performance of a database system ranges from the ability
to spot individual trouble spots, such as an inefficiently coded SQL trans-
action, which can be sped up by recording or the use of indexes, through
to variations of system parameters that might be used to make global
performance improvements to the DBMS.

• Good understanding of the organisation and its priorities; ability to liaise
with management.

• Good arbitrator, in situations where it is necessary to make decisions
regarding disputes over access to data or processes.

• Trustworthy - clearly a major part of the security of the organisation is in
the hands of the DBA.

• Respected by application development staff and management.

• Cool under pressure. Should disasters arise, for example at the database-
application or whole-DBMS level, it is likely that the DBA will be involved
in trying to resolve the situation, with minimum disruption to the users
and clients of the organisation.

• Flexible. It is possible that years of hard-won knowledge relating to a
specific DBMS may from time to time become obsolete, either because that
system is replaced by a substantial new release, or because for business
reasons, the organisation decides to migrate to a totally different DBMS.

In situations where the functions of database administration are to be organised
among the members of a DBA group or team, the following roles might be
identified. Depending on the level of work related to each role, one person may
adopt more than one role within the overall context of the DBA group.

• Database project leader.

• Documentation and standards developer/disseminator.

• User representative.

• Database systems manager.

• Performance tuning expert.

• Research and development specialist, perhaps looking into database tech-
nologies which are new, or new to the organisation, such as replication,
Object databases, data mining, etc.

Review question 2

• Describe an example of a situation other than that given in the content
of the chapter, in which it may be desirable to store redundant or derived
data.

• Describe the arguments for and against storing derived data.

14



• Explain what is meant by the term configuration control.

Administration of client-server systems

The job of the DBA is to decide what database system and architecture is
suitable for the company. He/she needs to be well in tune with the business
strategies and objectives, and how the database architecture impacts the devel-
opment and priorities of the organisation’s information systems. He/she is the
person to establish policies for maintaining and dealing with database systems
in the organisation. He/she is also responsible for ensuring that the system
operates with adequate performance to meet the demands of the organisation.
Faced with such great responsibility, the DBA needs to know the various issues
of client-server architecture and what impact it has on the organisation.

The advantage of client-server architecture is its potential in portability, scala-
bility and interconnectability of clients and servers using various network con-
figurations. In addition, when evaluating Relational DBMS on client-server
systems, the DBA must consider many factors besides the architectural model -
transaction control, performance, security, integrity, procedure logic and other
issues also figure prominently.

SQL has become a standard data access language between client and server
machines. We expect to find a mechanism for the server to accept SQL state-
ments and return data and status codes to the client. However, many vendors
have added their own extra extensions to standard SQL (i.e. proprietary data-
access languages). These extensions are advanced and change as strategy and
technology develops.

However, though the extra SQL features can be attractive, the portability of
the application in the future may be affected.

It should be noted that no theoretical rule says that only one server may access
the database, and there are many reasons for wanting more than one in oper-
ation. Once a server has been activated, it is called an instance. A database
without an attached instance is a lifeless collection of data and status informa-
tion; likewise, an instance that is not attached to a database is useless.

Tools used in DBA administration

Tools that are of value to the DBA in supporting client-server systems are as
follows:

Data dictionary

The data dictionary is, as we have seen, itself a set of tables and views. When
responding to a client request, the server can find any data required about the

15



data it needs in the data dictionary. It can use the same mechanisms it employs
on behalf of clients to read its own data. These are commonly known as recursive
requests because the server generates them automatically.

Stored procedures

(These are used by the DBA and programmers, briefly encountered in the chap-
ters on distributed database systems.) Stored procedures are groups of SQL
statements which are stored in the server. They can be run like procedures
written in standard programming languages, and allow portions of application
code (normally commonly executed tasks or transactions) to move from client
to server. The server checks the syntax of these stored procedures, The exis-
tence, accessibility and data type of each object mentioned in each statement
must then be verified. The database engine’s SQL optimiser is usually invoked
at this point to choose the best access path to the referenced data. Advantages
of stored procedures are that they reduce network traffic (fewer SQL statements
are sent from client to server), and they improve server performance as they are
compiled prior to execution on the server.

Data buffering

During execution of statements that query or update the database, certain data
(sent from or requested by the client) is placed in memory. The server tries to
keep the data in memory to save disk input/output (I/O) should the next request
require data that’s still in the buffer. The buffer size should be configured so
the DBA can optimise the memory-versus-speed trade-off.

Most servers provide shared buffering, in which data brought into the buffer for
one client will be later used by all others. When data is regularly shared by
many users, server buffering is a necessity.

Asynchronous data writing

This feature is used to try to smooth out peaks in I/O that may arise during
database processing. If I/O slows down, the server starts writing data blocks
from the buffers to disk. Since this write activity is scheduled during periods of
otherwise low I/O, there is no degradation in performance, even if the data in
the buffer is changed later. If an urgent need for buffer space develops, the disk
write is already done; the new request can be serviced without a time-consuming
disk wait.

Data integrity enforcement on a server

With the client-server architecture, all database processing can be consolidated
on a server machine. Such consolidation provides an opportunity to achieve

16



a high degree of data integrity. Since every database request is processed by
a server, if database constraints are defined at the server level, they can be
consistently applied. Server-based enforcement of data integrity guarantees data
correctness and integrity by having the server enforce constraints on any changes
or updates to the database. As such constraints are held centrally, they cannot
be bypassed as the data can only be accessed through the server software.

Concurrency control features

One of the challenges in the development of client-server applications is to gain
the maximum degree of parallelism on the client computers while providing
protection against problems such as lost updates and inconsistent reads. Con-
currency control allows multiple clients to access the server and still preserve
the integrity of shared data. Updates by users are controlled and isolated to pre-
vent one’s changes disrupting or overwriting another’s. This is usually enforced
by using various automatic locking mechanisms, multiversioning techniques or
rollback of partially completed transactions.

Some server implementations provide consistency by blocking writers from ac-
cessing the data being read. Others offer snapshots showing the state of data
when the read began. Changes are ignored until the next read statement begins.

Communications and connectivity

A characteristic of client-server architecture is that a client application and
server software are on different computers. The protocol used to pass messages,
SQL and data between them is therefore of crucial importance. As there is no
single standard protocol for computer networks, the server has to offer tools
to handle the complexities of multivendor networks (i.e. to enable any appli-
cation to be able to run on any network supported by the server without the
application developer needing to be concerned with handling the hardware and
network-specific communications issues). However, the connection between PCs
and minicomputers is much more complex to implement than a conventional
terminal-to-host implementation.

Client-server security

Server security

The built-in security mechanism of the database server provides central data
access control, thereby reducing the need for security measures in the client
applications. The server normally provides three basic levels of security:

1. User enrolment. This involves granting a user access to the database server
itself.

17



2. Access privileges. This grants users access and privileges to individual
database objects.

3. Resource allocation. This controls the amount of disk space allocated on
the server to each user’s database objects.

Client security

As the general administration of security in a client-server system is handled by
the DBA at the server end, the client needs only to be concerned with errors
returned from the server when an unauthorised operation is detected.

Network security

The distribution of a system, be it as a client-server or truly distributed database
system, requires the additional issues associated with the protection of the data
as it is transmitted across the network to be handled. This is most often dealt
with by encryption algorithms, which encode the data, rendering it useless if it
is intercepted during transmission. Following reception of encrypted data, the
receiver of the data will run the decryption algorithm to re-establish the original
data values.

Checking of security violations

Journal logging and other facilities are used to locate security breaches or vio-
lations in the server. The reason for a user failing action should also be logged
so that the DBA can distinguish between a simple human error and attempted
security violations.

Review question 3

Within the context of client-server systems, explain the meaning of the following
terms:

1. Shared data buffering

2. Asynchronous data writing

Database tuning

Providing an efficient service to users of the database system is an ongoing
responsibility of the DBA. In the following sections we shall examine some of
the major considerations involved in the tuning of a database system. Most
of the examples we shall give are somewhat specific to the Oracle DBMS, but
certainly have analogies in any of the other major database systems of today.

18



Tuning SQL

The optimisation of SQL transactions is a major topic in its own right. There
are a number of guidelines which can be followed, which in general will lead to
more efficient SQL. In general, the DBA activity in tuning specific transactions
should be focused on those which:

• are run sufficiently often to have a noticeable impact on performance;

• access sufficient numbers of records (including intermediate results ob-
tained during the evaluation of the query) to provide scope for transaction
tuning.

Guidelines

The following guidelines can be applied when tuning SQL transactions:

• Use indexes on primary and foreign keys, and consider their use on other
attributes that are frequently referenced in the WHERE clause of queries.

• Corollary to the above, indexes improve performance for queries that re-
turn fewer than approximately 20% of the rows in a table; otherwise it is
faster to use a full table scan. For update transactions, indexes can actu-
ally make things slower, because of the need to update the index structure.

• Unique indexes are faster than non-unique indexes.

• Several SQL constructs, such as use of the keywords like ‘%string’, distinct,
group by, order by, max, etc, lead a query not to use an index. The reason
for this is that either the data to use the index is not available (as with
‘%string’), or the operation implies a sort of the data, in which case all of
the rows need to be accessed.

• Compressed indexes save space, but do not provide as substantial an im-
provement in response time.

• In general, joins are executed more efficiently than nested queries. This
may provide scope for recasting an existing nested query in the form of a
join.

• Use of short table aliases in queries can improve performance.

Activity 4 - Examining the time response of queries

To examine the times associated with the execution of an SQL command in
Oracle, we can use the sql*plus command

Set timing on

Log in to the Oracle system and issue the above command. Experiment then
by running several queries to examine the time values returned. For example,
experiment for queries that return a single row, that perform a full table scan,

19



and for JOIN queries. The value returned for each query appears after the rows
displayed in the result of the query.

Tuning disk I/O

No matter how much money you spend on high-speed disk technology, there
is still no getting away from the fact that disks are slow when compared with
solid-state devices. For this reason, most data structures and design options are
geared around minimising disk input and output. As long as we are limited to
disks as the main medium for storing our data, then researchers will continue
to search for methods to improve the efficiency of storing and retrieving data
from these devices. The following guidelines are useful when trying to minimise
the impact of relatively slow disk I/O processes:

• Reduce disk contention. Contention occurs when several users try to access
the same disk, at the same time. If contention is noticeable on a particular
disk and queues are visible, then distribute the I/O by moving heavily
accessed files onto a less active disk. Distribute tables and indexes on
different disks if resources are available.

• Allocate free space in data blocks (i.e. space in a block is used by INSERTS
and also UPDATES which increase the size of a row).

• Allow for block chaining by using PCTFREE (Oracle specific, i.e. the per-
centage of blocks reserved for row expansion) parameter to control/limit
chaining. Chaining can be examined using the ANALYZE command.
(Chaining occurs when data in a block grows beyond the size that can
be contained within the block, and so some of the data must be stored
in a further block, to which the original block must have a pointer. We
describe this dynamic expansion of data into additional blocks as chaining.
Its overall effect is to reduce performance, as the system must follow the
series of pointers to retrieve requested data.)

• Seek to minimise dynamic expansion. For example, with Oracle, set up
storage parameters in the CREATE table and CREATE tablespace state-
ments so that Oracle will allocate enough space for the maximum size of
the object. Hence space will not need to be extended later.

• Tune the database writer DBWR (an Oracle-specific process which writes
out data from the buffer cache to the database files).

Note: If the hardware is changed in the future, then it is quite likely that
the system will need re-tuning, because many of the settings will be hardware
specific.

20



Tuning memory

As previously mentioned, accessing disk is very expensive in terms of perfor-
mance, whereas access to memory is much faster. Hence, we want to make the
majority of accesses to be to memory rather than to disk. In an ideal world(!),
it would be nice if we could load the whole of the database into memory so that
all accesses are then to memory, rather than disk. Obviously this is not possible
in the real world, so instead the system needs to be tuned to make the best use
of the limited amount of memory available.

Oracle’s memory can be broken down as follows:

• System Global Area (SGA): This block of memory is used for storing
data for use by Oracle processes. It is a shared portion of memory for all
Oracle processes.

• Caches: Blocks of memory used for keeping copies of data that is also
on disk, but which can be accessed much quicker here. Hence it makes
sense to keep frequently accessed data in cache. The two main caches of
concern are:

• Data dictionary cache: Requires only a small amount of memory in
comparison to the buffer cache, but can have a dramatic effect on perfor-
mance. The actual size of this will depend on the different types of objects
used by applications.

• Buffer cache: It is here where tables and indexes can be stored. The most
frequently accessed tables and indexes should be stored here to minimise
disk I/O as much as possible.

• Program global area (PGA): A PGA is a non-shared memory region
that contains data and control information exclusively for use by an Oracle
process. The PGA is created by Oracle Database when an Oracle process
is started.

• User Global Area (UGA): The UGA is memory associated with a user
session.

• Software code areas: Software code areas are portions of memory used
to store code that is being run or can be run. Oracle Database code is
stored in a software area that is typically at a different location from user
programs — a more exclusive or protected location.

Note

Memory is also required for operating system use, hence other factors need to be
taken into account, such as memory allocation for paging and virtual memory.
For example, if the system is multi-user, then an increase in the number of users
currently online could alter the performance on the machine quite dramatically.

21



Tuning contention

The term ‘contention’ refers to a problem which can arise in most areas of
computing. It occurs when several processes make an attempt to gain access to
the same resource at the same time. This will obviously result in a performance
degradation, as one or more processes will need to wait until the resource is
available. There are three main areas concerning memory contention in Oracle:

• Data blocks. Usually occurs when users attempt to update the same block.

• Rollback segments. All transactions use the rollback segments, so if there
is only a small number of segments, contention is quite likely. A guideline
given by Oracle is to use one rollback segment per five active users.

• Redo log buffers. Any block modification will write data to this buffer.
The ‘redo space waits’ statistic can be used to provide information on
contention for this buffer.

Tools to assist performance tuning

Having looked at the various factors that can affect performance in a system,
what tools are available to aid the tuning process? Depending on the type
of database, there will be a selection of tools available to monitor the system,
allowing the DBA (or similar) to see the effects of tweaking the system.

Monitors can be broken down into two types:

• Software monitors

• Hardware monitors

Software monitors

These are programs which can be called up when necessary to provide statistics
on the state of the system. These tools are flexible and may even be specially
written by the DBA, although most vendors now supply these. Unfortunately,
as these tools actually run on the system, they themselves apply an additional
performance overhead, requiring CPU time, etc, in order to execute.

Hardware monitors

Hardware monitors consist of electronic devices which record data collected
by probes, where each probe is connected to circuitry in the machine and/or
peripherals. A major advantage of these, is that they do not interfere with the
operation of the system.

As well as monitors, tools are available which aid database set up, loading,
checking, back-up, and recovery and general database maintenance.

22



Other performance tools

An overview of some of the performance tools which are commercially available
are as follows:

• Explain facility. This excellent facility allows the user to obtain informa-
tion regarding the optimiser’s choice of access strategy for a particular
SQL statement. It is available for both Oracle and DB2. It works by
examining the access paths that would have been chosen for the execution
of a particular query. Note that it doesn’t actually execute the query,
which is a major bonus if trying to analyse the processing of a lengthy
transaction.

• SQL*DBA monitor facilities. This Oracle utility allows the DBA to mon-
itor database activity, which is grouped into areas such as Locking, File
I/O, Statistics and Tables. This utility allows most bottlenecks which are
causing performance degradation to be discovered.

• RUNSTATS utility. A DB2 utility which calculates statistics based on
data stored. It is usually run after data is loaded or after a significant
amount of updating has taken place.

Concluding remarks on database tuning

The subject of database performance tuning continues to receive a great deal of
attention in both academic and industrial establishments. As databases become
more complex, they place an even greater load on available resources, hence
improved techniques for getting the best performance out of the system will
always be in demand.

Discussion topics

1. Evaluating database systems

Database administrators require from time to time to evaluate database
systems in order to assess whether they will meet the needs of their organi-
sation. This process will involve discussing requirements and features with
the vendors of the database systems being considered, viewing of demon-
strations, and finding out the opinions of other users of the systems. Some
of the requirements for the system may be very specific to the organisation,
but there are many characteristics which are generic to the evaluation of
database systems. In discussion, identify the factors that you consider to
be important in evaluating a DBMS. You may wish to start by making
a personalised list of factors, and proceed by exchanging and discussing
the lists prepared by other people on the course. In particular, given the
fact that no DBMS is likely to fulfil all the requirements stated, it may

23



be interesting to seek agreement on a prioritised list of your top 10 or so
requirements. There may be a few cases where it is not possible to place
a higher priority on one factor than another, but these situation should
be kept to a minimum, to sharpen the selectivity of your prioritised list.

2. Distribution of the DBA function

In an organisation using a truly distributed database system, it would
be possible to allocate aspects of the database administration function
to individuals based at sites where significant amounts of data are to
be stored. Consider in discussion what may be the possible benefits of
distributing the database administration function in this way, and whether
anything might be lost in distributing the function, when compared with
a more centralised approach.

24


	Chapter 20. Database Administration and Tuning
	Objectives
	Introduction
	Functions of the DBA
	Management of data activity
	Management of database structure
	Tables and tablespaces
	Data fragmentation
	Designing for the future
	Information dissemination
	Supporting application developers
	Use of the data dictionary
	Control of redundancy
	Configuration control
	Security
	Summary of DBA functions

	Administration of client-server systems
	Tools used in DBA administration
	Client-server security

	Database tuning
	Tuning SQL
	Tuning disk I/O
	Tuning memory
	Tuning contention
	Tools to assist performance tuning
	Other performance tools
	Concluding remarks on database tuning

	Discussion topics


