
Chapter 1. Introduction to the Module

Table of contents

• Module objectives
• Chapter objectives
• Introduction
• Motivation for data storage
• Traditional file-based approach
• The shared file approach
• The database approach

– ANSI/SPARC three-level architecture
∗ The external schema
∗ The conceptual schema
∗ The internal schema
∗ Physical data independence
∗ Logical data independence

– Components of a DBMS
∗ DBMS engine
∗ User interface subsystem
∗ Data dictionary subsystem
∗ Performance management subsystem
∗ Data integrity management subsystem
∗ Backup and recovery subsystem
∗ Application development subsystem
∗ Security management subsystem

– Benefits of the database approach
– Risks of the database approach

• Data and database administration
– The role of the data administrator
– The role of the database administrator

• Introduction to the Relational model
– Entities, attributes and relationships
– Relation: Stationery

• Discussion topic
• Additional content and activities

The purpose of this chapter is to introduce the fundamental concepts of database
systems. Like most areas of computing, database systems have a significant
number of terms and concepts that are likely to be new to you. We encourage
you to discuss these terms in tutorials and online with one another, and to
share any previous experience of database systems that you may have. The
module covers a wide range of issues associated with database systems, from
the stages and techniques used in the development of database applications,
through to the administration of complex database environments. The overall
aim of the module is to equip you with the knowledge required to be a valuable

1

member of a team, or to work individually, in the areas of database application
development or administration. In addition, some coverage of current research
areas is provided, partly as a stimulus for possible future dissertation topics,
and also to provide an awareness of possible future developments within the
database arena.

Module objectives

At the end of this module you will have acquired practical and theoretical knowl-
edge and skills relating to modern database systems. The module is designed
so that this knowledge will be applicable across a wide variety of database en-
vironments. At the end of the module you will be able to:

• Understand and explain the key ideas underlying database systems and
the database approach to information storage and manipulation.

• Design and implement database applications.

• Carry out actions to improve the performance of existing database appli-
cations.

• Understand the issues involved in providing multiple users concurrent ac-
cess to database systems.

• Be able to design adequate backup, recovery and security measures for
a database installation, and understand the facilities provided by typical
database systems to support these tasks.

• Understand the types of tasks involved in database administration and
the facilities provided in a typical database system to support these tasks.

• Be able to describe the issues and objectives in a range of areas of contem-
porary database research.

Chapter objectives

At the end of this chapter you should be able to:

• Explain the advantages of a database approach for information storage
and retrieval.

• Explain the concepts of physical and logical data independence, and de-
scribe both technically and in business terms the advantages that these
concepts provide in Information Systems development.

• Understand the basic terminology and constructs of the Relational ap-
proach to database systems.

2

Introduction

In parallel with this chapter, you should read Chapter 1 and Chapter 2 of
Thomas Connolly and Carolyn Begg, “Database Systems A Practical Approach
to Design, Implementation, and Management”, (5th edn.).

This chapter sets the scene for all of the forthcoming chapters of the module.
We begin by examining the approach to storing and processing data that was
used before the arrival of database systems, and that is still appropriate today
in certain situations (which will be explained). We then go on to examine the
difference between this traditional, file-based approach to data storage, and that
of the database approach. We do this first by examining inherent limitations of
the file-based approach, and then discuss ways in which the database approach
can be used to overcome these limitations.

A particular model of database systems, known as the Relational model, has
been the dominant approach in the database industry since the early ’80s. There
are now important rivals and extensions to the Relational model, which will be
examined in later chapters, but the Relational model remains the core technol-
ogy on which the database industry worldwide is based, and for this reason this
model will be central to the entire module.

Motivation for data storage

Day-to-day business processes executed by individuals and organisations require
both present and historical data. Therefore, data storage is essential for organ-
isations and individuals. Data supports business functions and aids in business
decision-making. Below are some of the examples where data storage supports
business functions.

Social media

Social media has become very popular in the 21st century. We access social
media using our computers and mobile phones. Every time we access social
media, we interact, collaborate and share content with other people. The owners
of social media platforms store the data we produce.

Supermarket

A supermarket stores different types of information about its products, such as
quantity, prices and type of product. Every time we buy anything from the
supermarket, quantities must be reduced and the sales information must be
stored.

Company

A company will need to hold details of its staff, customers, products, suppliers
and financial transactions.

3

If there are a small number of records to be kept, and these do not need to be
changed very often, a card index might be all that is required. However, where
there is a high volume of data, and a need to manipulate this data on a regular
basis, a computer-based solution will often be chosen. This might sound like a
simple solution, but there are a number of different approaches that could be
taken.

Traditional file-based approach

The term ‘file-based approach’ refers to the situation where data is stored in one
or more separate computer files defined and managed by different application
programs. Typically, for example, the details of customers may be stored in
one file, orders in another, etc. Computer programs access the stored files to
perform the various tasks required by the business. Each program, or some-
times a related set of programs, is called a computer application. For example,
all of the programs associated with processing customers’ orders are referred to
as the order processing application. The file-based approach might have appli-
cation programs that deal with purchase orders, invoices, sales and marketing,
suppliers, customers, employees, and so on.

Limitations

• Data duplication: Each program stores its own separate files. If the same
data is to be accessed by different programs, then each program must store
its own copy of the same data.

• Data inconsistency: If the data is kept in different files, there could be
problems when an item of data needs updating, as it will need to be
updated in all the relevant files; if this is not done, the data will be incon-
sistent, and this could lead to errors.

• Difficult to implement data security: Data is stored in different files by
different application programs. This makes it difficult and expensive to
implement organisation-wide security procedures on the data.

The following diagram shows how different applications will each have their own
copy of the files they need in order to carry out the activities for which they are
responsible:

4

The shared file approach

One approach to solving the problem of each application having its own set
of files is to share files between different applications. This will alleviate the
problem of duplication and inconsistent data between different applications, and
is illustrated in the diagram below:

The introduction of shared files solves the problem of duplication and inconsis-
tent data across different versions of the same file held by different departments,
but other problems may emerge, including:

• File incompatibility: When each department had its own version of a file
for processing, each department could ensure that the structure of the
file suited their specific application. If departments have to share files,
the file structure that suits one department might not suit another. For

5

example, data might need to be sorted in a different sequence for different
applications (for instance, customer details could be stored in alphabetical
order, or numerical order, or ascending or descending order of customer
number).

• Difficult to control access: Some applications may require access to more
data than others; for instance, a credit control application will need access
to customer credit limit information, whereas a delivery note printing
application will only need access to customer name and address details.
The file will still need to contain the additional information to support
the application that requires it.

• Physical data dependence: If the structure of the data file needs to be
changed in some way (for example, to reflect a change in currency), this
alteration will need to be reflected in all application programs that use
that data file. This problem is known as physical data dependence, and
will be examined in more detail later in the chapter.

• Difficult to implement concurrency: While a data file is being processed
by one application, the file will not be available for other applications or
for ad hoc queries. This is because, if more than one application is allowed
to alter data in a file at one time, serious problems can arise in ensuring
that the updates made by each application do not clash with one another.
This issue of ensuring consistent, concurrent updating of information is an
extremely important one, and is dealt with in detail for database systems
in the chapter on concurrency control. File-based systems avoid these
problems by not allowing more than one application to access a file at one
time.

Review question 1

What is meant by the file-based approach to storing data? Describe some of the
disadvantages of this approach.

Review question 2

How can some of the problems of the file-based approach to data storage be
avoided?

Review question 3

What are the problems that remain with the shared file approach?

The database approach

The database approach is an improvement on the shared file solution as the use
of a database management system (DBMS) provides facilities for querying, data
security and integrity, and allows simultaneous access to data by a number of
different users. At this point we should explain some important terminology:

6

• Database: A database is a collection of related data.

• Database management system: The term ‘database management sys-
tem’, often abbreviated to DBMS, refers to a software system used to
create and manage databases. The software of such systems is complex,
consisting of a number of different components, which are described later
in this chapter. The term database system is usually an alternative term
for database management system.

• System catalogue/Data dictionary: The description of the data in
the database management system.

• Database application: Database application refers to a program, or
related set of programs, which use the database management system to
perform the computer-related tasks of a particular business function, such
as order processing.

One of the benefits of the database approach is that the problem of physical
data dependence is resolved; this means that the underlying structure of a data
file can be changed without the application programs needing amendment. This
is achieved by a hierarchy of levels of data specification. Each such specification
of data in a database system is called a schema. The different levels of schema
provided in database systems are described below. Further details of what is
included within each specific schema are discussed later in the chapter.

The Systems Planning and Requirements Committee of the American National
Standards Institute encapsulated the concept of schema in its three-level
database architecture model, known as the ANSI/SPARC architecture, which
is shown in the diagram below:

7

ANSI/SPARC three-level architecture

ANSI = American National Standards Institute

ANSI/X3 = Committee on Computers and Information Processing

SPARC = Standards Planning and Requirements Committee

The ANSI/SPARC model is a three-level database architecture with a hierarchy
of levels, from the users and their applications at the top, down to the physical
storage of data at the bottom. The characteristics of each level, represented by
a schema, are now described.

The external schema

The external schemas describe the database as it is seen by the user, and the

8

user applications. The external schema maps onto the conceptual schema, which
is described below.

There may be many external schemas, each reflecting a simplified model of the
world, as seen by particular applications. External schemas may be modified, or
new ones created, without the need to make alterations to the physical storage
of data. The interface between the external schema and the conceptual schema
can be amended to accommodate any such changes.

The external schema allows the application programs to see as much of the
data as they require, while excluding other items that are not relevant to that
application. In this way, the external schema provides a view of the data that
corresponds to the nature of each task.

The external schema is more than a subset of the conceptual schema. While
items in the external schema must be derivable from the conceptual schema,
this could be a complicated process, involving computation and other activities.

The conceptual schema

The conceptual schema describes the universe of interest to the users of the
database system. For a company, for example, it would provide a descrip-
tion of all of the data required to be stored in a database system. From this
organisation-wide description of the data, external schemas can be derived to
provide the data for specific users or to support particular tasks.

At the level of the conceptual schema we are concerned with the data itself,
rather than storage or the way data is physically accessed on disk. The definition
of storage and access details is the preserve of the internal schema.

The internal schema

A database will have only one internal schema, which contains definitions of
the way in which data is physically stored. The interface between the internal
schema and the conceptual schema identifies how an element in the conceptual
schema is stored, and how it may be accessed.

If the internal schema is changed, this will need to be addressed in the inter-
face between the internal and the conceptual schemas, but the conceptual and
external schemas will not need to change. This means that changes in physical
storage devices such as disks, and changes in the way files are organised on
storage devices, are transparent to users and application programs.

In distinguishing between ‘logical’ and ‘physical’ views of a system, it should be
noted that the difference could depend on the nature of the user. While ‘logical’
describes the user angle, and ‘physical’ relates to the computer view, database
designers may regard relations (for staff records) as logical and the database

9

itself as physical. This may contrast with the perspective of a systems program-
mer, who may consider data files as logical in concept, but their implementation
on magnetic disks in cylinders, tracks and sectors as physical.

Physical data independence

In a database environment, if there is a requirement to change the structure of a
particular file of data held on disk, this will be recorded in the internal schema.
The interface between the internal schema and the conceptual schema will be
amended to reflect this, but there will be no need to change the external schema.
This means that any such change of physical data storage is not transparent to
users and application programs. This approach removes the problem of physical
data dependence.

Logical data independence

Any changes to the conceptual schema can be isolated from the external schema
and the internal schema; such changes will be reflected in the interface between
the conceptual schema and the other levels. This achieves logical data inde-
pendence. What this means, effectively, is that changes can be made at the
conceptual level, where the overall model of an organisation’s data is specified,
and these changes can be made independently of both the physical storage level,
and the external level seen by individual users. The changes are handled by the
interfaces between the conceptual, middle layer, and the physical and external
layers.

Review question 4

What are some of the advantages of the database approach compared to the
shared file approach of storing data?

Review question 5

Distinguish between the terms ‘external schema’, ‘conceptual schema’ and ‘in-
ternal schema’.

Components of a DBMS

The major components of a DBMS are as follows:

DBMS engine

The engine is the central component of a DBMS. This component provides access
to the database and coordinates all of the functional elements of the DBMS. An
important source of data for the DBMS engine, and the database system as a
whole, is known as metadata. Metadata means data about data. Metadata is

10

contained in a part of the DBMS called the data dictionary (described below),
and is a key source of information to guide the processes of the DBMS engine.
The DBMS engine receives logical requests for data (and metadata) from human
users and from applications, determines the secondary storage location (i.e. the
disk address of the requested data), and issues physical input/output requests
to the computer operating system. The data requested is fetched from physical
storage into computer main memory; it is contained in special data structures
provided by the DBMS. While the data remains in memory, it is managed by the
DBMS engine. Additional data structures are created by the database system
itself, or by users of the system, in order to provide rapid access to data being
processed by the system. These data structures include indexes to speed up
access to the data, buffer areas into which particular types of data are retrieved,
lists of free space, etc. The management of these additional data structures is
also carried out by the DBMS engine.

User interface subsystem

The interface subsystem provides facilities for users and applications to access
the various components of the DBMS. Most DBMS products provide a range of
languages and other interfaces, since the system will be used both by program-
mers (or other technical persons) and by users with little or no programming
experience. Some of the typical interfaces to a DBMS are the following:

• A data definition language (or data sublanguage), which is used to define,
modify or remove database structures such as records, tables, files and
views.

• A data manipulation language, which is used to display data extracted
from the database and to perform simple updates and deletions.

• A data control language, which allows a database administrator to have
overall control of the system, often including the administration of security,
so that access to both the data and processes of the database system can
be controlled.

• A graphical user interface, which may provide a visual means of browsing
or querying the data, including a range of different display options such
as bar charts, pie charts, etc. One particular example of such a system
is Query-by-Example, in which the system displays a skeleton table (or
tables), and users pose requests by suitable entry in the table.

• A forms-based user interface in which a screen-oriented form is presented
to the user, who responds by filling in blanks on the form. Such forms-
based systems are a popular means of providing a visual front-end to both
developers and users of a database system. Typically, developers use the
forms-based system in ‘developer mode’, where they design the forms or
screens that will make up an application, and attach fragments of code

11

which will be triggered by the actions of users as they use the forms-based
user interface.

• A DBMS procedural programming language, often based on standard
third-generation programming languages such as C and COBOL, which
allows programmers to develop sophisticated applications.

• Fourth-generation languages, such as Smalltalk, JavaScript, etc. These
permit applications to be developed relatively quickly compared to the
procedural languages mentioned above.

• A natural language user interface that allows users to present requests in
free-form English statements.

Data dictionary subsystem

The data dictionary subsystem is used to store data about many aspects of
how the DBMS works. The data contained in the dictionary subsystem varies
from DBMS to DBMS, but in all systems it is a key component of the database.
Typical data to be contained in the dictionary includes: definitions of the users
of the system and the access rights they have, details of the data structures used
to contain data in the DBMS, descriptions of business rules that are stored and
enforced within the DBMS, and definitions of the additional data structures used
to improve systems performance. It is important to understand that because
of the important and sensitive nature of the data contained in the dictionary
subsystem, most users will have no or little direct access to this information.
However, the database administrator will need to have regular access to much
of the dictionary system, and should have a detailed knowledge of the way in
which the dictionary is organised.

Performance management subsystem

The performance management subsystem provides facilities to optimise (or at
least improve) DBMS performance. This is necessary because the large and
complex software in a DBMS requires attention to ensure it performs efficiently,
i.e. it needs to allow retrieval and changes to data to be made without requiring
users to wait for significant periods of time for the DBMS to carry out the
requested action.

Two important functions of the performance management subsystem are:

• Query optimisation: Structuring SQL queries (or other forms of user
queries) to minimise response times.

• DBMS reorganisation: Maintaining statistics on database usage, and tak-
ing (or recommending) actions such as database reorganisation, creating
indexes and so on, to improve DBMS performance.

12

Data integrity management subsystem

The data integrity management subsystem provides facilities for managing the
integrity of data in the database and the integrity of metadata in the dictionary.
This subsystem is concerned with ensuring that data is, as far as software can
ensure, correct and consistent. There are three important functions:

• Intra-record integrity: Enforcing constraints on data item values and types
within each record in the database.

• Referential integrity: Enforcing the validity of references between records
in the database.

• Concurrency control: Ensuring the validity of database updates when
multiple users access the database (discussed in a later chapter).

Backup and recovery subsystem

The backup and recovery subsystem provides facilities for logging transactions
and database changes, periodically making backup copies of the database, and
recovering the database in the event of some type of failure. (We discuss backup
and recovery in greater detail in a later chapter.) A good DBMS will provide
comprehensive and flexible mechanisms for backing up and restoring copies of
data, and it will be up to the database administrator, in consultation with users
of the system, to decide precisely how these features should be used.

Application development subsystem

The application development subsystem is for programmers to develop complete
database applications. It includes CASE tools (software to enable the modelling
of applications), as well as facilities such as screen generators (for automatically
creating the screens of an application when given details about the data to be
input and/or output) and report generators.

In most commercial situations, there will in fact be a number of different
database systems, operating within a number of different computer environ-
ments. By computer environment we mean a set of programs and data made
available usually on a particular computer. One such set of database systems,
used in a number of medium to large companies, involves the establishment
of three different computer environments. The first of these is the develop-
ment environment, where new applications are developed and new applications,
whether written within the company or bought in from outside, are tested. The
development environment usually contains relatively little data, just enough in
fact to adequately test the logic of the applications being developed and tested.
Security within the development environment is usually not an important issue,
unless the actual logic of the applications being developed is, in its own right,
of a sensitive nature.

13

The second of the three environments is often called pre-production. Applica-
tions that have been tested in the development environment will be moved into
pre-production for volume testing; that is, testing with quantities of data that
are typical of the application when it is in live operation.

The final environment is known as the production or live environment. Appli-
cations should only be moved into this environment when they have been fully
tested in pre-production. Security is nearly always a very important issue in the
production environment, as the data being used reflects important information
in current use by the organisation.

Each of these separate environments will have at least one database system,
and because of the widely varying activities and security measures required in
each environment, the volume of data and degree of administration required will
itself vary considerably between environments, with the production database(s)
requiring by far the most support.

Given the need for the database administrator to migrate both programs and
data between these environments, an important tool in performing this pro-
cess will be a set of utilities or programs for migrating applications and their
associated data both forwards and backwards between the environments in use.

Security management subsystem

The security management subsystem provides facilities to protect and control
access to the database and data dictionary.

Benefits of the database approach

The benefits of the database approach are as follows:

• Ease of application development: The programmer is no longer burdened
with designing, building and maintaining master files.

• Minimal data redundancy: All data files are integrated into a composite
data structure. In practice, not all redundancy is eliminated, but at least
the redundancy is controlled. Thus inconsistency is reduced.

• Enforcement of standards: The database administrator can define stan-
dards for names, etc.

• Data can be shared. New applications can use existing data definitions.

• Physical data independence: Data descriptions are independent of the
application programs. This makes program development and maintenance
an easier task. Data is stored independently of the program that uses it.

• Logical data independence: Data can be viewed in different ways by dif-
ferent users.

14

• Better modelling of real-world data: Databases are based on semantically
rich data models that allow the accurate representation of real-world in-
formation.

• Uniform security and integrity controls: Security control ensures that ap-
plications can only access the data they are required to access. Integrity
control ensures that the database represents what it purports to represent.

• Economy of scale: Concentration of processing, control personal and tech-
nical expertise.

Risks of the database approach

• New specialised personnel: Need to hire or train new personnel
e.g. database administrators and application programmers.

• Need for explicit backup.

• Organisational conflict: Different departments have different information
needs and data representation.

• Large size: Often needs alarmingly large amounts of processing power.

• Expensive: Software and hardware expenses.

• High impact of failure: Concentration of processing and resources makes
an organisation vulnerable if the system fails for any length of time.

Review question 6

Distinguish between the terms ‘database security’ and ‘data integrity’.

Data and database administration

Organisations need data to provide details of the current state of affairs; for
example, the amount of product items in stock, customer orders, staff details,
office and warehouse space, etc. Raw data can then be processed to enable
decisions to be taken and actions to be made. Data is therefore an important
resource that needs to be safeguarded. Organisations will therefore have rules,
standards, policies and procedures for data handling to ensure that accuracy is
maintained and that proper and appropriate use is made of the data. It is for
this reason that organisations may employ data administrators and database
administrators.

The role of the data administrator

It is important that the data administrator is aware of any issues that may af-
fect the handling and use of data within the organisation. Data administration

15

includes the responsibility for determining and publicising policy and standards
for data naming and data definition conventions, access permissions and restric-
tions for data and processing of data, and security issues.

The data administrator needs to be a skilled manager, able to implement policy
and make strategic decisions concerning the organisation’s data resource. It is
not sufficient for the data administrator to propose a set of rules and regulations
for the use of data within an organisation; the role also requires the investigation
of ways in which the organisation can extract the maximum benefit from the
available data.

One of the problems facing the data administrator is that data may exist in
a range of different formats, such as plain text, formatted documents, tables,
charts, photographs, spreadsheets, graphics, diagrams, multimedia (including
video, animated graphics and audio), plans, etc. In cases where the data is avail-
able on computer-readable media, consideration needs to be given to whether
the data is in the correct format.

The different formats in which data may appear is further complicated by the
range of terms used to describe it within the organisation. One problem is
the use of synonyms, where a single item of data may be known by a number
of different names. An example of the use of synonyms would be the terms
‘telephone number’, ‘telephone extension’, ‘direct line’, ‘contact number’ or just
‘number’ to mean the organisation’s internal telephone number for a particular
member of staff. In an example such as this, it is easy to see that the terms
refer to the same item of data, but it might not be so clear in other contexts.

A further complication is the existence of homonyms. A homonym is a term
which may be used for several different items in different contexts; this can
often happen when acronyms are used. One example is the use of the terms
‘communication’ and ‘networking’; these terms are sometimes used to refer to
interpersonal skills, but may also be employed in the context of data communi-
cation and computer networks.

When the items of data that are important to an organisation have been iden-
tified, it is important to ensure that there is a standard representation format.
It might be acceptable to tell a colleague within the organisation that your tele-
phone extension is 5264, but this would be insufficient information for someone
outside the organisation. It may be necessary to include full details, such as
international access code, national code, area code and local code as well as
the telephone extension to ensure that the telephone contact details are usable
worldwide.

Dates are a typical example of an item of data with a wide variety of formats.
The ranges of date formats include: day-month-year, month-day-year, year-
month-day, etc. The month may appear as a value in the range 1 to 12, as the
name of the month in full, or a three-letter abbreviation. These formats can be
varied by changing the separating character between fields from a hyphen (-) to
a slash (/), full stop (.) or space ().

16

The use of standardised names and formats will assist an organisation in making
good use of its data. The role of the data administrator involves the creation
of these standards and their publication (including the reasons for them and
guidelines for their use) across the organisation. Data administration provides
a service to the organisation, and it is important that it is perceived as such,
rather than the introduction of unnecessary rules and regulations.

The role of the database administrator

The role of the database administrator within an organisation focuses on a par-
ticular database or set of databases, and the associated computer applications,
rather than the use of data throughout the organisation. A database administra-
tor requires a blend of management skills together with technical expertise. In
smaller organisations, the data administrator and database administrator roles
may be merged into a single post, whereas larger companies may have groups
of staff involved with each activity.

The activities of the database administrator take place in the context of the
guidelines set out by the data administrator. This requires striking a balance
between the security and protection of the database, which may be in conflict
with the requirements of users to have access to the data. The database ad-
ministrator has responsibility for the development, implementation, operation,
maintenance and security of the database and the applications that use it. An-
other important function is the introduction of controls to ensure the quality
and integrity of the data that is entered into the database. The database ad-
ministrator is a manager of the data in the database, rather than a user. This
role requires the development of the database structure and data dictionary (a
catalogue of the data in the database), the provision of security measures to
permit authorised access and prevent unauthorised access to data, and to guard
against failures in hardware or software in order to offer reliability.

Exercise 1

Find out who is responsible for the tasks of data administration and database
administration in the organisation where you are currently working or studying.
Find out whether the two roles are combined into one in your organisation, or if
not, how many people are allocated to each function, and what are their specific
roles?

Introduction to the Relational model

A number of different approaches or models have been developed for the logical
organisation of data within a database system. This ‘logical’ organisation must
be distinguished from the ‘physical’ organisation of data, which describes how
the data is stored on some suitable storage medium such as a disk. The physical

17

organisation of data will be dealt with in the chapter on physical storage. By
far the most commonly used approach to the logical organisation of data is the
Relational model. In this section we shall introduce the basic concepts of the
Relational model, and give examples of its use. Later in the module, we shall
make practical use of this knowledge in both using and developing examples of
Relational database applications.

Entities, attributes and relationships

The first step in the development of a database application usually involves
determining what the major elements of data to be stored are. These are referred
to as entities. For example, a library database will typically contain entities
such as Books, Borrowers, Librarians, Loans, Book Purchases, etc. Each of
the entities identified will contain a number of properties, or attributes. For
example, the entity Book will contain attributes such as Title, Author and
ISBN; the entity Borrower will possess attributes such as Name, Address and
Membership Number. When we have decided which entities are to be stored
in a database, we also need to consider the way in which those entities are
related to one another. Examples of such relationships might be, for the library
system, that a Borrower can borrow a number of Books, and that a Librarian
can make a number of Book Purchases. The correct identification of the entities
and attributes to be stored, and the relationships between them, is an extremely
important topic in database design, and will be covered in detail in the chapter
on entity-relationship modelling. In introducing the Relational approach to
database systems, we must consider how entities and their attributes, and the
relationships between them, will be represented within a database system.

A relation is structured like a table. The rows of the structure (which are also
sometimes referred to as tuples) correspond to individual instances of records
stored in the relation. Each column of the relation corresponds to a particular
attribute of those record instances. For example, in the relation containing
details of stationery below, each row of the relation corresponds to a different
item of stationery, and each column or attribute corresponds to a particular
aspect of stationery, such as the colour or price.

Each tuple contains values for a fixed number of attributes. There is only one
tuple for each different item represented in the database.

The set of permissible values for each attribute is called the domain for that
attribute. It can be seen that the domain for the attribute Colour in the sta-
tionery relation below includes the values Red, Blue, Green, White, Yellow, and
Black (other colours may be permitted but are not shown in the relation).

The sequence in which tuples appear within a relation is not important, and
the order of attributes within a relation is of no significance. However, once the
attributes of a particular relation have been identified, it is convenient to refer
to them in the same order.

18

Very often it is required to be able to identify uniquely each of the different
instances of entities in a database. In order to do this we use something called
a primary key. We will discuss the nature of primary keys in detail in the next
learning chapter, but for now we shall use examples where the primary key is
the first of the attributes in each tuple of a relation.

Relation: Stationery

Here, the attributes are item-code, item-name, colour and price. The values for
each attribute for each item are shown as a single value in each column for a
particular row. Thus for item-code 20217, the values are A4 paper 250 sheets
for the item-name, Blue for the attribute colour, and <=2.75 is stored as the
price.

Question: Which of the attributes in the stationery relation do you think would
make a suitable key, and why?

The schema defines the ‘shape’ or structure of a relation. It defines the number
of attributes, their names and domains. Column headings in a table represent
the schema. The extension is the set of tuples that comprise the relation at
any time. The extension (contents) of a relation may vary, but the schema
(structure) generally does not.

From the example above, the schema is represented as:

19

The extension from the above example is given as:

The extension will vary as rows are inserted or deleted from the table, or values
of attributes (e.g. price) change. The number of attributes will not change, as
this is determined by the schema. The number of rows in a relation is sometimes
referred to as its cardinality. The number of attributes is sometimes referred to
as the degree or grade of a relation.

Each relation needs to be declared, its attributes defined, a domain specified for
each attribute, and a primary key identified.

Review question 7

Distinguish between the terms ‘entity’ and ‘attribute’. Give some examples of
entities and attributes that might be stored in a hospital database.

Review question 8

The range of values that a column in a relational table may be assigned is called
the domain of that column. Many database systems provide the possibility of
specifying limits or constraints upon these values, and this is a very effective
way of screening out incorrect values from being stored in the system. It is
useful, therefore, when identifying which attributes or columns we wish to store
for an entity, to consider carefully what is the domain for each column, and
which values are permissible for that domain.

Consider then for the following attributes, what the corresponding domains are,

20

and whether there are any restrictions we can identify which we might use to
validate the correctness of data values entered into attributes with each domain:

• Attribute: EMPLOYEE_NAME

• Attribute: JOB (i.e. the job held by an individual in an organisation)

• Attribute: DATE_OF_BIRTH

Discussion topic

External schemas can be used to give individual users, or groups of users, access
to a part of the data in a database. Many systems also allow the format of the
data to be changed for presentation in the external schema, or for calculations to
be carried out on it to make it more usable to the users of the external schema.
Discuss the possible uses of external schemas, and the sorts of calculations
and/or reformatting that might be used to make the data more usable to specific
users or user groups.

External schemas might be used to provide a degree of security in the database,
by making available to users only that part of the database that they require
in order to perform their jobs. So for example, an Order Clerk may be given
access to order information, while employees working in Human Resources may
be given access to the details of employees.

In order to improve the usability of an external schema, the data in it may be
summarised or organised into categories. For example, an external schema for a
Sales Manager, rather than containing details of individual sales, might contain
summarised details of sales over the last six months, perhaps organised into
categories such as geographical region. Furthermore, some systems provide the
ability to display data graphically, in which case it might be formatted as a bar,
line or pie chart for easier viewing.

Additional content and activities

Database systems have become ubiquitous throughout computing. A great deal
of information is written and published describing advances in database tech-
nology, from research papers through to tutorial information and evaluations
of commercial products. Conduct a brief search on the Internet and related
textbooks. You will likely find that there are many alternative definitions and
explanations to the basic concepts introduced in this chapter, and these will be
helpful in consolidating the material covered here.

21

Chapter 2. The Relational Model

Table of contents

• Objectives
• Introduction
• Context
• Structure of the Relational model

– Theoretical foundations
– Uniform representation of data
– Relation
– Attribute
– Domain
– Tuple
– Degree
– Cardinality
– Primary key
– Foreign keys
– Integrity constraints

∗ Nulls
∗ Entity integrity
∗ Referential integrity
∗ General constraints

• Data manipulation: The Relational Algebra
– Restrict
– Project
– Union
– Intersection
– Difference
– Cartesian product
– Division
– Join
– Activities

∗ Activity 1: Relational Algebra I
∗ Activity 2: Relational Algebra II
∗ Activity 3: Relational Algebra III

• Review questions
• Discussion topics
• Additional content and activities

Objectives

At the end of this chapter you should be able to:

• Describe the structure of the Relational model, and explain why it provides

1

a simple but well-founded approach to the storage and manipulation of
data.

• Explain basic concepts of the Relational model, such as primary and for-
eign keys, domains, null values, and entity and referential integrity.

• Be able to discuss in terms of business applications, the value of the above
concepts in helping to preserve the integrity of data across a range of
applications running on a corporate database system.

• Explain the operators used in Relational Algebra.

• Use Relational Algebra to express queries on Relational databases.

Introduction

In parallel with this chapter, you should read Chapter 3 and Chapter 4 of
Thomas Connolly and Carolyn Begg, “Database Systems A Practical Approach
to Design, Implementation, and Management”, (5th edn.).

The aim of this chapter is to explain in detail the ideas underlying the Relational
model of database systems. This model, developed through the ’70s and ’80s,
has grown to be by far the most commonly used approach for the storing and
manipulation of data. Currently all of the major suppliers of database systems,
such as Oracle, IBM with DB2, Sybase, Informix, etc, base their products on
the Relational model. Two of the key reasons for this are as follows.

Firstly, there is a widely understood set of concepts concerning what constitutes
a Relational database system. Though some of the details of how these ideas
should be implemented continue to vary between different database systems,
there is sufficient consensus concerning what a Relational database should pro-
vide that a significant skill base has developed in the design and implementation
of Relational systems. This means that organisations employing Relational tech-
nology are able to draw on this skill-base, as well as on the considerable literature
and consultancy know-how available in Relational systems development.

The second reason for the widespread adoption of the Relational model is ro-
bustness. The core technology of most major Relational products has been tried
and tested over the last 12 or so years. It is a major commitment for an organi-
sation to entrust the integrity, availability and security of its data to software.
The fact that Relational systems have proved themselves to be reliable and se-
cure over a significant period of time reduces the risk an organisation faces in
committing what is often its most valuable asset, its data, to a specific software
environment.

Relational Algebra is a procedural language which is a part of the Relational
model. It was originally developed by Dr E. F. Codd as a means of accessing data
in Relational databases. It is independent of any specific Relational database
product or vendor, and is therefore useful as an unbiased measure of the power

2

of Relational languages. We shall see in a later chapter the further value of
Relational Algebra, in helping gain an understanding of how transactions are
processed internally within the database system.

Context

The Relational model underpins most of the major database systems in com-
mercial use today. As such, an understanding of the ideas described in this
chapter is fundamental to these systems. Most of the remaining chapters of
the module place a strong emphasis on the Relational approach, and even in
those that examine research issues that use a different approach, such as the
chapter on Object databases, an understanding of the Relational approach is
required in order to draw comparisons and comprehend what is different about
the new approach described. The material on Relational Algebra provides a
vendor-independent and standard approach to the manipulation of Relational
data. This information will have particular value when we move on to learn the
Structured Query Language (SQL), and also assist the understanding of how
database systems can alter the ways queries were originally specified to reduce
their execution time, a topic covered partially in the chapter called Database
Administration and Tuning.

Structure of the Relational model

Theoretical foundations

Much of the theory underpinning the Relational model of data is derived from
mathematical set theory. The seminal work on the theory of Relational database
systems was developed by Dr E. F. Codd, (Codd 1971). The theoretical devel-
opment of the model has continued to this day, but many of the core principles
were described in the papers of Codd and Date in the ’70s and ’80s.

The application of set theory to database systems provides a robust foundation
to both the structural and data-manipulation aspects of the Relational model.
The relations, or tables, of Relational databases, are based on the concepts of
mathematical sets. Sets in mathematics contain members, and these correspond
to the rows in a relational table. The members of a set are unique, i.e. duplicates
are not allowed. Also the members of a set are not considered to have any
order; therefore, in Relational theory, the rows of a relation or table cannot be
assumed to be stored in any specific order (note that some database systems
allow this restriction to be overridden at the physical level, as in some situations,
for example to improve the performance response of the database, it can be
desirable to ensure the ordering of records in physical storage).

3

Uniform representation of data

We saw in the previous chapter, that the Relational model uses one simple data
structure, the table, to represent information. The rows in tables correspond
to specific instances of records, for example, a row of a customer table contains
information about a particular customer. Columns in a table contain informa-
tion about a particular aspect of a record, for example, a column in a customer
record might contain a customer’s contact telephone number.

Much of the power and robustness of the Relational approach derives from the
use of simple tabular structures to represent data. To illustrate this, consider
the information that might typically be contained in part of the data dictionary
of a database. In a data dictionary, we will store the details of logical table
structures, the physical allocations of disk space to tables, security information,
etc. This data dictionary information will be stored in tables, in just the same
way that, for example, customer and other information relevant to the end users
of the system will be stored.

This consistency of data representation means that the same approach for data
querying and manipulation can be applied throughout the system.

Relation

A relation is a table with columns and tuples. A database can contain as many
tables as the designer wants. Each table is an implementation of a real-world
entity. For example, the university keeps information about students. A student
is represented as an entity during database design stage. When the design is
implemented, a student is represented as a table. You will learn about database
design is later modules.

Attribute

An attribute is a named column in the table. A table can contain as many
attributes as the designer wants. Entities identified during database design
may contain attributes/characteristics that describe the entity. For example, a
student has a student identification number and a name. Student identification
and name will be implemented as columns in the student table.

Domain

The domain is the allowable values for a column in the table. For example,
a name of a student can be made of a maximum of 30 lower and upper case
characters. Any combination of lower and upper case characters less or equal
to 30 is the domain for the name column.

4

Tuple

A tuple is the row of the table. Each tuple represents an instance of an entity.
For example, a student table can contain a row holding information about Moses.
Moses is an instance of the student entity.

Degree

The degree of a relation/table is the number of columns it contains.

Cardinality

The cardinality of a relation/table is the number of rows it contains.

Primary key

In the previous chapter, we described the use of primary keys to identify each
of the rows of a table. The essential point to bear in mind when choosing a
primary key is that it must be guaranteed to be unique for each different row of
the table, and so the question you should always ask yourself is whether there
is any possibility that there could be duplicate values of the primary key under
consideration. If there is no natural candidate from the data items in the table
that may be used as the primary key, there is usually the option of using a
system-generated primary key. This will usually take the form of an ascending
sequence of numbers, a new number being allocated to each new instance of a
record as it is created. System-generated primary keys, such as this, are known
as surrogate keys. A drawback to the use of surrogate keys is that the unique
number generated by the system has no other meaning within the application,
other than serving as a unique identifier for a row in a table. Whenever the op-
tion exists therefore, it is better to choose a primary key from the available data
items in the rows of a table, rather than opting for an automatically generated
surrogate key.

Primary keys may consist of a single column, or a combination of columns. An
example of a single table column would be the use of a unique employee number
in a table containing information about employees.

As an example of using two columns to form a primary key, imagine a table in
which we wish to store details of project tasks. Typical data items we might
store in the columns of such a task table might be: the name of the task, date
the task was started, expected completion date, actual completion date, and
the employee number of the person responsible for ensuring the completion of
the task. There is a convenient, shorthand representation for the description of
a table as given above: we write the name of the table, followed by the name of

5

the columns of the table in brackets, each column being separated by a comma.
For example:

TASK (TASK_NAME, START_DATE, EXPECTED_COMP_DATE,
COMP_DATE, EMPNO)

We shall use this convention for expressing the details of the columns of a table
in examples in this and later chapters. Choosing a primary key for the task table
is straightforward while we can assume that task names are unique. If that is
the case, then we may simply use task name as the primary key. However, if we
decide to store in the task table, the details of tasks for a number of different
projects, it is less likely that we can still be sure that task names will be unique.
For example, supposing we are storing the details of two projects, the first to
buy a new database system, and the second to move a business to new premises.
For each of these projects, we might have a task called ‘Evaluate alternatives’. If
we wish to store the details of both of these tasks in the same task table, we can
now no longer use TASK_NAME as a unique primary key, as it is duplicated
across these two tasks.

As a solution to this problem, we can combine the TASK_NAME column with
something further to add the additional context required to provide a unique
identifier for each task. In this case, the most sensible choice is the project name.
So we will use the combination of the PROJECT_NAME and TASK_NAME
data items in our task table in order to identify uniquely each of the tasks in
the table. The task table becomes:

TASK (PROJECT_NAME, TASK_NAME, START_DATE, EXPECTED_COMP_DATE,
COMP_DATE, EMPNO)

We may, on occasions, choose to employ more than two columns as a primary
key in a table, though where possible this should be avoided as it is both un-
wieldy to describe, and leads to relatively complicated expressions when it comes
to querying or updating data in the database. Notice also that we might have
used a system-generated surrogate key as the solution to the problem of pro-
viding a primary key for tasks, but the combination of PROJECT_NAME and
TASK_NAME is a much more meaningful key to users of the application, and
is therefore to be preferred.

Foreign keys

Very often we wish to relate information stored in different tables. For example,
we may wish to link together the tasks stored in the task table described above,
with the details of the projects to which those tasks are related. The simplicity
by which this is achieved within the Relational model, is one of the model’s
major strengths. Suppose the Task and Project tables contain the following
attributes:

6

TASKS (TASK_NAME, START_DATE, EXP_COMP_DATE, COMP_DATE,
EMPNO)

PROJECT (PROJECT_NAME, START_DATE, EXP_COMP_DATE,
COMP_DATE, PROJECT_LEADER)

We assume that TASK_NAME is an appropriate primary key for the TASK
table, and PROJECT_NAME is an appropriate primary key for the PROJECT
table.

In order to relate a record of a task in a task table to a record of a corresponding
project in a project table, we use a concept called a foreign key. A foreign key is
simply a piece of data that allows us to link two tables together. In the case of
the projects and tasks example, we will assume that each project is associated
with a number of tasks. To form the link between the two tables, we place the
primary key of the PROJECT table into the TASK table. The task table then
becomes:

TASK (TASK_NAME, START_DATE, EXP_COMP_DATE, COMP_DATE,
EMPNO, PROJECT_NAME)

Through the use of PROJECT_NAME as a foreign key, we are now able to see,
for any given task, the project to which it belongs. Specifically, the tasks associ-
ated with a particular project can now be identified simply by virtue of the fact
that they contain that project’s name as a data item as one of their attributes.
Thus, all tasks associated with a research project called GENOME RESEARCH,
will contain the value of GENOME RESEARCH in their PROJECT_NAME
attribute.

The beauty of this approach is that we are forming the link using a data item.
We are still able to maintain the tabular structure of the data in the database,
but can relate that data in whatever ways we choose. Prior to the development
of Relational systems, and still in many non-Relational systems today, rather
than using data items in this way to form the link between different entity types
within a database, special link items are used, which have to be created, altered
and removed. These activities are in addition to the natural insertions, updates
and deletions of the data itself. By using a uniform representation of data both
for the data values themselves, and the links between different entity types, we
achieve uniformity of expression of queries and updates on the data.

The need to link entity types in this way is a requirement of all, other than the
most trivial of, database applications. That it occurs so commonly, allied with
the simplicity of the mechanism for achieving it in Relational systems, has been
a major factor in the widespread adoption of Relational databases.

Below is the summary of the concepts we have covered so far:

7

Integrity constraints

Integrity constraints are restrictions that affect all the instances of the database.

Nulls

There is a standard means of representing information that is not currently
known or unavailable within Relational database systems. We say that a column
for which the value is not currently known, or for which a value is not applicable,
is null. Null values have attracted a large amount of research within the database
community, and indeed for the developers and users of database systems they
can be an important consideration in the design and use of database applications
(as we shall see in the chapters on the SQL language).

An important point to grasp about null values is that they are a very specific way
of representing the fact that the data item in question literally is not currently
set to any value at all. Prior to the use of null values, and still in some systems
today, if it is desired to represent the fact that a data item is not currently set
to some value, an alternative value such as 0, or a blank space, will be given
to that data item. This is poor practice, as of course 0, or a blank space, are
perfectly legitimate values in their own right. Use of null values overcomes this
problem, in that null is a value whose meaning is simply that there is no value
currently allocated to the data item in question.

There are a number of situations in which the use of null values is appropriate.
In general we use it to indicate that a data item currently has no value allocated
to it. Examples of when this might happen are:

• When the value of the data item is not yet known.

8

• When the value for that data item is yet to be entered into the system.

• When it is not appropriate that this particular instance of the data item
is given a value.

An example of this last situation might be where we are recording the details
of employees in a table, including their salary and commission. We would store
the salaries of employees in one table column, and the details of commission in
another. Supposing that only certain employees, for example sales staff, are paid
commission. This would mean that all employees who are not sales staff would
have the value of their commission column set to null, indicating that they are
not paid commission. The use of null in this situation enables us to represent
the fact that some commissions are not set to any specific value, because it is
not appropriate to pay commission to these staff.

Another result of this characteristic of null values is that where two data items
both contain null, if you compare them with one another in a query language,
the system will not find them equal. Again, the logic behind this is that the
fact that each data item is null does not mean they are equal, it simply means
that they contain no value at all.

Entity integrity

As briefly discussed in Chapter 1, in Relational databases, we usually use each
table to store the details of particular entity types in a system. Therefore, we
may have a table for Customers, Orders, etc. We have also seen the importance
of primary keys in enabling us to distinguish between different instances of
entities that are stored in the different rows of a table.

Consider for the moment the possibility of having null values in primary keys.
What would be the consequences for the system?

Null values denote the fact that the data item is not currently set to any real
value. Imagine, however, that two rows in a table are the same, apart from the
fact that part of their primary keys are set to null. An attempt to test whether
these two entity instances are the same will find them not equal, but is this
really the case? What is really going on here is that the two entity instances
are the same, other than the fact that a part of their primary keys are as yet
unknown. Therefore, the occurrence of nulls in primary keys would stop us
being able to compare entity instances. For this reason, the column or columns
used to form a primary key are not allowed to contain null values. This rule is
known as the Entity Integrity Rule, and is a part of the Relational theory that
underpins the Relational model of data. The rule does not ensure that primary
keys will be unique, but by not allowing null values to be included in primary
keys, it does avoid a major source of confusion and failure of primary keys.

Referential integrity

9

If a foreign key is present in a given table, it must either match some candidate
value in the home table or be set to null. For example, in our project and task
example above, every value of PROJECT_NAME in the task table must exist
as a value in the PROJECT_NAME column of the project table, or else it must
be set to null.

General constraints

These are additional rules specified by the users or database administrators of a
database, which define or constrain some aspect of the enterprise. For example,
a database administrator can contain the PROJECT_NAME column to have
a maximum of 30 characters for each value inserted.

Data manipulation: The Relational Algebra

Restrict

Restrict (also known as ‘select’) is used on a single relation, producing a new
relation by excluding (restricting) tuples in the original relation from the new
relation if they do not satisfy a condition; thus only the tuples required are
selected.

This operation has the effect of choosing certain tuples (rows) from the table,
as illustrated in the diagram below.

The use of the term ‘select’ here is quite specific as an operation in the Relational
Algebra. Note that in the database query language SQL, all queries are phrased
using the term ‘select’. The Relational Algebra ‘select’ means ‘extract tuples
which meet specific criteria’. The SQL ‘select’ is a command that means ‘produce
a table from existing relations using Relational Algebra operations’.

10

Using the Relational Algebra, extract from the relation Singers those individuals
who are over 40 years of age, and create a new relation called Mature-Singers.

Relational Algebra operation: Restrict from Singers where age > 40 giving
Mature-Singers

We can see which tuples are chosen from the relation Singers, and these are
identified below:

The new relation, Mature-Singers, contains only those tuples for singers aged
over 40 extracted from the relation Singers. These were shown highlighted in
the relation above.

Note that Anne Freeman (age 40) is not shown. The query explicitly stated
those over 40, and therefore anyone aged exactly 40 is excluded.

If we wanted to include singers aged 40 and above, we could use either of the
following operations which would have the same effect.

Either:

Relational Algebra operation: Restrict from Singers where age >= 40 giving
Mature-Singers2

11

or

Relational Algebra operation: Restrict from Singers where age > 39 giving
Mature-Singers2

The result of either of these operations would be as shown below:

Project

Project is used on a single relation, and produces a new relation that includes
only those attributes requested from the original relation. This operation has
the effect of choosing columns from the table, with duplicate entries removed.

The task here is to extract the names of the singers, without their ages or any
other information as shown in the diagram below. Note that if there were two
singers with the same name, they would be distinguished from one another in
the relation Singers by having different singer-id numbers. If only the names are
extracted, the information that there are singers with the same name will not
be preserved in the new relation, as only one copy of the name would appear.

12

The column for the attribute singer-names is shown highlighted in the relation
above.

The following Relational Algebra operation creates a new relation with singer-
name as the only attribute.

Relational Algebra operation: Project Singer-name over Singers giving Singer-
names

13

Union

Union (also called ‘append’) forms a new relation of all tuples from two or more
existing relations, with any duplicate tuples deleted. The participating relations
must be union compatible.

It can be seen that the relations Singers and Actors have the same number of
attributes, and these attributes are of the same data types (the identification
numbers are numeric, the names are character fields, the address field is alphanu-
meric, and the ages are integer values). This means that the two relations are
union compatible. Note that it is not important whether the relations have the
same number of tuples.

The two relations Singers and Actors will be combined in order to produce a
new relation Performers, which will include details of all singers and all actors.
An individual who is a singer as well as an actor need only appear once in the
new relation. The Relational Algebra operation union (or append) will be used

14

in order to generate this new relation.

The union operation will unite these two union-compatible relations to form a
new relation containing details of all singers and actors.

Relational Algebra operation: Union Singers and Actors giving Performers

We could also express this activity in the following way:

Relational Algebra operation: Union Actors and Singers giving Performers

These two operations would generate the same result; the order in which the
participating relations are given is unimportant. When an operation has this
property it is known as commutative - other examples of this include addition
and multiplication in arithmetic. Note that this does not apply to all Relational
Algebra operations.

The new relation Performers contains one tuple for every tuple that was in the
relation Singers or the relation Actors; if a tuple appeared in both Singers and

15

Actors, it will appear only once in the new relation Performers. This is why
there is only one tuple in the relation Performers for each of the individuals
who are both actors and singers (Helen Drummond and Desmond Venables), as
they appear in both the original relations.

Intersection

Intersection creates a new relation containing tuples that are common to both
the existing relations. The participating relations must be union compatible.

16

As before, it can be seen that the relations Singers and Actors are union compat-
ible as they have the same number of attributes, and corresponding attributes
are of the same data type.

We can see that there are some tuples that are common to both relations, as
illustrated in the diagram below. It is these tuples that will form the new
relation as a result of the intersection operation.

17

The Relational Algebra operation intersection will extract the tuples common
to both relations, and use these tuples to create a new relation.

Relational Algebra operation: Actors Intersection Singers giving Actor-Singers

The intersection of Actors and Singers produces a new relation containing only
those tuples that occur in both of the original relations. If there are no tuples
that are common to both relations, the result of the intersection will be an
empty relation (i.e. there will be no tuples in the new relation).

Note that an empty relation is not the same as an error; it simply means that
there are no tuples in the relation. An error would occur if the two relations
were found not to be union compatible.

Difference

Difference (sometimes referred to as ‘remove’) forms a new relation by excluding
tuples from one relation that occur in another. The resulting relation contains
tuples that were present in the first relation only, but not those that occur in
both the first and the second relations, or those that occur in the second relation
alone. This operation can be regarded as ‘subtracting’ tuples in one relation
from another relation. The participating relations must be union compatible.

18

If we want to find out which actors are not also singers, the following Relational
Algebra operation will achieve this:

Relational Algebra operation: Actors difference Singers giving Only-Actors

The result of this operation is to remove from the relation Actors those tuples
that also occur in the relation Singers. In effect, we are removing the tuples in
the intersection of Actors and Singers in order to create a new relation that con-
tains only actors. The diagram below shows which tuples are in both relations.

19

The new relation Only-Actors contains tuples from the relation Actors only if
they were not also present in the relation Singers.

It can be seen that this operation produces a new relation Only-Actors contain-
ing all tuples in the relation Actors except those that also occur in the relation
Singers.

20

If it is necessary to find out which singers are not also actors, this can be done
by the relational operation ‘remove Actors from Singers’, or ‘Singers difference
Actors’. This operation would not produce the same result as ‘Actors difference
Singers’ because the relational operation difference is not commutative (the
participating relations cannot be expressed in reverse order and achieve the
same result).

Relational Algebra operation: Singers difference Actors giving Only-Singers

The effect of this operation is to remove from the relation Singers those tuples
that are also present in the relation Actors. The intersection of the two relations
is removed from the relation Singers to create a new relation containing tuples of
those who are only singers. The intersection of the relations Singers and Actors
is, of course, the same as before.

21

This operation produces a new relation Only-Singers containing all tuples in the
relation Singers except those that also occur in the relation Actors. The tuples
that are removed from one relation when the difference between two relations
is generated are those that are in the intersection of the two relations.

Cartesian product

If a relation called Relation-A has a certain number of tuples (call this number
N), this can be represented as NA (meaning the number of tuples in Relation-A).
Similarly, Relation-B may have a different number of tuples (call this number
M), which can be shown as MB (meaning the number of tuples in Relation-B).

The resulting relation from the operation ‘Relation-A Cartesian product
Relation-B’ forms a new relation containing NA * MB tuples (meaning the
number of tuples in Relation-A times the number of tuples in Relation-B).
Each tuple in the new relation created as a result of this operation will consist
of each tuple from Relation-A paired with each tuple from Relation-B, which
includes all possible combinations.

22

In order to create a new relation which pairs each singer with each role, we need
to use the relational operation Cartesian product.

Relational Algebra operation: Singers Cartesian product Roles giving Singers-
Roles

23

The result of Singers Cartesian product Roles gives a new relation Singers-Roles,
showing each tuple from one relation with each tuple of the other, producing the
tuples in the new relation. Each singer is associated with all roles; this produces
a relation with 16 tuples, as there were 8 tuples in the relation Singers, and 2
tuples in the relation Roles.

What do you think would be the result of the following?

Relational Algebra operation: Singers Cartesian product Singers giving Singers-
Extra

Relational Algebra operation: Actors Cartesian product Roles giving Actors-
Roles

Division

The Relational Algebra operation ‘Relation-A divide by Relation-B giving
Relation-C’ requires that the attributes of Relation-B must be a subset of those
of Relation-A. The relations do not need to be union compatible, but they must
have some attributes in common. The attributes of the result, Relation-C, will
also be a subset of those of Relation-A. Division is the inverse of Cartesian
product; it is sometimes easier to think of the operation as similar to division
in simple algebra and arithmetic.

In arithmetic:

24

If, for example:

Value-A = 2

Value-B = 3

Value-C = 6

then: Value-C is the result of Value-A times Value-B (i.e. 6 = 2 * 3) and: Value-
C divided by Value-A gives Value-B as a result(i.e. 6/2 = 3) and: Value-C
divided by Value-B gives Value-A as a result (i.e. 6/3 = 2)

In Relational Algebra:

If:

Relation-A = Singers

Relation-B = Roles

Relation-C = Singers-Roles

then: Relation-C is the result of Relation-A Cartesian product Relation-B and:
Relation-C divided by Relation-A gives Relation-B as a result

and: Relation-C divided by Relation-B gives Relation-A as a result.

If we start with two relations, Singers and Roles, we can create a new relation
Singers-Roles by performing the Cartesian product of Singers and Roles. This
new relation shows every role in turn with every singer.

25

The new relation Singers-Roles has a special relationship with the relations
Singers and Roles from which it was created, as will be demonstrated below.

We can see that the attributes of the relation Singers are a subset of the at-
tributes of the relation Singers-Roles. Similarly, the attributes of the relation
Roles are also a subset (although a different subset) of the relation Singers-Roles.

If we now divide the relation Singers-Roles by the relation Roles, the resulting
relation will be the same as the relation Singers.

Relational Algebra operation: Singers-Roles divide by Roles giving Our-Singers

26

Similarly, if we divide the relation Singers-Roles by the relation Singers, the
relation that results from this will be the same as the original Roles relation.

Relational Algebra operation: Singers-Roles divide by Singers giving Our-Roles

Note that there are only two tuples in this relation, although the attributes
role-id and role-name appeared eight times in the relation Singer-Roles, as each
role was associated with each singer in turn.

In the case where not all tuples in one relation have corresponding tuples in the
‘dividing’ relation, the resulting relation will only contain those tuples which
are represented in both the ‘dividing’ and ‘divided’ relations. In such a case it
would not be possible to recreate the ‘divided’ relation from a Cartesian product
of the ‘dividing’ and resulting relations. The next example demonstrates this.

Consider the relation Recordings shown below, which holds details of the songs
recorded by each of the singers.

27

Three individuals, Chris, Mel and Sam, have each created two new relations
listing their favourite songs and their favourite singers. The use of the division
operation will enable Chris, Mel and Sam to find out which singers have recorded
their favourite songs, and also which songs their favourite singers have recorded.

The table above contains Chris’s favourite songs. In order to find out which
singers have made a recording of these songs, we need to divide this relation
into the Recordings relation. The result of this Relational Algebra operation is
a new relation containing the details of singers who have recorded all of Chris’s
favourite songs. Singers who have recorded some, but not all, of Chris’s favourite
songs are not included.

Relational Algebra operation: Recordings divide by Chris-Favourite-Songs giv-

28

ing Chris-Singers-Songs

Note that the singers in this relation are not the same as those in the relation
Chris-Favourite-Singers. The reason for this is that Chris’s favourite singers
have not all recorded Chris’s favourite songs.

The next relation shows Chris’s favourite singers. Chris wants to know which
songs these singers have recorded. If we divide the Recordings relation by this
relation, we will get a new relation that contains the songs that all these singers
have recorded; songs that have been recorded by some, but not all, of the singers
will not be included in the new relation.

The singers in this relation are not the same as those who sing Chris’s favourite
songs. The reason for this is that not all of Chris’s favourite singers have
recorded these songs.

In order to discover the songs recorded by Chris’s favourite singer, we need to
divide the relation Recordings by Chris-Favourite-Songs.

Relational Algebra operation: Recordings divide by Chris-Favourite-Songs giv-
ing Chris-Songs-by-Singers

The new relation created by this operation will provide us with the information
about which of Chris’s favourite singers has recorded all of Chris’s chosen songs.
Any singer who has recorded some, but not all, of Chris’s favourite songs will
be excluded from this new relation.

29

We can see that the relation created to identify the songs recorded by Chris’s
favourite singers is not the same as Chris’s list of favourite songs, because these
singers have not all recorded the songs listed as Chris’s favourites.

In this example, we have been able to generate two new relations by dividing
into the Recordings relation. These two new relations do not correspond with
the other two relations that were divided into the relation Recordings, because
there is no direct match. This means that we could not recreate the Record-
ings relation by performing a Cartesian product operation on the two relations
containing Chris’s favourite songs and singers.

In the next example, we will identify the songs recorded by Mel’s favourite
singers, and which singers have recorded Mel’s favourite songs. In common
with Chris’s choice, we will find that the singers and the songs do not match
as not all singers have recorded all songs. If all singers had recorded all songs,
the relation Recordings would be the result of Singers Cartesian product Songs,
but this is not the case.

Mel’s favourite songs include all those that have been recorded, but not all
singers have recorded all songs. Mel wants to find out who has recorded these
songs, but the result will only include those singers who have recorded all the
songs.

There are no other songs that have been recorded from the list available; Mel
has indicated that all of these are favourites.

The relational operation below will produce a new relation, Mel-Singers-Songs,

30

which will contain details of those singers who have recorded all of Mel’s
favourite songs.

Relational Algebra operation: Recordings divide by Mel-Favourite-Songs giving
Mel-Singers-Songs

We can see from this relation, and the one below, that none of Mel’s favourite
singers has recorded all of the songs selected as Mel’s favourites.

We can use the relation Mel-Favourite-Singers to find out which songs have been
recorded by both these performers.

Relational Algebra operation: Recordings divide by Mel-Favourite-Singers giv-
ing Mel-Songs-by-Singers

There is only one song that has been recorded by the singers Mel has chosen, as
shown in the relation below.

We can now turn our attention to Sam’s selection of songs and singers. It
happens that Sam’s favourite song is the same one that Mel’s favourite singers
have recorded.

31

If we now perform the reverse query to find out who has recorded this song, we
find that there are more singers who have recorded this song than the two who
were Mel’s favourites. The reason for this difference is that Mel’s query was
to find out which song had been recorded by particular singers. This contrasts
with Sam’s search for any singer who has recorded this song.

Relational Algebra operation: Recordings divide by Sam-Favourite-Songs giving
Sam-Singer-Songs

Here we can see that Mel’s favourite singers include the performers who have
recorded Sam’s favourite song, but there are many other singers who have also
made a recording of the same song. Indeed, there are only two singers who have
not recorded this song (Desmond Venables and Swee Hor Tan). This could be
considered unfortunate for Sam, as these are the only two singers named as
Sam’s favourites.

32

We know that the only two singers who have not recorded Sam’s favourite song
are in fact Sam’s favourite singers. It is now our task to discover which songs
these two singers have recorded.

Relation Algebra operation: Recordings divide by Sam-Favourite-Singers giving
Sam-Songs-by-Singers

This operation creates a new relation that reveals the identity of the song that
has been recorded by all of Sam’s favourite singers.

There is only one song that these two singers have recorded. Indeed, Swee Hor
Tan has only recorded this song, and therefore whatever other songs had been
recorded by Desmond Venables, this song is the only one that fulfils the criteria
of being recorded by both these performers.

Join

Join forms a new relation with all tuples from two relations that meet a condition.
The relations might happen to be union compatible, but they do not have to
be.

The following two relations have a conceptual link, as the stationery orders have
been made by some of the singers. Invoices can now be generated for each singer
who placed an order. (Note that we would not wish to use Cartesian product
here, as not all singers have placed an order, and not all orders are the same.)

The relation Orders identifies the stationery items (from the Stationery relation)
that have been requested, and shows which customer ordered each item (here

33

the customer-id matches the singer-id).

The Singers relation contains the names and addresses of all singers (who are
the customers), allowing invoices to be prepared by matching the customers who
have placed orders with individuals in the Singers relation.

Relational Algebra operation: Join Singers to Orders where Singers Singer-id =
Orders Customer-id giving Invoices

The relation Singers is joined to the relation Orders where the attribute Singer-
id in Singers has the same value as the attribute Customer-id in Orders, to form
a new relation Invoices.

34

The attribute which links together the two relations (the identification number)
occurs in both original relations, and thus is found twice in the resulting new
relation; the additional occurrence can be removed by means of a project oper-
ation. A version of the join operation, in which such a project is assumed to
occur automatically, is known as a natural join.

The types of join operation that we have used so far, and that are in fact by far
most commonly in use, are called equi-joins. This is because the two attributes
to be compared in the process of evaluating the join operation are compared for
equality with one another. It is possible, however, to have variations on the join
operation using operators other than equality. Therefore it is possible to have
a GREATER THAN (>) JOIN, or a LESS THAN (<) JOIN.

It would have been possible to create the relation Invoices by producing the
Cartesian product of Singers and Orders, and then selecting only those tuples
where the Singer-id attribute from Singers and the Customer-id attribute from
Orders has the same value. The join operation enables two relations which
are not union compatible to be linked together to form a new relation without
generating a Cartesian product, and then extracting only those tuples which
are required.

Activities

Activity 1: Relational Algebra I

Let X be the set of student tuples for students studying databases, and Y the
set of students who started university in 1995. Using this information, what
would be the result of:

1. X union Y

2. X intersect Y

3. X difference Y

35

Activity 2: Relational Algebra II

Describe, using examples, the characteristics of an equi-join and a natural join.

Activity 3: Relational Algebra III

Consider the following relation A with attributes X and Y,

and a relation B with only one attribute (attribute Y). Assume that attribute Y
of relation A and the attribute of relation B are defined on a common domain.
What would be the result of A divided by B if:

1. B = Attribute Y C1

2. B = Attribute Y C2 C3

Review questions

1. Briefly describe the theoretical foundations of Relational database sys-
tems.

2. Describe what is meant if a data item contains the value ‘null’.

3. Why is it necessary sometimes to have a primary key that consists of more
than one attribute?

36

4. What happens if you test two attributes, each of which contains the value
null, to find out if they are equal?

5. What is the Entity Integrity Rule?

6. How are tables linked together in the Relational model?

7. What is Relational Algebra?

8. Explain the concept of union compatibility.

9. Describe the operation of the Relational Algebra operators RESTRICT,
PROJECT, JOIN and DIVIDE.

Discussion topics

1. Now that you have been introduced to the structure of the Relational
model, and having seen important mechanisms such as primary keys, do-
mains, foreign keys and the use of null values, discuss what you feel at
this point to be the strengths and weaknesses of the model. Bear in mind
that, although the Relational Algebra is a part of the Relational model,
it is not generally the language used for manipulating data in commer-
cial database products. That language is SQL, which will be covered in
subsequent chapters.

2. Consider the operations of Relational Algebra. Why do you think Rela-
tional Algebra is not used as a general approach to querying and manip-
ulating data in Relational databases? Given that it is not used as such,
what value can you see in the availability of a language for manipulating
data which is not specific to any one developer of database systems?

Additional content and activities

As we have seen, the Relational Algebra is a useful, vendor-independent, stan-
dard mechanism for discussing the manipulation of data. We have seen, however,
that the Relational Algebra is rather procedural and manipulates data one step
at a time. Another vendor-independent means of manipulating data has been
developed, known as Relational Calculus. For students interested in investigat-
ing the language aspect of the Relational model further, it would be valuable to
compare what we have seen so far of the Relational Algebra, with the approach
used in Relational Calculus. Indeed, it possible to map expressions between
the Algebra and the Calculus, and it has also been shown that it is possible to
convert any expression in one language to an equivalent expression in the other.
In this sense, the Algebra and Calculus are formally equivalent.

37

Chapter 3. Introduction to SQL

Table of contents

• Objectives
• Introduction to SQL
• Context
• SQL overview
• The example company database

– The EMP table
– The DEPT table
– The data contained in the EMP and DEPT tables

• SQL SELECT statement
– Simple example queries
– Calculating values and naming query columns

∗ Altering the column headings of query results
• The WHERE clause

– Basic syntax of the WHERE clause
– Examples of using the WHERE clause
– The use of NOT
– The use of !=
– Retrieving from a list of values
– Querying over a range of values
– Searching for partial matches

• Sorting data
– Descending order
– A sort within a sort

• Handling NULL values in query results (the NVL function)
– WHERE clauses using IS NULL and IS NOT NULL
– The NVL function

• REFERENCE MATERIAL: SQL functions
– Arithmetic functions
– Character functions
– Date functions
– Aggregate functions

• Activity - EMPLOYEE AND DEPARTMENT QUERIES
• Review questions
• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Write SQL queries to examine the data in the rows and columns of rela-
tional tables.

1

• Use string, arithmetic, date and aggregate functions to perform various
calculations or alter the format of the data to be displayed.

• Sort the results of queries into ascending or descending order.

• Understand the significance of NULL entries and be able to write queries
that deal with them.

Introduction to SQL

In parallel with this chapter, you should read Chapter 5 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter introduces the fundamentals of the Structured Query Language,
SQL, which is a worldwide standard language for the querying and manipulation
of Relational databases. This chapter covers the basic concepts of the language,
and sufficient information for you to write simple but powerful queries. The fur-
ther chapters on the SQL language will build on this knowledge, covering more
complex aspects of the query language and introducing statements for adding,
changing and removing data and the tables used to contain data. The mate-
rial you will cover in the SQL chapters provides you with a truly transferable
skill, as the language constructs you will learn will work in virtually all cases,
unchanged, across a wide range of Relational systems.

Context

This unit presents the basics of the SQL language, and together with the succeed-
ing units on SQL, provides a detailed introduction to the SQL language. The
unit relates to the information covered on Relational Algebra, in that it provides
a practical example of how the operations of the algebra can be made available
within a higher level, non-procedural language. This chapter also closely relates
to the material we will later cover briefly on query optimisation in a chapter
called Database Administration and Tuning, as it provides the basic concepts
needed to understand the syntax of the language, which is the information on
which the query optimisation software operates.

There are a number of SQL implementations out there, including Microsoft
Access (part of the Office suite), Microsoft SQL server and Oracle. There are also
some open-source ones such as MySQL. You should make sure you have an SQL
implementation installed for this chapter. Consult the course website for more
information about the recommended and/or compatible SQL implementations.
Although SQL commands in these notes are written in generic terms, you should
be mindful that SQL implementations are different and sometimes what is given
here may not work, or will work with slight modification. You should consult

2

the documentation of your software on the particular command should what is
given here not work with your SQL implementation.

SQL overview

SQL is a language that has been developed specifically for querying and ma-
nipulating data in database systems. Its facilities reflect this fact; for example,
it is very good for querying and altering sets of database records collectively
in one statement (this is known as set-level processing). On the other hand, it
lacks some features commonly found in general programming languages, such
as LOOP and IF…THEN…ELSE statements.

SQL stands for Structured Query Language, and indeed it does have a structure,
and is good for writing queries. However, it is structured rather differently to
most traditional programming languages, and it can be used to update informa-
tion as well as for writing queries.

SQL, as supported in most database systems, is provided via a command-line
interface or some sort of graphical interface that allows for the text-based entry
of SQL statements. For example, the following SQL statement is a query that
will list the names of departments from a database table (also known as a
relation) called DEPT:

SELECT DNAME FROM DEPT;

SQL language consists of three major components:

• DDL (data definition language): Used to define the way in which
data is stored.

• DML (data manipulation language): Allows retrieval, insertion of
data, etc. (This is sometimes called the ‘query’ language.)

• DCL (data control language): Used to control access to the data. For
example, granting access to a user to insert data in a particular table.

The query language (DML) is very flexible in that it can be used to express
quite complicated queries, sometimes very concisely.

One initial problem that people just starting to learn the language encounter is
that it can sometimes be difficult to tell how hard a query will be to express in
SQL from its natural language specification. That is, some queries that sound
as though they will be hard to code in SQL from their description in a natural
language such as English, turn out to be very straightforward. However, some
simple-sounding queries turn out to be surprisingly difficult.

As you work through the SQL chapters in this module, you will build up expe-
rience and knowledge of the kinds of queries that are straightforward to write
in SQL.

3

The data manipulation language (DML) of SQL allows the retrieval, insertion,
updating and removal of rows stored in relational tables. As mentioned above,
numbers of rows can be altered in any one statement, and so DML is a very
powerful tool.

The data definition language (DDL) is used to create, change the structure of or
remove whole tables and other relational structures. So whereas you would use
the INSERT statement of the DML to insert new rows into an existing table,
you would use the DDL CREATE TABLE statement to establish a new table
in the first place.

The data control language (DCL) defines activities that are not in the categories
of those for the DDL and DML, such as granting privileges to users, and defining
when proposed changes to a databases should be irrevocably made.

The example company database

Throughout this and the succeeding chapters on SQL, we are going to use a
standard pair of tables and set of data on which to write SQL statements. This
standard data set comprises the tables EMP and DEPT. The structure of each
is first described, and then the example records for each are presented.

The EMP table

The EMP table stores records about company employees. This table defines and
contains the values for the attributes EMPNO, ENAME, JOB, MGR, HIRE-
DATE, SAL, COMM and DEPTNO.

• EMPNO is a unique employee number; it is the primary key of the em-
ployee table.

• ENAME stores the employee’s name.

• The JOB attribute stores the name of the job the employee does.

• The MGR attribute contains the employee number of the employee who
manages that employee. If the employee has no manager, then the MGR
column for that employee is left set to null.

• The HIREDATE column stores the date on which the employee joined the
company.

• The SAL column contains the details of employee salaries.

• The COMM attribute stores values of commission paid to employees. Not
all employees receive commission, in which case the COMM field is set to
null.

4

• The DEPTNO column stores the department number of the department in
which each employee is based. This data item acts a foreign key, linking the
employee details stored in the EMP table with the details of departments
in which employees work, which are stored in the DEPT table.

The DEPT table

The DEPT table stores records about the different departments that employees
work in. This table defines and contains the values for the attributes as follows:

• DEPTNO: The primary key containing the department numbers used to
identify each department.

• DNAME: The name of each department.

• LOC: The location where each department is based.

The data contained in the EMP and DEPT tables

The data in the EMP table contains the following 14 rows:

The DEPT table contains the following four rows:

5

SQL SELECT statement

SQL queries can be written in upper or lower case, and on one or more lines.
All queries in SQL begin with the word SELECT. The most basic form of the
SELECT statement is as follows:

SELECT <select-list> FROM <table-list>

It is often useful to separate the different parts of a query onto different lines,
so we might write this again as:

SELECT <select-list>

FROM <table-list>

Following the SELECT keyword is the list of table columns that the user wishes
to view. This list is known as the select-list. As well as listing the table columns
to be retrieved by the query, the select-list can also contain various SQL func-
tions to process the data; for example, to carry out calculations on it. The
select-list can also be used to specify headings to be displayed above the data
values retrieved by the query. Multiple select-list items are separated from each
other with commas. The select-list allows you to filter out the columns you
don’t want to see in the results.

The FROM keyword is, like the SELECT keyword, mandatory. It effectively
terminates the select-list, and is followed by the list of tables to be used by
the query to retrieve data. This list is known as the table-list. The fact that
the tables need to be specified in the table-list means that, in order to retrieve
data in SQL, you do need to know in which tables data items are stored. This
may not seem surprising from the perspective of a programmer, or database
developer, but what about an end-user? SQL has, in some circles, been put
forward as a language that can be learned and used effectively by business users.
We can see even at this early stage, however, that a knowledge of what data is
stored where, at least at the logical level, is fundamental to the effective use of
the language.

6

Exercise 1 - Fundamentals of SQL query statements

1. What keyword do all SQL query statements begin with?

2. What is the general form of simple SQL query statements?

Simple example queries

Sample query 1 - the names of all employees

Suppose we wish to list the names of all employees. The SQL query would be:

SELECT ENAME

FROM EMP;

The single ENAME column we wish to see is the only entry in the select-list
in this example. The employee names are stored in the EMP table, and so the
EMP table must be put after the keyword FROM to identify from where the
employee names are to be fetched.

Note that the SQL statement is terminated with a semi-colon (;). This is not
strictly part of the SQL standard. However, in some SQL environments, it
ensures that the system runs the query after it has been entered.

The result of this query when executed is as follows (note that your system
might reflect this in a different way to what is shown here):

7

As you can see, the query returns a row for each record in the table, each row
containing a single column presenting the name of the employee (i.e. the value
of the DNAME attribute for each EMP record).

Sample query 2 - all data (rows and columns) from the DEPT table

There are two usual ways to list all data in a table. The simplest is to use a
shorthand notation provided in SQL to list all the columns in any table. This
is done simply by specifying an asterisk ‘*’ for the select-list as follows:

SELECT *

FROM DEPT;

The asterisk is called a wild card, and causes all attributes of the specified table
to be retrieved by the query.

Note that as it is the details of the DEPT table we wish to view, it is the DEPT
table this time that appears in the table-list following the FROM keyword.

8

The use of * in this way is a very easy way to view the entire contents of any
table. The alternative approach is simply to list all of the columns of the DEPT
table in the select-list as follows:

SELECT DEPTNO, DENAME, LOC

FROM DEPT;

The result of executing either of these queries on our DEPT table at this time
is the following:

A potential problem of using the asterisk wild card, is that instead of explicitly
listing all the attributes we want, the behaviour of the query will change if the
table structure is altered — for example, if we add new attributes to the DEPT
table, the SELECT * version of the query will then list the new attributes.
This is a strong motivation for avoiding the use of the asterisk wild card in most
situations.

Sample query 3 - the salary and commission of all employees

If we wish to see details of each employee’s salary and commission we would use
the following query that specifies just those attributes we desire:

SELECT EMPNO, ENAME, SAL, COMM

FROM EMP;

In this example, we have included the EMPNO column, just in case we had any
duplicate names among the employees.

The result of this query is:

9

Calculating values and naming query columns

Sample query 4 - example calculation on a select-list

In the queries we have presented so far, the data we have requested has been one
or more attributes present in each record. Following the principle of reducing
data redundancy, many pieces of information that are useful, and that can be
calculated from other stored data, are not stored explicitly in databases. SQL
queries can perform a calculation ‘on-the-fly’ using data from table records to
present this kind of information.

The salary and commission values of employees we shall assume to be monthly.
Suppose we wish to display the total annual income (including commission)
for each employee. This figure for each employee is not stored in the table,
since it can be calculated from the monthly salary and commission values. The
calculation is simply 12 times the sum of the monthly salary and commission.

10

A query that retrieves the number and name of each employee, and calculates
their annual income, is as follows:

SELECT EMPNO, ENAME, 12 * (SAL + COMM)

FROM EMP;

The calculation here adds the monthly commission to the salary, and then mul-
tiplies the result by 12 to obtain the total annual income.

Notice that only records for which the commission value was not NULL have
been included. This issue is discussion later in the chapter. When using some
SQL implementation, such as MS Access, you may have to explicitly request
records with NULL values to be excluded. So the above SQL query:

SELECT EMPNO, ENAME, 12 * (SAL + COMM)

FROM EMP;

may need to be written as:

SELECT EMPNO, ENAME, 12 * (SAL + COMM)

FROM EMP

WHERE COMM IS NOT NULL;

(See later to understand the WHERE part of this query)

Depending on which SQL system you run a query like this, the calculated column
may or may not have a heading. The column heading may be the expression
itself 12 * (SAL + COMM) or may be something indicating that an expression
has been calculated: Expr1004 (these two examples are what happens in Oracle
and MS Access respectively). Since such calculations usually mean something
in particular (in this case, total annual income), it makes sense to name these
calculated columns sensibly wherever possible.

Altering the column headings of query results

11

Sometimes it is desirable to improve upon the default column headings for query
results supplied by the system, to make the results of queries more intelligible.
For example, the result of a query to calculate annual pay by summing the
monthly salary and commission and multiplying by 12, would by default in some
systems such as Oracle, have the expression of the calculation as the column
heading. The result is more readable, however, if we supply a heading which
clearly states what the compound value actually is, i.e. annual income. To do
this, simply include the required header information, in double quotes, after the
column specification in the select-list. For the annual pay example, this would
be:

SELECT EMPNO, ENAME, 12*(SAL + COMM) “ANNUAL INCOME”

FROM EMP;

The result is more meaningful:

Once again, there are alternative ways to achieve the naming of columns in
some systems including MS Access and MySQL, rather than using the double
quotation marks around the column heading. The use of the keyword AS and
square brackets may also be required.

So the SQL query:

SELECT EMPNO, ENAME, 12*(SAL + COMM) “ANNUAL INCOME”

FROM EMP;

may need to be written in as:

SELECT EMPNO, ENAME, 12*(SAL + COMM) AS ANNUAL INCOME

FROM EMP WHERE COMM IS NOT NULL;

(See next section to understand the WHERE part of this query)

12

The WHERE clause

Very often we wish to filter the records/rows retrieved by a query. That is, we
may only wish to have a subset of the records of a table returned to us by a
query.

The reason for this may be, for example, in order to restrict the employees
shown in a query result just to those employees with a particular job, or with
a particular salary range, etc. Filtering of records is achieved in SQL through
the use of the WHERE clause. In effect, the WHERE clause implements the
functionality of the RESTRICT operator from Relational Algebra, in that it
takes a horizontal subset of the data over which the query is expressed.

Basic syntax of the WHERE clause

The WHERE clause is not mandatory, but when it is used, it must appear
following the table-list in an SQL statement. The clause consists of the keyword
WHERE, followed by one or more restriction conditions, each of which are
separated from one another using the keywords AND or OR.

The format of the basic SQL statement including a WHERE clause is therefore:

SELECT <select-list> FROM <table-list>

[WHERE <condition1> <, AND/OR CONDITION 2, .. CONDITION n>]

The number of conditions that can be included within a WHERE clause varies
from DBMS to DBMS, though in most major commercial DBMS, such as Oracle,
Sybase, Db2, etc, the limit is so high that it poses no practical restriction on
query specifications. We can also use parentheses ‘(’ and ‘)’ to nest conditions
or improve legibility.

Examples of using the WHERE clause

WHERE example 1 - records with a value before some date

If we wish to retrieve all of those employees who were hired before, say, May
1981, we could issue the following query:

SELECT EMPNO, ENAME, HIREDATE

FROM EMP

WHERE HIREDATE < ‘01-MAY-1981’;

The result of this query is:

13

Note, incidentally, the standard form in which some systems such as Oracle
handle dates: they are enclosed in single quotes, and appear as: DD-MMM-
YYYY (two digits for day ‘dd’, three letters for month ‘mmm’ and four digits
for year ‘yyyy’). In some systems including MS Access, the date should be
enclosed with two hash ‘#’ characters, rather than single quotes - for example,
#01-JAN-1990#. You should check with your system’s documentation for the
requirement as to how the dates should be formatted. Below are the two versions
of the SQL statements, with different formats for dates:

For systems including Oracle:

SELECT EMPNO, ENAME, HIREDATE

FROM EMP

WHERE HIREDATE < ‘01-MAY-1981’;

For systems including MS Access:

SELECT EMPNO, ENAME, HIREDATE

FROM EMP

WHERE HIREDATE < #01-MAY-1981#;

In our example above, we used the < (less than) arithmetic symbol to form
the condition in the WHERE clause. In SQL, the following simple comparison
operators are available:

= equals

!= is not equal to (allowed in some dialects)

< > is not equal to (ISO standard)

< = is less than or equal to

< is less than

> = is greater than or equal to

14

> is greater than

WHERE example 2 - two conditions that must both be true

The logical operator AND is used to specify that two conditions must both be
true. When a WHERE clause has more than one condition, this is called a
compound condition.

Suppose we wish to retrieve all salesmen who are paid more than 1500 a month.
This can be achieved by ANDing the two conditions (is a salesman, and is paid
more than 1500 a month) together in a WHERE clause as follows:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE JOB = ‘SALESMAN’ AND SAL > 1500;

The result of this query is:

Only employees fulfilling both conditions will be returned by the query. Note
the way in which the job is specified in the WHERE clause. This is an example
of querying the value of a field of type character, or as it is called in Oracle, of
type varchar2. When comparing attributes against fixed values of type character
such as SALESMAN, the constant value being compared must be contained in
single quotes, and must be expressed in the same case as it appears in the
table. All of the data in the EMP and DEPT tables is in upper case, so when
we are comparing character values, we must make sure they are in upper case
for them to match the values in the EMP and DEPT tables. In other words,
from a database point of view, the job values of SALESMAN and salesman are
completely different, and if we express a data item in lower case when it is stored
in upper case in the database, no match will be found.

In some systems, including MS Access, the text an attribute is to match should
be enclosed with double quote characters, rather than single quotes. For exam-
ple, “SALESMAN” rather than ‘SALESMAN’:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE JOB = “SALESMAN” AND SAL > 1500;

WHERE example 3 - two conditions, one of which must be true

15

The logical operator OR is used to specify that at least one of two conditions
must be true.

For example, if we wish to find employees who are based in either department
10 or department 20, we can do it by issuing two conditions in the WHERE
clause as follows:

SELECT EMPNO, ENAME, DEPTNO

FROM EMP

WHERE DEPTNO = 10 OR DEPTNO = 20;

The result of this query is:

The use of NOT

The keyword NOT can be used to negate a condition, i.e. only records that do
not meet a condition are selected. An example might be to list all employees
who are not salesmen:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE NOT(JOB = ‘SALESMAN’);

16

Another example might be to list all employees who do not earn more than
1500:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE NOT(SAL > 1500);

17

The use of !=

The operator != can be used to select where some value is NOT EQUAL TO
some other value. So another way to write the query:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE NOT(JOB = ‘SALESMAN’);

is as follows:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE JOB != ‘SALESMAN’;

Retrieving from a list of values

An alternative solution to the previous OR example is provided by a variation
on the syntax of the WHERE clause, in which we can search for values contained
in a specified list. This form of the WHERE clause is as follows:

WHERE ATTRIBUTE IN (<item1>, <item2>, …, <itemN>)

18

Using this syntax, the previous query would be rewritten as follows:

SELECT EMPNO, ENAME, DEPTNO

FROM EMP

WHERE DEPTNO IN (10, 20);

The result of the query is just the same, but in many cases this form of the
WHERE clause is both shorter and simpler to use.

Querying over a range of values

The BETWEEN keyword can be used in a WHERE clause to test whether a
value falls within a certain range. The general form of the WHERE clause using
the BETWEEN keyword is:

WHERE <attribute> BETWEEN <value1> AND <value2>

The operands <value1> and <value2> can either be literals, like 1000, or ex-
pressions referring to attributes.

For example, if we wish to test for salaries falling in the range 1000 to 2000,
then we can code as follows:

SELECT EMPNO, ENAME, SAL

FROM EMP

WHERE SAL BETWEEN 1000 AND 2000;

The result of this query is:

Note that the BETWEEN operator is inclusive, so a value of 1000 or 2000 would
satisfy the condition and the record included in the query result.

19

An equally valid solution could have been produced by testing whether the
salaries to be returned were >=1000 and <=2000, in which case, the WHERE
clause would have been:

SELECT EMPNO, ENAME, SAL

FROM EMP

WHERE (SAL >=1000) AND (SAL <=2000);

However, this version of the query is longer and more complex, and includes the
need to repeat the SAL attribute for comparison in the second condition of the
WHERE clause.

In general, the solution using BETWEEN is preferable since it is more readable
- it is clearer to a human reading the SQL query code what condition is being
evaluated.

Searching for partial matches

All of the queries we have seen so far have been to retrieve exact matches from
the database. The LIKE keyword allows us to search for items for which we
only know a part of the value. The LIKE keyword in SQL literally means ‘is
approximately equal to’ or ‘is a partial match with’. The keyword LIKE is
used in conjunction with two special characters which can be used as wild card
matches - in other words, LIKE expressions can be used to identify the fact that
we do not know precisely what a part of the retrieved value is.

LIKE example - search for words beginning with a certain letter

As an example, we can search for all employees whose names begin with the
letter S as follows:

SELECT EMPNO, ENAME

FROM EMP

WHERE ENAME LIKE ‘S%”;

This query returns:

20

Here the percentage sign (%) is used as a wild card, to say that we do not know
or do not wish to specify the rest of the value of the ENAME attribute; the only
criteria we are specifying is that it begins with ‘S’, and it may be followed by
no, one or more than one other character.

The percentage sign can be used at the beginning or end of a character string,
and can be used as a wild card for any number of characters.

The other character that can be used as a wild card is the underline character
(_). This character is used as a wild card for only one character per instance of
the underline character. That is, if we code:

WHERE ENAME LIKE ‘S__’;

the query will return employees whose names start with S, and have precisely
two further characters after the S. So employees called Sun or Sha would be
returned, but employee names such as Smith or Salt would not be, as they do
not contain exactly three characters.

Note that we can combine conditions using BETWEEN, or LIKE, with other
conditions such as simple tests on salary, etc, by use of the keywords AND and
OR, just as we can combine simple conditions. However, wild card characters
cannot be used to specify members of a list with the IN keyword.

Sorting data

Data can very easily be sorted into different orders in SQL. We use the ORDER
BY clause. This clause is optional, and when required appears as the last clause
in a query. The ORDER BY keywords are followed by the attribute or attributes
on which the data is to be sorted. If the sort is to be done on more than one
attribute, the attributes are separated by commas.

The general form of an SQL query with the optional WHERE and ORDER BY
clauses looks as follows:

SELECT <select-list> FROM <table-list>

[WHERE <condition1> <, AND/OR CONDITION 2, .. CONDITION n>]
[ORDER BY <attribute-list>]

An example would be to sort the departments into department number order:

SELECT DEPTNO, DNAME

FROM DEPT

ORDER BY DEPTNO;

OR

SELECT DEPTNO, DNAME

21

FROM DEPT

ORDER BY DEPTNO ASC;

Note: SQL provides the keyword ASC to explicitly request ordering in ascending
order.

Or to sort into alphabetical order of the name of the department:

SELECT DEPTNO, DNAME

FROM DEPT

ORDER BY DNAME;

Descending order

SQL provides the keyword DESC to request sorting in the reverse order. So to
sort the departments into reverse alphabetical order, we can write the following:

SELECT DEPTNO, DNAME

FROM DEPT

ORDER BY DNAME DESC;

22

A sort within a sort

It is very easy to specify a sort within a sort, i.e. to first sort a set of records
into one order, and then within each group to sort again by another attribute.

For example, the following query will sort employees into department number
order, and within that, into employee name order.

SELECT EMPNO, ENAME, DEPTNO

FROM EMP

ORDER BY DEPTNO, ENAME;

The result of this query is:

23

As can be seen, the records have been sorted into order of DEPTNO first, and
then for each DEPTNO, the records have been sorted alphabetically by ENAME.
This can be easily seen if you have a repeating DEPTNO - for example, if we
had two employees, WARD and KUDO, belonging to DEPTNO 7521. Two
DEPTNO 7521 will appear at the end of the table like above, but KUDO will
be on top of WARD under the ENAME column.

When a query includes an ORDER BY clause, the data is sorted as follows:

• Any null values appear first in the sort

• Numbers are sorted into ascending numeric order

• Character data is sorted into alphabetical order

• Dates are sorted into chronological order

We can include an ORDER BY clause with a WHERE clause, as in the following

24

example, which lists all salesman employees in ascending order of salary:

SELECT EMPNO,ENAME,JOB,SAL

FROM EMP

WHERE JOB = ‘SALESMAN’

ORDER BY SAL;

Handling NULL values in query results (the NVL function)

In the chapter introducing the Relational model, we discussed the fact that
NULL values represent the absence of any actual value, and that it is correct
to refer to an attribute being set to NULL, rather than being equal to NULL.
The syntax of testing for NULL values in a WHERE clause reflects this. Rather
than coding WHERE X = NULL, we write WHERE X IS NULL, or, WHERE
X IS NOT NULL.

WHERE clauses using IS NULL and IS NOT NULL

For example, to return all employees who do not receive a commission, the query
would be:

SELECT EMPNO, ENAME, SAL

FROM EMP

WHERE COMM IS NULL;

25

We can also select records that do not have NULL values:

SELECT EMPNO, ENAME, SAL, COMM

FROM EMP

WHERE COMM IS NOT NULL;

26

The NVL function

There is an extremely useful function available for the handling of NULLs in
query results. (It is important to remember that NULL is not the same as, say,
zero for a numeric attribute.) This is the NVL function, which can be used to
substitute other values in place of NULLs in the results of queries. This may
be required for a number of reasons:

• By default, arithmetic and aggregate functions ignore NULL values in
query results. Sometimes this is what is required, but at other times we
might explicitly wish to consider a NULL in a numeric column as actually
representing the value zero, for example.

• We may wish to replace a NULL value, which will appear as a blank
column in the displayed results of a query, with a more explicit indication
that there was no value for that column instance.

The format of the NVL function is:

NVL(<column>, <value>)

<column> is the attribute in which NULLs are to be replaced, and <value> is
the substitute value.

Examples of using the NVL function

An example of using NVL to treat all employees with NULL commissions as if
they had zero commission:

SELECT EMPNO,NVL(COMM, 0)

FROM EMP;

To display the word ‘unassigned’ wherever a NULL value is retrieved from the
JOB attribute:

SELECT EMPNO,NVL(job, ‘unassigned’)

FROM EMP;

Exercise

What would happen in the cases of employees who do not receive a commission,
i.e. whose commission attribute is set to NULL?

Answer: The short, and somewhat surprising answer to this question, is that the
records of employees receiving NULL commission will simply not be included in
the result. The reason for this is that as we saw in the chapter on the Relational
model, NULL simply indicates the absence of a real value, and so the result of
adding a salary value to a NULL commission value is indeterminate. For this
reason, SQL cannot return a value for the annual pay of employees where those
employees receive no commission. There is a very useful solution to this problem,

27

which will be dealt with later in this chapter, under the heading “Handling
NULL values in query results”.

REFERENCE MATERIAL: SQL functions

SQL functions help simplify different types of operations on the data. SQL
supports four types of functions:

• Arithmetic functions

• Character functions

• Date functions

• Aggregate functions

The functions are used as part of a select-list of a query, or if they refer to a
specific row, they may be used in a WHERE clause. They are used to modify
the values or format of data being retrieved.

Arithmetic functions

The most commonly used arithmetic functions are as follows:

• greatest

• greatest(object-list) - returns the greatest of a list of values

Example:

greatest(sal,comm) - returns whichever of the SAL or COMM attributes
has the highest value

• least

• least(object-list) - returns the smallest of a list of values

Example:

least(sal,comm) - returns whichever of the SAL or COMM attributes has
the lowest value

• round

• round(number[,d]) - rounds the number to d digits right of the decimal
point (d can be negative)

Example:

round(sal,2) - rounds values of the SAL attribute to two decimal places

• trunc

28

• Trunc(number,d) – truncates number to d decimal places (d can be nega-
tive)

Example:

trunc(sal,2) - truncates values of the SAL attribute to two decimal places

Note: The difference between the round and truncate functions is that
round will round up digits of five or higher, whilst trunc always rounds
down.

• abs

• abs(number) - returns the absolute value of the number

Example:

abs(comm-sal) - returns the absolute value of COMM - SAL; that is, if
the number returned would be negative, the minus sign is discarded

• sign

• sign(number) - returns 1 if number greater than zero, 0 if number = zero,
-1 if number less than zero

Example:

sign(comm-sal) - returns 1 if COMM - SAL > 0, 0 if COMM - SAL = 0,
and - 1 if COMM - SAL < 0

• mod

• mod(number1,number2) - returns the remainder when number1 is divided
by number2

Example:

mod(sal,comm) - returns the remainder when SAL is divided by COMM

• sqrt

• sqrt(number) - returns the square root of the number. If the number is
less than zero then sqrt returns null

Example:

sqrt(sal) - returns the square root of salaries

• to_char

• to_char(number[picture]) - converts a number to a character string in the
format specified

Example:

to_char(sal,9999.99) - represents salary values with four digits before the
decimal point, and two afterwards

29

• decode

• decode(column,starting-value,substituted-value..) - substitutes alterna-
tive values for a specified column

Example:

decode(comm,100,200,200,300,100) - returns values of commission in-
creased by 100 for values of 100 and 200, and displays any other comm
values as if they were 100

• ceil

• ceil(number) - rounds up a number to the nearest integer

Example:

ceil(sal) - rounds up salaries to the nearest integer

• floor

• floor(number) - truncates the number to the nearest integer

Example:

floor(sal) - rounds down salary values to the nearest integer

Character functions

The most commonly used character string functions are as follows:

• string1 || string2

• string1 || string2 - concatenates (links) string1 with string2

Example:

deptno || empno - concatenates the employee number with the department
number into one column in the query result

• decode

• decode(column,starting-value,substitute-value, ….) - translates column
values to specified alternatives. The final parameter specifies the value
to be substituted for any other values.

Example:

decode(job,‘CLERK’,‘ADMIN WORKER’,‘MANAGER’,‘BUDGET
HOLDER’,PRESIDENT’,‘EXECUTIVE’,‘NOBODY’) This example
translates values of the JOB column in the employee table to alternative
values, and represents any other values with the string ‘NOBODY’.

• distinct

30

• distinct <column> - lists the distinct values of the specific column

Example:

Distinct job - lists all the distinct values of job in the JOB attribute

• length

• length(string) - finds number of characters in the string

Example:

length(ename) - returns the number of characters in values of the ENAME
attribute

• substr

• substr(column,start-position[,length]) - extracts a specified number of
characters from a string

Example:

substr(ename,1,3) - extracts three characters from the ENAME column,
starting from the first character

• instr

• instr(string1,string2[,start-position]) - finds the position of string2 in
string1. The parentheses around the start-position attribute denote that
it is optional

Example:

instr(ename,‘S’) - finds the position of the character ‘S’ in values of the
ENAME attribute

• upper

• upper(string) - converts all characters in the string to upper case

Example:

upper(ename) - converts values of the ENAME attribute to upper case

• lower

• lower(string) - converts all characters in the string to lower case

Example:

lower(ename) - converts values of the ENAME attribute to lower case

• to_number

• to_number(string) - converts a character string to a number

Example:

to_number(‘11’) + sal - adds the value 11 to employee salaries

31

• to_date

• to_date(str[,pict]) - converts a character string in a given format to a date

Example:

to_date(‘14/apr/99’,‘dd/mon/yy’) - converts the character string
‘14/apr/99’ to the standard system representation for dates

• soundex

• soundex(string) - converts phonetically similar strings to the same value

Example:

soundex(‘smith’) - converts all values that sound like the name Smith to
the same value, enabling the retrieval of phonetically similar attribute
values

• vsize

• vsize(string) - finds the number of characters required to store the charac-
ter string

Example:

vsize(ename) - returns the number of bytes required to store values of the
ENAME attribute

• lpad

• lpad(string,len[,char]) - left pads the string with filler characters

Example:

lpad(ename,10) - left pads values of the ENAME attribute with filler char-
acters (spaces)

• rpad

• rpad(string,len[,char]) - right pads the string with filler characters

Example:

rpad(ename,10) - right pads values of the ENAME attribute with filler
characters (spaces)

• initcap

• initcap(string) - capitalises the initial letter of every word in a string

Example:

initcap(job) - starts all values of the JOB attribute with a capital letter

• translate

32

• translate(string,from,to) - translates the occurrences of the ‘from’ string
to the ‘to’ characters

Example:

translate(ename,‘ABC’,‘XYZ’) - replaces all occurrences of the string
‘ABC’ in values of the ENAME attribute with the string ‘XYZ’

• ltrim

• ltrim(string,set) - trims all characters in a set from the left of the string

Example:

ltrim(ename,‘’) - removes all spaces from the start of values of the ENAME
attribute

• rtrim

• rtrim(string,set) - trims all characters in the set from the right of the string

Example:

rtrim(job,‘.’) - removes any full-stop characters from the right-hand side
of values of the JOB attribute

Date functions

The date functions in most commercially available database systems are quite
rich, reflecting the fact that many commercial applications are very date driven.
The most commonly used date functions in SQL are as follows:

• Sysdate Sysdate - returns the current date

• add-months add-months(date, number) - adds a number of
months from/to a date (number can be negative). For example: add-
months(hiredate, 3). This adds three months to each value of the
HIREDATE attribute

• months-between months-between(date1, date2) - subtracts date2
from date1 to yield the difference in months. For example: months-
between(sysdate, hiredate). This returns the number of months between
the current date and the dates employees were hired

• last-day last-day(date) - moves a date forward to last day in the month.
For example: last-day(hiredate). This moves hiredate forward to the last
day of the month in which they occurred

• next-day next-day(date,day) - moves a date forward to the given day
of week. For example: next-day(hiredate,‘monday’). This returns all
hiredates moved forward to the Monday following the occurrence of the
hiredate

33

• round round(date[,precision]) - rounds a date to a specified precision.
For example: round(hiredate,‘month’). This displays hiredates rounded
to the nearest month

• trunc trunc(date[,precision]) - truncates a date to a specified precision.
For example: trunc(hiredate,‘month’). This displays hiredates truncated
to the nearest month

• decode decode(column,starting-value,substituted-value) - sub-
stitutes alternative values for a specified column. For example:
decode(hiredate,‘25-dec-99’,‘christmas day’,hiredate). This displays any
hiredates of the 25th of December, 1999, as Christmas Day, and any
default values of hiredate as hiredate

• to_char to_char(date,[picture]) - outputs the data in the specified
character format. The format picture can be any combination of the
formats shown below. The whole format picture must be enclosed in
single quotes. Punctuation may be included in the picture where required.
Any text should be enclosed in double quotes. The default date format is:
‘dd-mon-yy’. Example: numeric format, description

• cc, century, 20

• y,yyy, year, 1,986

• yyyy, year, 1986

• yyy, last three digits of year, 986

• yy, last two digits of year, 86

• y, last digits of year, 6

• q, quarter of year, 2

• ww, week of year, 15

• w, week of month, 2

• mm, month, 04

• ddd, day of year, 102

• dd, day of month, 14

• d, day of week, 7

• hh or hh12, hour of day (01-12), 02

• hh24, hour of day (01-24), 14

• mi, minutes, 10

• ss, seconds, 5

• sssss, seconds past midnight, 50465

34

• j, julian calendar day, 2446541

The following suffixes may be appended to any of the numeric formats (suffix,
meaning, example):

• th, st, nd, rd, after the number, 14th

• sp, spells the number, fourteen

• spth/st/nd/rd, spells the number, fourteenth

There is also a set of character format pictures (character format, meaning,
example):

• year, year, nineteen-eighty-six

• month, name of month, april

• mon, abbreviated month, apr

• day, day of week, saturday

• dy, abbreviated day, sat

• am or pm, meridian indicator, pm

• a.m. or p.m., meridian indicator, p.m.

• bc or ad, year indicator, ad

• b.c. or a.d., year indicator, a.d.

If you enter a date format in upper case, the actual value will be output in upper
case. If the format is lower case, the value will be output in lower case. If the
first character of the format is upper case and the rest lower case, the value will
be output similarly.

For example:

to-char(hiredate,'dd/mon/yyyy')

to-char(hiredate,'day,"the"Ddspth"of"month')

Aggregate functions

All aggregate functions with the exception of COUNT operate on numerical
columns. All of the aggregate functions below operate on a number of rows:

• avg

• avg(column) - computes the average value and ignores null values

Example:

SELECT AVG(SAL) FROM EMP;

35

Gives the average salary in the employee table, which is 2073.21

• Sum

• Sum(column) - computes the total of all the values in the specified column
and ignores null values

Example:

sum(comm) - calculates the total commission paid to all employees

• min

• min(column) - finds the minimum value in a column

Example:

min(sal) - returns the lowest salary

• max

• max(column) - finds the maximum value in a column

Example:

max(comm) - returns the highest commission

• count

• count(column) - counts the number of values and ignores nulls

Example:

count(empno) - counts the number of employees

• variance

• variance(column) - returns the variance of the group and ignores nulls

Example:

variance(sal) - returns the variance of all the salary values

• Stddev

• Stddev(column) - returns the standard deviation of a set of numbers (same
as square root of variance)

Example:

stddev(comm) - returns the standard deviation of all commission values

Activity - EMPLOYEE AND DEPARTMENT QUERIES

Using the EMP and DEPT tables, create the following queries in SQL, and test
them to ensure they are retrieving the correct data.

36

You may wish to review the attributes of the EMP and DEPT tables, which are
shown along with the data near the start of the section called Introduction to
the SQL language.

1. List all employees in the order they were hired to the company.

2. Calculate the sum of all the salaries of managers.

3. List the employee numbers, names and hiredates of all employees who
were hired in 1982.

4. Count the number of different jobs in the EMP table without listing them.

5. Find the average commission, counting only those employees who receive
a commission.

6. Find the average commission, counting employees who do not receive a
commission as if they received a commission of 0.

7. Find in which city the Operations department is located.

8. What is the salary paid to the lowest-paid employee?

9. Find the total annual pay for Ward.

10. List all employees with no manager.

11. List all employees who are not managers.

12. How many characters are in the longest department name?

Review questions

1. Distinguish between the select-list and the table-list in an SQL statement,
explaining the use of each within an SQL statement.

2. What restrictions are there on the format and structure of the basic SQL
queries as covered so far in this chapter? Describe the use of each of the
major components of SQL query constructs that we have covered up to
this point.

3. How are NULL values handled when data is sorted?

4. What facilities exist for formatting dates when output from an SQL state-
ment?

5. What facilities are provided for analysing data in the same column across
different rows in a table?

6. What is the role of the NVL function?

37

Discussion topics

1. Is SQL for end-users?

As mentioned earlier in the chapter, a number of people in the database
community believe that SQL is a viable language for end-users - that is,
people whose jobs are not primarily involved with computing. From your
introductory experience of the language so far, you should consider reasons
for and against this view of the SQL language.

2. Can you think of any reasons why use of the wild card ‘*’ as we have seen
in a select-list may lead to problems?

38

Chapter 4. Intermediate SQL

Table of contents

• Objectives
• Introduction
• Context
• Grouping and summarising information

– A very common error with GROUP BY
– The HAVING clause

• Writing queries on more than one table - JOIN
– Avoiding ambiguously named columns
– Outer JOINs

∗ LEFT OUTER JOIN
∗ RIGHT OUTER JOIN
∗ FULL OUTER JOIN

– Using table aliases
– SELF JOINS
– Summary of JOINs

• Nested queries
– The depth and breadth of nested queries

• The UNION operator
• The INTERSECT operator
• The MINUS operator
• ANY or ALL operator
• Correlated sub-queries
• Interactive queries
• Activities

– Activity 1: JOINs
– Activity 2: GROUP BY
– Activity 3: Nested queries

• Review questions
• Discussion topic
• Additional content

Objectives

At the end of this chapter you should be able to:

• Group and summarise data together.

• Combine the grouping mechanisms with the aggregation functions covered
in the previous chapter to provide useful summarised reports of data.

• Write queries that retrieve results by combining information from a num-
ber of tables.

1

• Combine the results of multiple queries in various ways.

Introduction

In parallel with this chapter, you should read Chapter 5 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter builds on the foundations laid in the previous chapter, which in-
troduced the SQL language. We examine a range of facilities for writing more
advanced queries of SQL databases, including queries on more than one table,
summarising data, and combining the results of multiple queries in various ways.

Context

This chapter forms the bridge between the chapter in which the SQL language
was introduced, and the coverage of the data definition language (DDL) and
data control language (DCL) provided in the next chapter called Advanced
SQL.

It is possible to express a range of complex queries using the data manipulation
language (DML) previously introduced. The earlier chapter showed how fairly
simple queries can be constructed using the select-list, the WHERE clause to
filter rows out of a query result, and the ORDER BY clause to sort information.
This chapter completes the coverage of the DML facilities of SQL, and will
considerably increase the range of queries you are able to write. The final SQL
chapter will then address aspects of SQL relating to the updating of data and
the manipulation of the logical structures, i.e. tables that contain data.

Grouping and summarising information

Information retrieved from an SQL query can very easily be placed into separate
groups or categories by use of the GROUP BY clause. The clause is similar in
format to ORDER BY, in that the specification of the words GROUP BY is
followed by the data item or items to be used for forming the groups. The
GROUP BY is optional. If it appears in the query, it must appear before the
ORDER BY if the ORDER BY is present.

Example: count the number of employees in each department

To answer this question, it is necessary to place the employees in the EMP
table into separate categories, one for each department. This can be done easily
enough through the use of the DEPTNO column in the EMP table as follows
(with the select-list temporarily omitted):

2

SELECT ….

FROM EMP

GROUP BY DEPTNO

As far as counting the employees is concerned, this is an example of something
that is seen very commonly with the GROUP BY clause; that is, the use of
an aggregation function, in this case the COUNT function, in conjunction with
GROUP BY. To complete the query, we simply need to include on the select-
list the DEPTNO column, so that we can see what we are grouping by, and the
COUNT function. The query then becomes:

SELECT DEPTNO,COUNT(EMPNO)

FROM EMP

GROUP BY DEPTNO;

Comments: The query works in two steps. The first step is to group all
employees by DEPTNO. The second step is to count the number of employees
in each group. Of course, headings could be used to improve the clarity of the
results; for example, specifying that the second column is “no. of employees”.

COUNT(EMPNO) AS no. of employees

We have specified between the parentheses of the COUNT function that we
are counting EMPNOs, because we are indeed counting employees. We could
in fact have merely specified an asterisk, “*” in the parentheses of the COUNT
function, and the system would have worked out that we were counting instances
of records in the EMP table, which equates to counting employees. However, it
is more efficient to specify to the system what is being counted.

GROUP BY, like ORDER BY, can include more than one data item, so for
example if we specify:

GROUP BY DEPTNO, JOB

the results will be returned initially categorised within departments, and then
within that, categorised into employees who do the same job.

3

GROUP BY example

Find the average salary for each JOB in the company:

SELECT JOB, AVG(round(SAL,2))

FROM EMP

GROUP BY JOB;

Comments: This is a fairly straightforward use of the GROUP BY clause,
once again in conjunction with an aggregate function, AVG.

A very common error with GROUP BY

All column names in the select-list must appear in the GROUP BY clause,
unless the name is used only in an aggregate function. Many people when first
starting to use the GROUP BY clause, fall into the trap of asking the system
to retrieve and display information at two different levels. This arises if, for
example, you GROUP BY a data item such as JOB, but then on the select-list,
include a data item at the individual employee level, such as HIREDATE, SAL,
ETC. You might think that we displayed salaries in the previous example, where
we listed the average salaries earned by employees doing the same job. It makes
all the difference, however, that these are average salaries, the averages being
calculated for each category that we are grouping by, in this case the average
salary for each job. It is fine to display average salaries, as these are averaged
across the group, and are therefore at the group level. However, if we had asked
to display individual salaries, we would have had the error message “not a group
by expression”, referring to the fact that SAL is an individual attribute of an
employee, and not in itself an item at the group level. Whenever you see the
“not a group by expression” message, the first thing to check is the possibility
that you have included a request on your select-list to view information at the
individual record level, rather than at the group level. The one individual level
item you can of course include on the select-list, is the item which is shared by

4

a number of individuals that you are in fact grouping by. So when we asked to
retrieve the average salaries for each JOB, it was of course fine to include the
JOB column in the select-list, because for that query, JOB is an item at the
group level, i.e. we were grouping by JOB.

The HAVING clause

The HAVING clause is used to filter out specific groups or categories of infor-
mation, exactly in the same way that the WHERE clause is used to filter out
individual rows. The HAVING clause always follows a GROUP BY clause, and
is used to test some property or properties of the grouped information.

For example, if we are grouping information at the department level, we might
use a HAVING clause in which to exclude departments with less than a certain
number of employees. This could be coded as follows:

SELECT DEPTNO,COUNT(EMPNO)

FROM EMP

GROUP BY DEPTNO

HAVING COUNT(EMPNO) > 4;

Comments: Department number 10 has four employees in our sample data set,
and has been excluded from the results through the use of the HAVING clause.

The properties that are tested in a HAVING clause must be properties of groups,
i.e. one must either test against individual values of the grouped-by item, such
as:

HAVING JOB = ‘SALESMAN’

OR

JOB = ‘ANALYST’

or test against some property of the group, i.e. the number of members in the
group (as in the example to exclude departments with less than five employees,
or, for instance, tests on aggregate functions of the group - for our data set these

5

could be properties such as the average or total salaries within the individual
groups).

The HAVING clause, when required, always follows immediately after the
GROUP BY clause to which it refers. It can contain compound conditions,
linked by the boolean operators AND or OR (as above), and parentheses may
be used to nest conditions.

Writing queries on more than one table - JOIN

It is not usually very long before a requirement arises to combine information
from more than one table, into one coherent query result. For example, using
the EMP and DEPT tables, we may wish to display the details of employee
numbers and names, alongside the name of the department in which employees
work. To do this, we will need to combine information from both the tables, as
the employee details are stored in the EMP table, while the department name
information is stored in the DEPT table (in the DNAME attribute).

The first point to note, is that this will mean listing both the EMP and DEPT
tables in the table-list, following the FROM keyword in the query. In general,
the table-list will contain all of the tables required to be accessed during the
execution of a query. So far, as our queries have only ever accessed one table,
the table-list has contained only one table. To list employee numbers and names
with department names, however, the FROM clause will read:

FROM EMP, DEPT

Note that from a purely logical point of view, the order in which the tables are
listed after the keyword FROM does not matter at all. In practice, however, if
we are dealing with larger tables, the order of tables in the table-list may make
a difference to the speed of execution of the query, as it may affect the order in
which data from the tables is loaded into main memory from disk. This will be
discussed further in the chapter on Advanced SQL.

Listing both the EMP and the DEPT tables after the FROM keyword, however,
is not sufficient to achieve the results we are seeking. We don’t merely wish
for the tables to be accessed in the query; we want the way in which they are
accessed to be coordinated in a particular way. We wish to relate the display of a
department name with the display of employee numbers and names of employees
who work in that department. So we require the query to relate employee records
in the EMP table with their corresponding department records in the DEPT
table. The way this is achieved in SQL is by the Relational operator JOIN. The
JOIN is an absolutely central concept in Relational databases, and therefore in
the SQL language. It is such a central concept because this logical combining or
relating of data from different tables is a common and important requirement in
almost all applications. The ability to relate information from different tables

6

in a uniform manner has been an important factor in the widespread adoption
of Relational database systems.

A curious feature of performing JOINs, or relating information from different
tables in a logical way as required in the above query, is that although the process
is universally referred to as performing a JOIN, the way it is expressed in SQL
does not always involve the use of the word JOIN. This can be particularly
confusing for newcomers to JOINs. For example, to satisfy the query above, we
would code the WHERE clause as follows:

WHERE EMP.DEPTNO = DEPT.DEPTNO

What this is expressing is that we wish rows in the EMP table to be related to
rows in the DEPT table, by matching rows from the two tables whose depart-
ment numbers (DEPTNOs) are equal. So we are using the DEPTNO column
from each employee record in the EMP table, to link that employee record with
the department record for that employee in the DEPT table.

The full query would therefore be:

SELECT EMPNO,ENAME,DNAME

FROM EMP,DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO;

This gives the following results for our test data set:

7

A few further points should be noted about the expression of the above query:

• Because we wish to display values of the DNAME attribute in the result,
it has, of course, to be included in the select-list.

• We need not include any mention of the DEPTNO attribute in the select-
list. We require the EMP.DEPTNO and DEPT.DEPTNO columns to
perform the JOIN, so we refer to these columns in the WHERE clause,
but we do not wish to display any DEPTNO information, therefore it is
not included in the select-list.

• As mentioned above, the order in which the EMP and DEPT tables appear
after the FROM keyword is unimportant, at least assuming we can ignore
issues of performance response, which we certainly can for tables of this
size.

• Similarly, the order in which the columns involved in the JOIN operation
are expressed in the WHERE clause is also unimportant.

8

Example on joining two tables

List the names and jobs of employees, together with the locations in which they
work:

SELECT ENAME,JOB,LOC

FROM EMP,DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO;

Comments: The exercise requires a simple modification to our first JOIN exam-
ple – replacing EMPNO and DNAME in the select-list with the JOB and LOC
attributes. LOC, like DNAME, is stored in the DEPT table, and so requires
the coordination provided by a JOIN, in order to display employee information
along with the locations of the departments in which those employees work.

The SQL standard provides the following alternative ways to specify this join:

FROM EMP JOIN DEPT ON EMP.DEPTNO = DEPT.DEPTNO;

9

FROM EMP JOIN DEPT USING DEPTNO;

FROM EMP NATURAL JOIN DEPT;

In each case, the FROM clause replaces the original FROM and WHERE
clauses.

Avoiding ambiguously named columns

DEPTNO has been used as the data item to link records in the EMP and DEPT
tables in the above examples. For our EMP and DEPT data set, DEPTNO is
in fact the only semantically sensible possibility for use as the JOIN column. In
the DEPT table, DEPTNO acts as the primary key (and as such must have a
different value in every row within the DEPT table), while in the EMP table,
DEPTNO acts as a foreign key, linking each EMP record with the department
record in the DEPT table to which the employee record belongs. If we wish to
refer to DEPTNO in the select-list, we would need to be careful to specify which
instance of DEPTNO we are referring to: the one in the EMP table, or the one
in the DEPT table. Failure to do this will lead to an error message indicating
that the system is unable to identify which column we are referencing. The way
to be specific about which instance of DEPTNO we require is simply to prefix
the reference to the DEPTNO column with the table name containing that
DEPTNO instance, placing a full stop (.) character between the table name
and column name: for example, EMP.DEPTNO, or DEPT.DEPTNO. In this
way, the system can identify which instance of DEPTNO is being referenced.

In general, if there is any possible ambiguity about which column is being ref-
erenced in a query, because a column with that name appears in more than
one table, we use the table prefixing approach to clarify the reference. Note
that this was not necessary when referencing any of the columns in the example
JOIN queries above, as all of these appeared only once within either the EMP
table or the DEPT table.

Outer JOINs

In addition to the basic form of the JOIN, also called a NATURAL JOIN and
used to relate rows in different tables, we sometimes require a little more syn-
tax than we have seen so far, in order to obtain all the information we require.
Supposing, for example, we wish to list all departments with the employee num-
bers and names of their employees, plus any departments that do not contain
employees.

As a first attempt, we might code:

SELECT DEPT.DEPTNO,DNAME,EMPNO,ENAME

FROM EMP,DEPT

10

WHERE EMP.DEPTNO = DEPT.DEPTNO

ORDER BY DEPT.DEPTNO;

Comments: Note the use of DEPT.DEPTNO to specify the instance of the
JOIN column unambiguously in the select-list. The ORDER BY clause is help-
ful in sorting the results into DEPT.DEPTNO order. In fact, ordering by
DEPTNO, EMPNO would have been even more helpful, particularly in a larger
data set. Incidentally, being clear which instance of DEPTNO we are referring
to is just as important in the ORDER BY clause as it is in the select-list.

The results of this first attempt are, however, not the complete answer to the
original query. Department number 40, called Operations, has no employees
currently assigned to it, but it does not appear in the results.

The problem here is that the basic form of the JOIN only extracts matching
instances of records from the joined tables. We need something further to force
in any record instances that do not match a record in the other table. To do this,

11

we use a construct called an OUTER JOIN. OUTER JOINs are used precisely
in situations where we wish to force into our results set, rows that do and do not
match a usual JOIN condition. There are three types of OUTER JOIN: LEFT,
RIGHT, and FULL OUTER JOINS. To demonstrate the OUTER JOINs, we
will use the following tables.

Person table

The person table holds the information of people. The ID is the primary key.
A person can own a car or not.

Car table

The car table holds information of cars. The REG is the primary key. A car
can have an owner or not.

LEFT OUTER JOIN

The syntax of the LEFT OUTER JOIN involves including the LEFT JOIN key-
word in the query. Here’s an example: List all persons together with their car’s
registration and model, including any person without any car. The requirement
is to force into the result set any person that does not have a car. To satisfy
the requirement, we would write our query as such:

SELECT ID,NAME,REG,MODEL

FROM Person LEFT JOIN car ON Person.ID = Car.OWNER;

Comment: The query returns all the persons with cars, plus the one instance
of a person (ID 704555) having no car.

12

RIGHT OUTER JOIN

Like a LEFT JOIN, the syntax of the RIGHT OUTER JOIN involves including
the RIGHT JOIN keyword in the query. An example would be: List all cars
together with their owner’s identification and name, including any car not owned
by anyone.

SELECT REG,MODEL,ID,NAME

FROM Person RIGHT JOIN car ON Person.ID = Car.OWNER;

Comment: The query returns all the cars that are owned, plus the one instance
of a car not owned by anyone.

FULL OUTER JOIN

If you wish to show both person records of those that don’t own any car and
car records that don’t have any owner, then you need to use the FULL OUTER
JOIN:

SELECT REG,MODEL,ID,NAME

FROM Person FULL JOIN car ON Person.ID = Car.OWNER;

Using table aliases

Table aliasing involves specifying aliases, or alternative names, that can be used
to refer to the table during the processing of a query. The table aliases are
specified in the table-list, following the FROM keyword. For example, the above
FULL OUTER JOIN query can be written using aliases:

SELECT REG,MODEL,ID,NAME

13

FROM Person p FULL JOIN car c ON p.ID = c.OWNER;

SELF JOINS

Sometimes it is necessary to JOIN a table to itself in order to compare records
from the same table. An example of this might be if we wish to compare values
of salary on an individual basis between employees.

Example: find all employees who are paid more than “JONES”

What is required here is to compare the salaries of employees with the salary
paid to JONES. A way of doing this, involves JOINing the EMP table with
itself, so that we can carry out salary comparisons in the WHERE clause of an
SQL query. However, if we wish to JOIN a table to itself, we need a mechanism
for referring to the different rows being compared.

In order to specify the query to find out which employees are paid more than
JONES, we shall use two table aliases, X and Y for the EMP table. We shall use
X to denote employees whom we are comparing with JONES, and Y to denote
JONES’ record specifically. This leads to the following query specification:

SELECT X.EMPNO,X.ENAME,X.SAL,Y.EMPNO,Y.ENAME,Y.SAL

FROM EMP X,EMP Y

WHERE X.SAL > Y.SAL

AND Y.ENAME = ‘JONES’

Comments: Note the use of the aliases for each of the column specifications
in the select-list. We ensure that the alias Y is associated with the employee
JONES through the second condition in the WHERE clause, “AND Y.ENAME
= ‘JONES’ ”. The first condition in the WHERE clause, comparing salaries,
ensures that apart from JONES’ record, which is listed in the result as a check
on the query results, only the details of employees who are paid more than
JONES are retrieved.

14

Summary of JOINs

We have seen three forms of the JOIN condition. The basic JOIN, also called
a NATURAL JOIN, is used to combine or coordinate the results of a query
in a logical way across more than one table. In our examples, we have seen
that JOINing two tables together involves one JOIN condition and, in general,
JOINing N tables together requires the specification of N-1 JOIN conditions.
A lot of work has gone into the development of efficient algorithms for the
execution of JOINs in all the major database systems, with the result being
that the overall performance of Relational database systems has seen a very
considerable improvement since their introduction in the early ’80s. In spite of
this, JOINs are still an expensive operation in terms of query processing, and
there can be situations where we seek ways of reducing the number of JOINs
required to perform specific transactions.

Two further variants we have seen on the basic JOIN operation are the OUTER
JOIN and the SELF JOIN. The OUTER JOIN is used to force non-matching
records from one side of a JOIN into the set of retrieved results. The SELF
JOIN is used where it is required to compare rows in a table with other rows
from the same table. This comparison is facilitated through the use of aliases,
alternative names which are associated with the table, and so can be used to
reference the table on different sides of a JOIN specification.

Nested queries

The power of the SQL language is increased considerably through the ability to
include one query within another. This is known as nesting queries, or writing
sub-queries.

Nested query example

Find all employees who are paid more than JONES:

This might be considered a two-stage task:

1. Find Jones’ salary.

2. Find all those employees who are paid more than the salary found in step
1.

We might code step 1 as follows:

SELECT SAL

FROM EMP

WHERE ENAME = ‘JONES’

The nested query mechanism allows us to enclose this query within another one,
which we might use to perform step 2:

15

SELECT EMPNO,ENAME,SAL

FROM EMP

WHERE SAL > …..

We simply need the syntax to enclose the query to implement step 1 in such a
way that is provides its result to the query which implements step 2.

This is done by enclosing the query for step 1 in parentheses, and linking it to
the query for step 2 as follows:

SELECT EMPNO,ENAME,SAL

FROM EMP

WHERE SAL >

(SELECT SAL FROM EMP WHERE ENAME = ‘JONES’);

This gives the following results:

These are indeed the employees who earn more than JONES (who earns 2975).

Whenever a query appears to fall into a succession of natural steps such as the
one above, it is a likely candidate to be coded as a nested query.

An important point has to be kept in mind when testing for equality of values
across inner and outer queries.

If the inner query returns just one value, then we can use the equal sign, e.g.

SELECT …. FROM ….

WHERE ATTRIBUTE 1 = (SELECT ….

FROM …..)

If, however, the inner query might return more than one row, we must use the
keyword IN, so that we can check whether the value of the attribute being tested
in the WHERE clause of the outer query is IN the set of values returned by the
inner query. Sub-queries can be included linked to a HAVING clause, i.e. they
can retrieve a result which forms part of the condition in the evaluation of a
HAVING clause. In this situation the format of the HAVING clause is:

16

HAVING ….

(SELECT … FROM .. WHERE ….)

The inner query may of course itself have inner queries, with WHERE, GROUP
BY and HAVING clauses.

The depth and breadth of nested queries

The number of queries that can be nested varies from one database system to
another, but there is support for this SQL construct in all the leading databases
such that there is no practical limit to the number of queries that can be nested.

In a similar way, a number of queries can be included at the same level of
nesting, their results being combined together using the AND or OR keywords,
according to the following syntax:

SELECT …. FROM ….

WHERE CONDITION 1 (SELECT ….

FROM ….. WHERE …..)

AND/OR (SELECT ….. FROM …. WHERE ….)

AND/OR

……

The UNION operator

To find the details of any employees receiving the same salaries as either SCOTT
or WARD, we could code:

SELECT EMPNO,ENAME,SAL

FROM EMP

WHERE SAL IN

(SELECT SAL FROM EMP

WHERE ENAME = ‘WARD’

OR

ENAME = ‘SCOTT’);

But suppose SCOTT and WARD are in different tables. If this is the case, we
need to use the UNION operator in order to combine the results of queries on
two different tables as follows:

SELECT EMPNO,ENAME,SAL

17

FROM EMP

WHERE SAL IN

(SELECT SAL

FROM EMP1

WHERE ENAME = ‘WARD’

UNION

SELECT SAL

FROM EMP2

WHERE ENAME = ‘SCOTT’);

Comments: We are assuming here that WARD is in a table called EMP1, and
SCOTT in EMP2. The two salary values retrieved from these sub-queries are
combined into a single results set, which is retrieved for comparison with all
salary values in the EMP table in the outer query. Because there is more than
one salary returned from the combined inner query, the IN keyword is used to
make the comparison. Note that as with the Relational Algebra equivalent, the
results of the SQL UNION operator must be union compatible, as we see they
are in this case, as they both return single salary columns.

The INTERSECT operator

Again, like its Relational Algebra equivalent, the SQL INTERSECT operator
can be used to extract the rows in common between two sets of query results:

SELECT JOB

FROM EMP

WHERE SAL > 2000 INTERSECT

SELECT JOB

FROM SHOPFLOORDETAILS;

Here the INTERSECT operator is used to find all jobs in common between
the two queries. The first query returns all jobs that are paid more than 2000,
whereas the second returns all jobs from a separate table called SHOPFLO-
ORDETAILS. The final result, therefore, will be a list of all jobs in the
SHOPFLOORDETAILS table that are paid more than 2000. Again, note that
the sets of results compared with one another using the INTERSECT operator
must be union compatible.

18

The MINUS operator

MINUS is used, like the DIFFERENCE operator of Relational Algebra, to sub-
tract one set of results from another, where those results are derived from dif-
ferent tables.

For example:

SELECT EMPNO,ENAME,SAL

FROM EMP

WHERE ENAME IN

(SELECT ENAME

FROM EMP1

MINUS

SELECT ENAME

FROM EMP2);

Comments: The result of this query lists the details for employees whose names
are the same as employees in table EMP1, with the exception of any names that
are the same as employees in table EMP2.

ANY or ALL operator

The ANY or ALL operators may be used for sub-queries that return more than
one row. They are used on the WHERE or HAVING clause in conjunction with
the logical operators (=, !=, >, >=, <=, <). ANY compares a value to each
value returned by a sub-query.

To display employees who earn more than the lowest salary in Department 30,
enter:

SELECT ENAME, SAL, JOB, DEPTNO

FROM EMP

WHERE SAL >>

ANY

(SELECT DISTINCT SAL

FROM EMP

WHERE DEPTNO = 30)

ORDER BY SAL DESC;

19

Comments: Note the use of the double >> sign, which is the syntax used
in conjunction with the ANY and ALL operators to denote the fact that the
comparison is carried out repeatedly during query execution. “= ANY” is equiv-
alent to the keyword IN. With ANY, the DISTINCT keyword is often used in
the sub-query to avoid the same values being selected several times. Clearly the
lowest salary in department 30 is below 1100.

ALL compares a value to every value returned by a sub-query.

The following query finds employees who earn more than every employee in
Department 30:

SELECT ENAME, SAL, JOB, DEPTNO

FROM EMP

WHERE SAL >>ALL

(SELECT DISTINCT SAL

FROM EMP

WHERE DEPTNO = 30)

20

ORDER BY SAL DESC;

Comments: The inner query retrieves the salaries for Department 30. The
outer query, using the All keyword, ensures that the salaries retrieved are higher
than all of those in department 30. Clearly the highest salary in department 30
is below 2975.

Note that the NOT operator can be used with IN, ANY or ALL.

Correlated sub-queries

A correlated sub-query is a nested sub-query that is executed once for each
‘candidate row’ considered by the main query, and which on execution uses a
value from a column in the outer query. This causes the correlated sub-query
to be processed in a different way from the ordinary nested sub-query.

With a normal nested sub-query, the inner select runs first and it executes once,
returning values to be used by the main query. A correlated sub-query, on the
other hand, executes once for each candidate row to be considered by the outer
query. The inner query is driven by the outer query.

Steps to execute a correlated sub-query:

1. The outer query fetches a candidate row.

2. The inner query is executed, using the value from the candidate row
fetched by the outer query.

3. Whether the candidate row is retained depends on the values returned by
the execution of the inner query.

4. Repeat until no candidate row remains.

Example

We can use a correlated sub-query to find employees who earn a salary greater
than the average salary for their department:

21

SELECT EMPNO,ENAME,SAL,DEPTNO

FROM EMP E

WHERE SAL >> (SELECT AVG(SAL)

FROM EMP

WHERE DEPTNO = E.DEPTNO)

ORDER BY DEPTNO;

Giving the results:

Comments: We can see immediately that this is a correlated sub-query since
we have used a column from the outer select in the WHERE clause of the inner
select. Note that the alias is necessary only to avoid ambiguity in column names.

Interactive queries

A very useful facility is provided to enable users to run the same query again,
entering a different value of a parameter to a WHERE or HAVING clause. This
is done by prefixing the column specification for which different values are to be
supplied by the “&” sign.

Example

Find the number of clerks based in department 10. Find the number of clerks
in other departments by running the same query, in each case entering the value
of the department number interactively.

SELECT COUNT(EMPNO) “NUMBER OF CLERKS”

FROM EMP

22

WHERE JOB = ‘CLERK’

AND DEPTNO = &DEPTNO

The user will be asked to enter a value for DEPTNO. The result for entering 10
is:

This syntax provides a limited amount of interactivity with SQL queries, which
can avoid the need to recode in order to vary the values of interactively specified
parameters.

Activities

The following individual activities will provide practice by focusing on specific
SQL constructs in each activity. These will be supplemented by the succeeding
review questions, which will draw on all of the SQL material covered in this and
the introductory chapter to SQL. This first activity will concentrate on various
types of SQL JOIN.

Activity 1: JOINs

1. Find all employees located in Dallas.

2. List the total annual pay for the Sales department (remember salary and
commission data are provided as monthly figures).

3. List any departments that do not contain any employees.

4. Which workers earn more than their managers (hint: remember that the
MGR attribute stores the EMPNO of an employee’s manager).

Activity 2: GROUP BY

1. List the total monthly pay for each department.

2. List the number of employees located in Chicago and New York.

3. Find all jobs with more than two employees.

23

Activity 3: Nested queries

1. List the details of the highest-paid employee.

2. Find whether anyone in department 30 has the same job as JONES.

3. Find the job with the most employees.

Review questions

1. Why is the JOIN operation such a core concept in Relational database
systems? Describe how JOINs are expressed in SQL.

2. How can we express in SQL where it is required to JOIN more than two
tables together?

3. Differentiate between the terms SELF JOIN and OUTER JOIN, and give
a practical example of the use of each (you need not necessarily restrict
yourself to the use of the data tables used in earlier examples).

4. Describe the use of the GROUP BY clause for categorising data in SQL.

5. What restrictions exist on the contents of a select-list which appears in
the same query as a GROUP BY clause?

6. It is sometimes said that the HAVING keyword relates to the GROUP BY
clause, in the same way that the WHERE keyword relates to SELECT.
Explain the meaning of this statement, and draw parallels between the
SELECT….WHERE and the GROUP BY …. HAVING constructs in SQL.

7. Describe the use of nested queries within the SQL language.

Discussion topic

JOINs versus nested queries

In general, Relational database systems are optimised to perform JOIN opera-
tions very efficiently. It is also true that many SQL queries can be expressed
either as a JOIN or as a nested query. Consider for yourself, and discuss online
with colleagues, which of these two constructs you find easier to understand and
to code. Do you find that any previous programming experience you may have
had influences your ease of understanding and application of these concepts? For
example, most people who have experience of conventional programming lan-
guages are familiar with loop statements and nesting one loop inside another,
a construct which is very similar to a nested query. In general, do you think
having had previous experience is an advantage or disadvantage when learning
a language such as SQL?

24

Additional content

Following on from the Additional Content section of the introductory chapter
to SQL, you are encouraged to explore further the SQL support provided within
Microsoft Access, or some other database of your choice, for the SQL constructs
we have covered in this chapter.

Whereas you will have found relatively consistent support for all of the SQL fea-
tures covered in the introductory chapter, now that we have covered the majority
of the constructs available within the DML part of SQL, you are much more
likely to find variations in support for the different features. These variations
are likely to include:

• Complete lack of support for some of the constructs covered, e.g. some
databases do not allow nested queries at all, or do not support JOINs.

• Partial support for some constructs; for example, some systems support
nested queries, but do not support the keywords ANY and ALL.

• Variations in the limits to how different constructs can be used; for ex-
ample, some databases only allow query nesting to two or three levels, or
support conventional JOINs but not the SELF or OUTER JOIN.

Using the sample tables provided in the database you have chosen, investigate
the use of the SQL constructs described in this chapter, noting down differences
and limitations in their implementation between your chosen database and the
Oracle implementation.

25

Chapter 5. Advanced SQL

Table of contents

• Objectives
• Introduction
• Context
• Creating tables in SQL

– Data types
– Defining primary keys
– Defining foreign keys
– Copying data by combining CREATE TABLE and SELECT
– Copying table structures without data

• The ALTER TABLE statement
– Using ALTER TABLE to add columns
– Modifying columns with ALTER TABLE

• Removing tables using the DROP TABLE statement
– Using DROP TABLE when creating tables

• Adding new rows to table with INSERT
• Changing column values with UPDATE
• Removing rows with DELETE
• Creating views in SQL

– Views and updates
• Renaming tables
• Creating and deleting a database
• Using SQL scripts
• Activities

– Activity 1: Data definition language
– Activity 2: Manipulating rows in tables
– Activity 3: Creating and removing views

• Review questions
• Discussion topic
• Additional content and activities

Objectives

At the end of this chapter you should be able to:

• Create, alter and drop tables in SQL.

• Insert, update and delete rows from SQL tables.

• Create, alter and remove views based on SQL tables, and describe some
of the strengths and limitations of views.

1

Introduction

In parallel with this chapter, you should read Chapter 6 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter introduces further features of the SQL language, and seeks to
integrate the material of all three chapters which have provided coverage of
SQL in this module. The chapter introduces the means by which tables are
created, changed and removed in SQL. The statements for inserting, updating
and deleting rows from tables are also covered. Views are an important feature
in SQL for tailoring the presentation of data, and acting as a security mechanism.
The statements for creating and using views will be described, along with some
of the inherent limitations of the view mechanism.

Context

This chapter is the final one specifically dedicated to the SQL language, and
so it forms an important role in drawing together the information covered in
all three of the SQL-related chapters of the module. SQL continues to be an
important vehicle for explaining and illustrating concepts in many of the later
chapters of the module, and provides a medium through which many relevant
practical exercises can be performed.

Although this chapter is called Advanced SQL, the material covered is not in
general more difficult than that of previous chapters. The previous two chapters
on SQL have provided a fairly comprehensive coverage of the data manipula-
tion (DML) part of the language, enabling the specification of a wide range
of queries. This chapter introduces the mechanisms for creating, changing and
removing tables, and for inserting, updating and removing rows from tables.
The mechanisms for performing these actions in SQL are relatively straightfor-
ward, but are extremely powerful. Because SQL is a command-level language,
these commands do not include the checks that we have grown to expect from
a typical Graphical User Interface (GUI), and so they must be used with care.

Creating tables in SQL

Data definition language (DDL) statements are used for creating, modifying and
removing data objects. They affect both physical and logical data structures.
Their syntax is generally much more varied than the data manipulation language
(DML) statements we have covered in the previous two chapters.

The CREATE statement in SQL can be used to bring into being a range of
different data objects, including the following:

• Data tables

2

• Views on existing tables

• Indexes (data structures which speed up access to data)

• Database user accounts

In this section we shall concentrate on the use of the CREATE statement for
establishing new tables. The CREATE TABLE statement has a range of differ-
ent options, and so we shall start by showing a simplified version of the syntax
as follows:

CREATE TABLE “TABLE NAME” (COLUMN SPECIFICATION 1, …… COL-
UMN SPECIFICATION n);

Where column specification includes:

• A column name

• The data type of the column

• Where appropriate, a specification of the length of the column

• An optional indicator of whether or not the column is to contain null
values

Data objects are subject to a number of restrictions, and these will vary be-
tween different database systems. We shall describe the restrictions on naming
tables and columns in Oracle, as they are fairly typical limitations encountered
in databases generally, the main exceptions being older PC-based database en-
vironments.

• Table names must start with an alphabetic character, and can contain up
to 30 characters.

• Table names can contain the letters A-Z, the numbers 0-9, and the char-
acters – and _.

• Table names must be unique within any specific user account.

• Column names must start with a character, and may comprise up to 30
characters.

• They can contain the same characters as table names.

• Column names must be unique within a table, but you can specify the
same column names in different tables.

• In Oracle there can be up to 254 columns in a table.

Referring to the simplified version of the CREATE TABLE statement above,
the column specifications are contained in parentheses.

3

Data types

We shall focus on three specific data types for use in our practical work, as their
equivalents (though they may be differently named) can be found in almost any
database environment. These data types appear in Oracle as the following:

1. VARCHAR2: is used to store variable-length character strings. In Ora-
cle the strings can store up to 2000 characters. The syntax for specifying
a data item of type VARCHAR2 is:

VARCHAR2 (length)

where length is the maximum length of the character string to be stored.

Note: Some DBMSs, including MySQL, uses VARCHAR instead.

2. NUMBER: is used to store general numbers. The NUMBER data type
offers the greatest flexibility for storing numeric data. It accepts positive
and negative integers and real numbers, and has from 1 to 38 digits of
precision. The syntax for specifying the NUMBER data type is:

NUMBER (precision, scale)

where precision is the maximum number of digits to be stored and scale indicates
number of digits to the right of the decimal point. If scale is omitted, then integer
(whole) numbers are stored.

Note: Some DBMSs, including MySQL, expect you to use exact data types for
numeric data. For example, if you want to hold integers, then you must use
the INT datatype. If you wish to hold decimal numbers, then you must use the
DOUBLE datatype.

3. DATE: is used to specify an attribute is of the type ‘date’. The format
in which dates are represented within attributes of type date is: dd-mon-
yyyy; for example, 10-jan-2000.The syntax to specify an attribute is of
type date is simply to specify the word DATE after the name of the at-
tribute in the CREATE TABLE statement.

Like many other systems, Oracle contains a number of other data types in
addition to the most commonly found ones just described. As an example of
other data types that may be provided, here are a few of the rather more Oracle-
specific data types available:

• Decimal: is used to store fixed-point numbers, and provides compatibility
with IBM’s DB2 and SQL/DS systems.

• Float: is used to store floating-point numbers, and provides compatibility
with the ANSI float datatype.

• Char: is used to store fixed-length character strings. It is most commonly
used for representing attributes of one character in length.

4

• Long: is used to store a little over two gigabytes of data. However, none of
Oracle’s built-in functions and operators can be used to search an attribute
of type ‘long’.

The final part of a column specification allows us to specify whether or not the
column is to contain null values, i.e. whether or not it is a mandatory column.
The syntax is simply to specify either “Not null” or Null after the data type
(and possible length) specification.

Example CREATE TABLE statement

Suppose we wished to create a table called MUSIC_COLLECTION, which we
would use to store the details of CDs, cassettes, minidiscs, etc. This could be
done with the following statement:

CREATE TABLE MUSIC_COLLECTION (ITEM_ID NUMBER(4),

TITLE VARCHAR2(40),

ARTIST VARCHAR2(30),

ITEM_TYPE VARCHAR2(1),

DATE_PURCHASED DATE);

We use a unique numeric identifier called ITEM_ID to identify each of the items
in the collection, as we cannot rely on either the TITLE or ARTIST attributes
to identify items uniquely. The ITEM_TYPE attribute is used to identify which
format the item is in, i.e. cassette, CD, etc.

Defining primary keys

Remember that a primary key is used to identify uniquely each instance of an
entity. For the MUSIC_COLLECTION table, the primary key of ITEM_ID
will identify uniquely each of the items in the music collection. The CREATE
TABLE statement provides the syntax to define primary keys as follows:

CREATE TABLE “TABLE NAME”

(COLUMN SPECIFICATION 1,

COLUMN SPECIFICATION n,

PRIMARY KEY (columnA, …., columnX));

where columns columnA,….,columnX are the columns to be included in the
primary key, separated from each other by commas, and all of the columns
included in the primary key being enclosed in parentheses. In SQL the definition
of a primary key on a CREATE TABLE statement is optional, but in practice
this is virtually always worth doing. It will help maintain the integrity of the
database. Oracle will ensure all the values of a primary key are different, and

5

will not allow a null value to be entered for a primary key. In Oracle there is
an upper limit of 16 columns that can be included within a primary key.

Example of creating table with a primary key

If we wanted to specify that ITEM_ID is to be used as the primary key in
the MUSIC-COLLECTION table, we could code the following version of our
CREATE TABLE statement:

CREATE TABLE MUSIC_COLLECTION (ITEM_ID NUMBER(4),

TITLE VARCHAR2(40),

ARTIST VARCHAR2(30), ITEM_TYPE VARCHAR2(1),

DATE_PURCHASED DATE, PRIMARY KEY (ITEM_ID));

Defining foreign keys

A foreign key is used to form the link between rows stored in one table and
corresponding rows in another table. For example, in the sample data set we
have used in the previous two chapters on SQL, the foreign key EMP.DEPTNO
in the employee table was used to link employees to their corresponding depart-
ments in the DEPT table. The CREATE TABLE statement allows us to specify
one or more foreign keys in a table as follows:

CREATE TABLE “TABLE NAME”

(COLUMN SPECIFICATION 1,

COLUMN SPECIFICATION n,

PRIMARY KEY (columnA, …., columnX), CONSTRAINT “constraint name”

FOREIGN KEY (columnAA, …., columnXX) REFERENCES “primary key
specification”)

……………);

As for primary keys, foreign key specifications are not mandatory in a CREATE
TABLE statement. But again, specifying foreign keys is desirable in maintaining
the integrity of the database. Oracle will ensure that a value entered for a
foreign key must either equal a value of the corresponding primary key, or be
null. CREATE TABLE statements can contain both a primary key specification,
and a number of foreign key specifications.

An explanation of the foreign key specification is as follows:

• The first item is the keyword “CONSTRAINT”, followed by an optional
constraint name. Although specifying a constraint name is optional, it
is recommended that you always include it. The reason for this is that
if no constraint name is specified, most systems, including Oracle, will

6

allocate one, and this will not be in any way easy to remember. If you
later wish to refer to the foreign key constraint - for instance, because you
wish to remove it - then providing your own name at the point you enter
the CREATE TABLE statement will make this much easier.

• The words FOREIGN KEY are followed by a list of the columns to be
included in the foreign key, contained in parentheses and separated by
commas (this list of column names is in general different from the list of
column names in the “Primary key” clause).

• REFERENCES is the mandatory keyword, indicating that the foreign key
will refer to a primary key.

• The primary key specification starts with the name of the table containing
the referenced primary key, and then lists the columns comprising the
primary key, contained in parentheses and separated by commas as usual.

The full stops (……………) shown in the version of the syntax above indicate that
there may be more than one foreign key specification.

Example of defining a foreign key in SQL

Supposing we have a second table, which we use to keep track of recording
artists whose recordings we buy. The ARTIST table could be created with the
following statement:

CREATE TABLE ARTIST (

ARTIST_ID NUMBER(2),

ARTIST_NAME VARCHAR2(30),

COUNTRY_OF_ORIGIN VARCHAR2(25),

DATE_OF_BIRTH DATE, PRIMARY KEY (ARTIST_ID));

To relate the MUSIC_COLLECTION table to the ARTIST table, we could
make the following modifications to the CREATE TABLE statement for the
MUSIC_COLLECTION TABLE, which replaces the ARTIST_NAME with a
foreign key reference to the ARTIST-ID:

CREATE TABLE MUSIC_COLLECTION (ITEM_ID NUMBER(4),

TITLE VARCHAR(40),

ARTIST_ID NUMBER(2),

ITEM_TYPE VARCHAR2(1),

DATE_PURCHASED DATE, PRIMARY KEY (ITEM_ID),

CONSTRAINT FK_ARTIST

FOREIGN KEY (ARTIST_ID) REFERENCES ARTIST (ARTIST_ID));

The following points should be noted:

7

1. We have modified the attribute specified on line four, from containing
the Artist name, and being of type Varchar2 and length 30, to be the
ARTIST_ID, of type number and length2.

2. We have then used the ARTIST_ID as the foreign key, which references
the primary key of the table ARTIST.

Note that in general, it would not be possible to make changes such as these
to existing tables. It would require some existing tables and data to be deleted.
Therefore it is good practice to consider very carefully the design of tables and
specification of the primary and foreign keys that are going to be required,
and to specify this correctly the first time in CREATE TABLE statements.
It is however possible to add and remove both primary key and foreign key
constraints, and this will be covered, along with the details of a range of other
constraints mechanisms, in the chapter Declarative Constraints and Database
Triggers.

Copying data by combining CREATE TABLE and SELECT

An extremely useful variant of the CREATE TABLE statement exists for copy-
ing data. Essentially, this consists of using a SELECT statement to provide the
column specifications for the table to be created and, in addition, the data that
is retrieved by the SELECT statement is copied into the new table structure.
The syntax for this form of the statement is as follows:

CREATE TABLE “TABLE NAME”

AS “select statement”;

where “select statement” can be any valid SQL query.

This form of the CREATE TABLE statement can be used to, for example:

• Copy entire tables.

• Copy subsets of tables using the select-list and WHERE clause to filter
rows.

• Create tables which combine data from more than one table (using JOINs).

• Create tables containing aggregated data (using GROUP BY).

Examples of copying data using CREATE TABLE…..SELECT

Example 1:

To create a copy of the EMP table we have used in previous exercises:

CREATE TABLE EMPCOPY

AS SELECT * FROM EMP;

Example 2:

8

To create a table containing a list of employees and their locations we can code:

CREATE TABLE EMPLOC

AS SELECT EMPNO, EMP.DEPTNO, ENAME, LOC

FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO;

To examine the contents of the new table:

SELECT *

FROM EMPLOC;

9

Copying table structures without data

Sometimes you may wish to copy the structure of a table without moving any
of the data from the old table into the new one. For example, to take a copy of
the structure of the EMP table, but without copying any employee records into
the new table, we could use:

CREATE TABLE EMPSTRUCT

AS SELECT *

FROM EMP

WHERE 1 = 2;

To verify we have copied the structure:

DESCRIBE EMPSTRUCT

To verify the new structure contains no data:

SELECT *

FROM EMPSTRUCT;

no rows selected

This is an example of the way the SQL language can be made to fit a particular
purpose. We wish in this example to copy the structure of a table, but ensure
no rows are selected from it. By supplying a WHERE clause which contains a
condition, namely WHERE 1 = 2, that can never be satisfied, we ensure that
no rows are copied along with the structure.

10

The ALTER TABLE statement

The ALTER statement in SQL, like the CREATE statement, can be used to
change a number of different types of data objects, including tables, access
privileges and constraints. Here we shall concentrate on its use to change the
structure of tables.

You can use the ALTER TABLE statement to modify a table’s definition. This
statement changes the structure of a table, not its contents. You can use the
ALTER TABLE statement to:

• Add a new column to an existing table.

• Increase or decrease the width of an existing column.

• Change an existing column from mandatory to optional (i.e. specify that
it may contain nulls).

Using ALTER TABLE to add columns

Columns can be added to existing tables with this form of the ALTER TABLE
statement. The syntax is:

ALTER TABLE “TABLE NAME”

ADD “COLUMN SPECIFICATION 1”,

…………,

“COLUMN SPECIFICATION n”;

For example, to add a department-head attribute to the DEPT table, we could
specify:

ALTER TABLE DEPT

ADD DEPT_HEAD NUMBER(4);

We could imagine that the new DEPT_HEAD column would contain EMPNO
values, corresponding to the employees who were the department heads of par-
ticular departments. Incidentally, if we had wished to make the DEPT_HEAD
field mandatory, we could not have done so, as the ALTER TABLE statement
does not enable the addition of mandatory fields to tables that already contain
data.

We can add a number of columns with one ALTER TABLE statement.

Modifying columns with ALTER TABLE

This form of the ALTER TABLE statement permits changes to be made to
existing column definitions. The format is:

11

ALTER TABLE “TABLE NAME”

MODIFY “COLUMN SPECIFICATION 1”,

………….,

COLUMN SPECIFICATION n“;

For example, to change our copy of the EMP table, called EMPCOPY, so that
the DEPTNO attribute can contain three digit values:

ALTER TABLE EMPCOPY

MODIFY DEPTNO NUMBER(3);

This form of the ALTER TABLE statement can be used to:

• Increase the length of an existing column.

• Transform a column from mandatory to optional (i.e. specify it can contain
nulls).

There are a number of restrictions in the use of the ALTER TABLE state-
ment for modifying columns, most of which might be guessed through a careful
consideration of what is being required of the system. For example, you cannot:

• Reduce the size of an existing column (even if it has no data in it).

• Change a column from being optional to mandatory.

Removing tables using the DROP TABLE statement

To remove a table, the DDL statement is:

DROP TABLE “TABLE NAME”;

It is deceptively easy to issue this command, and unlike most systems one en-
counters today, there is no prompt at all about whether you wish to proceed
with the process. Dropping a table involves the removal of all the data and
constraints on the table and, finally, removal of the table structure itself.

Example to remove our copy of the EMP table, called EMPCOPY:

DROP TABLE EMPCOPY;

Table dropped.

Using DROP TABLE when creating tables

Sometimes we wish to recreate an existing table, perhaps because we wish to
add new constraints to it, or to carry out changes that are not easy to perform
using the ALTER TABLE or other DDL statements. If this is the case, it will be

12

necessary to drop the table before issuing the new CREATE TABLE statement.
Clearly this should only be done if the data in the table can be lost, or can be
safely copied elsewhere, perhaps through the use of a CREATE TABLE with a
SELECT clause.

For a little further information about the use of the DROP TABLE statement
when creating tables, see the section on using SQL scripts later in this chapter.

Adding new rows to table with INSERT

The INSERT statement is used to add rows to an existing table. The statement
has two basic forms:

1. To insert a single row into a table:

INSERT INTO “TABLE NAME” (COLUMN-LIST) VALUES

(LIST OF VALUES TO BE INSERTED);

The COLUMN-LIST describes all of the columns into which data is to be in-
serted. If values are to be inserted for every column, i.e. an entire row is to be
added, then the COLUMN-LIST can be omitted.

The LIST OF VALUES TO BE INSERTED comprises the separate values of
the new data items, separated by commas.

Example 1:

To insert a new row into the table DEPTCOPY (this is a copy of the DEPT
table):

INSERT INTO DEPTCOPY VALUES (50,‘PURCHASING’,‘SAN FRAN-
CISCO’);

1 row created.

Example 2:

To insert a new department for which we do not yet know the location:

INSERT INTO DEPTCOPY (DEPTNO,DNAME)

VALUES (60,‘PRODUCTION’);

1 row created.

2. To insert a number of rows using a SELECT statement.

The syntax for this form of the INSERT statement is as follows:

INSERT INTO “TABLE NAME” (COLUMN-LIST)

“SELECT STATEMENT”;

13

The COLUMN-LIST is optional, and is used to specify which columns are to be
filled when not all the columns in the rows of the target table are to be filled.

The “SELECT STATEMENT” is any valid select statement.

This is, rather like the case of using SELECT with the CREATE TABLE state-
ment, a very powerful way of moving existing data (possibly from separate
tables) into a new table.

Example:

Supposing we have created a table called MANAGER, which is currently empty.
To insert the numbers, names and salaries of all the employees who are managers
into the table we would code:

INSERT INTO MANAGER

SELECT EMPNO, ENAME, SAL

FROM EMP

WHERE JOB = ‘MANAGER’;

3 rows created.

To verify the employees in the table are managers, we can select the data and
compare the jobs of those employees in the original EMP table:

SELECT *

FROM MANAGER;

Changing column values with UPDATE

The UPDATE statement is used to change the values of columns in SQL tables.
It is extremely powerful, but like the DROP statement we encountered earlier,
it does not prompt you about whether you really wish to make the changes you
have specified, and so it must be used with care.

The syntax of the UPDATE statement is as follows:

14

UPDATE “TABLE NAME” SET “column-list” = expression | sub-query
WHERE “CONDITION”;

The SET keyword immediately precedes the column or columns to be updated,
which are specified in the column list. If there is more than one column in the
list, they are separated by commas.

Following the equals sign “=” there are two possibilities for the format of the
value to be assigned. An expression can be used, which may include mathemat-
ical operations on table columns as well as constant values. If an expression is
supplying the update value, then only one column can be updated.

Alternatively, a sub-query or SELECT statement can be used to return the
value or values to which the updated columns will be set. If a sub-query is used
to return the updated values, then the number of columns to be updated must
be the same as the number of columns in the select-list of the sub-query.

Finally, the syntax includes a WHERE clause, which is used to specify which
rows in the target table will be updated. If this WHERE clause is omitted, all
rows in the table will be updated.

Example 1:

To give all the analysts in the copy of the EMP table (called EMPCOPY) a
raise of 10%:

UPDATE EMPCOPY

SET SAL = SAL * 1.1

WHERE JOB = ‘ANALYST’;

2 rows updated.

Example 2:

Suppose we wish to flatten the management structure for the employees stored
in the EMPCOPY table. Recall that the MGR of each employee contains the
employee number of their manager. We might implement this flattening exercise,
at least as far as the database systems are concerned, by setting all employees’
MGR fields to that of KING, who is the president of the company. The update
statement to do this would be as follows:

UPDATE EMPCOPY

SET MGR =

(SELECT EMPNO

FROM EMP

WHERE ENAME = ‘KING’) WHERE ENAME != ‘KING’;

13 rows updated.

15

Note that we have been careful to include the final WHERE clause, in this case
to avoid updating KING’s MGR field.

To verify that the updates have taken place correctly:

SELECT EMPNO,ENAME,MGR

FROM EMPCOPY;

Note that all MGR fields, except that of KING, have been set to 7839, which
is of course KING’s EMPNO. It is a nice feature of the SQL language that we
were able to code this query without knowing KING’s EMPNO value, though
we did have to know something unique about KING in order to retrieve the
EMPNO value from the table. In this case, we used the value of ENAME, but
this is in general unsafe - it would have been better to use KING’s EMPNO
value. Why? We could equally have used the value of JOB, providing we could
rely on there being only one President in the table.

16

Removing rows with DELETE

The DELETE statement is the last of the DDL statements we shall look at in
detail. It is used to remove single rows or groups of rows from a table. Its
format is as follows:

DELETE FROM “TABLE NAME”

WHERE “COLUMN-LIST” = | IN

CONSTANT | EXPRESSION | SUB-QUERY;

As for the UPDATE statement, if the WHERE clause is omitted, all of the rows
will be removed from the table. However, unlike the DROP TABLE statement,
a DELETE statement leaves the table structure in place.

Example 1: To remove an individual employee from the EMPCOPY
table:

DELETE FROM EMPCOPY

WHERE ENAME = ‘FORD’;

1 row deleted.

Note that, had there been more than one employee called FORD, all would have
been deleted.

Example 2: To delete a number of rows based on an expression: To
remove all employees paid more than 2800:

DELETE FROM EMPCOPY

WHERE SAL > 2800;

5 rows deleted.

Example 3: Deleting using a sub-query: To remove any employees
based in the SALES department:

DELETE FROM EMPCOPY

WHERE DEPTNO IN

(SELECT DEPTNO FROM DEPT WHERE DNAME = ‘SALES’);

5 rows deleted

Creating views in SQL

Views are an extremely useful mechanism for providing users with a subset of
the underlying data tables. As such, they can provide a security mechanism, or
simply be used to make the user’s job easier by reducing the rows and columns
of irrelevant data to which users are exposed.

17

Views are the means by which, in SQL databases, individual users are provided
with a logical, tailored schema of the underlying database. Views are in effect
virtual tables, but appear to users in most respects the same as normal base
tables. The difference is that when a view is created, it is not stored like a base
table; its definition is simply used to recreate it for use each time it is required.
In this sense, views are equivalent to stored queries.

Views are created using the CREATE VIEW statement. The syntax of this
statement is very similar to that for creating tables using a SELECT.

Example: To create a view showing the names and hiredates of em-
ployees, based on the EMP table:

CREATE VIEW EMPHIRE

AS SELECT ENAME,HIREDATE

FROM EMP;

View created.

To examine the structure of the view EMPHIRE, we can use the DESCRIBE
command, just as for table objects:

DESCRIBE EMPHIRE

To see the data in the view, we can issue a SELECT statement just as if the
view EMPHIRE is a table:

SELECT *

FROM EMPHIRE;

18

Views and updates

When specifying the rows and columns to be included in a view definition, we
can use all of the facilities of a SELECT statement. However, there are a
number of situations in which the data in base tables cannot be updated via a
view. These are as follows:

• When the view is based on one table, but does not contain the primary
key of the table.

• When the view is based on a JOIN.

• When a view is based on a GROUP BY clause or aggregate function,
because there is no underlying row in which to place the update.

• Where rows might migrate in or out of a view as a result of the update
being made.

19

Renaming tables

The syntax of this extremely useful command is as follows:

RENAME “old table name” TO “new table name”;

Example: to rename the EMP table to NEWEMP:

RENAME EMP TO NEWEMP;

Table renamed.

The RENAME command is an extremely useful one when carrying out DDL
operations. This is in part because of the shortcomings of the ALTER TABLE
statement, which makes it necessary sometimes to copy a sub- or super-set of
the table, drop the former version of the table, and rename the new version to
the old.

For example, if we wish to remove a column from a table, it is necessary to do
the following:

1. Use the CREATE TABLE statement to make a copy of the old table,
excluding the column which is no longer required.

2. Drop the old copy of the table.

3. Rename the new copy of the table to the old.

Creating and deleting a database

SQL allows us to create and drop a database in an easy way.

Creating a database uses the following syntax:

CREATE SCHEMA database-name;

For example, to create a database called STUDENTS that holds student infor-
mation, we write the create command as follows:

CREATE SCHEMA students;

Deleting the database is also fairly easy:

DROP SCHEMA database-name;

For example, to delete the student database, we write the delete command as
follows:

DROP SCHEMA students;

Warning: Be careful when using the DROP SCHEMA command. It deletes all
the tables created under that database, including the data.

20

Using SQL scripts

SQL statements can be combined into a file and executed as a group. This is
particularly useful when it is required to create a set of tables together, or use a
large number of INSERT statements to enter rows into tables. Files containing
SQL statements in this way are called SQL script files. Each separate SQL
statement in the file must be terminated with a semi-colon to make it run.
Comments can be included in the file with the use of the REM statement, e.g.

REM insert your comment here

The word REM appears at the start of a new line in the script file. REM
statements do not require a semi-colon (;) terminator.

Having created one or more tables, if you then decide you wish to make changes
to them, some of which may be difficult or impossible using the ALTER TABLE
statement, the simplest approach is to drop the tables and issue a new CREATE
TABLE statement which implements the required changes. If the tables whose
structures you wish to change contain any data you wish to retain, you should
first use CREATE TABLE with a sub-query to copy the data to another table,
from which it can be copied back when you have carried out the required table
restructuring.

The restructuring of a number of tables is best implemented by including the
required CREATE TABLE statements in a script file. To avoid errors when this
file is re-run, it is customary to place a series of DROP TABLE statements at
the beginning of the file, one for each table that is to be created. In this way
you can re-run the script file with no problems. The first time it runs, assuming
the tables have not already been created outside the script, the DROP TABLE
statements will raise error messages, but these can be ignored. It is of course
essential, if the tables contain data, to ensure this has been copied to other
tables before such a restructuring exercise is undertaken.

Activities

Activity 1: Data definition language

1. Create the following tables, choosing appropriate data types for the at-
tributes of each table. In your CREATE TABLE statements, create pri-
mary keys for both tables, and an appropriate foreign key for the student
table.

Tables:

TUTOR (TUTOR_ID, TUTOR_NAME, DEPARTMENT, SALARY, AD-
VICE_TIME)

21

STUDENT(STUDENT_NO, STUDENT_NAME, DATE_JOINED, COURSE,
TUTOR_ID)

Important note: Because of the foreign key constraint, you should create the
TUTOR table first, so that it will be available to be referenced by the foreign
key from the STUDENT table when it is created.

Use DESCRIBE to check the table structure.

2. Perform the following checks and modifications to the tables above. After
each modification, use DESCRIBE to verify the change has been made
correctly.

Add an ANNUAL_FEE column to the STUDENT table.

Ensure that the STUDENT_NO field is sufficiently large to accommodate over
10,000 students. If it is not, change it so that it can deal with this situation.

Add an ANNUAL_LEAVE attribute to the tutor table.

Ensure that the tutor’s salary attribute can handle salaries to a precision of two
decimal places. Remove the ADVICE_TIME attribute from the tutor table.

Activity 2: Manipulating rows in tables

1. Populate the TUTOR and STUDENT tables with appropriate data values.
Ensure that some of the student records you insert have null values in
their foreign key of TUTOR_ID, and that other students have foreign key
values which match the TUTOR_IDs of tutors in the TUTOR table. To
place null values into the TUTOR_ID attribute for a student, you need to
put the word ‘null’ in the position where the TUTOR_ID would appear
in the column-list of the INSERT statement; for example:

INSERT INTO STUDENT VALUES (1505,‘KHAN’,‘04-OCT-1999’,‘COMPUTING’,NULL,5000);

1 row created.

Note that because inserting data a row at a time with the INSERT statement
is rather slow, it is only necessary to put small samples of tutors and students
into the tables; for example, about four tutor records and eight student records
should be sufficient.

2. Use CREATE TABLE with a sub-query to make copies of your TUTOR
and STUDENT tables before you proceed to the following steps of the
activity, which involve updating and removing data. Having done this, if
you accidentally remove more data than you intended, you can copy it
back from your backup tables by dropping the table, and then using the
CREATE TABLE statement with a sub-query.

3. Update a specific student record in order to change the course he or she
is attending.

22

4. Update the TUTOR_ID of a specific student in order to change the tutor
for that student. Write the update statement by using the tutor’s name,
in order to retrieve the TUTOR_ID supplying the update value.

5. Remove all students who do not have a tutor.

Activity 3: Creating and removing views

1. Create two views on the STUDENT and TUTOR tables as follows:

• View1 should contain details of all students taking Computing.

• View2 should include the names of tutors and the names of their tutees.

2. Remove the two views using the DROP VIEW statement.

Review questions

1. Describe the ways in which tables can be created in SQL.

2. What details need to be included on a CREATE TABLE statement to
establish a foreign key?

3. Briefly describe the functionality of the ALTER TABLE statement, and
describe some of the limitations in its use.

4. What happens to the data in a table when that table is dropped?

5. Describe the forms that the INSERT statement can take.

6. What options are there for supplying values to update columns in an
UPDATE statement?

7. What happens to a table structure when rows are deleted from the table?

8. The command-oriented nature of the SQL language means that it does not
contain the usual confirmation messages if requests are made to remove
data or storage structures such as tables. Identify the SQL statements
where it is necessary to pay particular attention to the statement speci-
fication, in order to avoid unwanted changes to data or data structures.
Identify which parts of the statements require specific attention in this
way.

9. Describe two uses of views in database systems, and identify any limita-
tions in their use.

Discussion topic

The strengths and weaknesses of SQL

23

The three chapters covering SQL have introduced a wide range of mechanisms
for querying and manipulating data in relational tables. This is not the complete
story as far as SQL is concerned, but you have now encountered a major part
of the facilities available within standard implementations of the language. You
are encouraged to discuss with your colleagues your views on the SQL language
that you have been learning. Particular aspects of interest for discussion include:

• What do you feel are the strengths of the language, in terms of learnability,
usability and flexibility?

• On the other hand, which aspects of the language have you found difficult
or awkward either to learn or to use?

• Are there ways in which you feel the language could be improved?

• How does use of the SQL language compare with other database systems
or programming languages you have encountered?

• How feasible is it to use natural language (e.g. English) statements instead
of SQL, to retrieve data in an Oracle database? What are the potential
problems and how might they be overcome?

Additional content and activities

The SQL language, as we have seen, provides a standardised, command-based
approach to the querying and manipulation of data. Most database systems
also include Graphical User Interfaces for carrying out many of the operations
that can be performed in SQL. You are encouraged to explore these interfaces,
either for the Microsoft Access database system, and/or for the Personal Oracle
system you have installed to carry out the practical work so far.

The Microsoft Access system does not provide the DDL part of SQL, relying
on its graphical front-end for the creation and alteration of tables. Examine
the ways in which new tables are established or changed within the Microsoft
Access environment, comparing it with the approach in SQL.

The Personal Oracle system includes a graphical tool called the Navigator, which
provides a graphical means of carrying out a large number of database admin-
istration tasks.

Examine the facilities in the Navigator for creating tables and other data objects,
again comparing it with the equivalent mechanisms in SQL.

24

Chapter 6. Entity-Relationship Modelling

Table of contents

• Objectives
• Introduction
• Context
• Entities, attributes and values

– Entities
– Attributes
– Values
– Primary key data elements
– Key
– Candidate keys
– Foreign keys

• Entity-Relationship Modelling
– Entity representation
– One-to-one relationships between two entities
– One-to-many relationships between two entities
– Many-to-many relationships between two entities
– Recursive relationships

• Relationship participation condition (membership class)
– Mandatory and optional relationships
– One-to-one relationships and participation conditions

∗ Both ends mandatory
∗ One end mandatory, other end optional:
∗ One end optional, other end mandatory:
∗ Both ends optional:

– One-to-many relationships and participation conditions
∗ Both ends mandatory:
∗ One end mandatory, other end optional:
∗ One end optional, other end mandatory:
∗ Both ends optional:

– Many-to-many relationships and participation conditions
∗ Both ends mandatory:
∗ One end mandatory, other end optional:
∗ One end optional, other end mandatory:
∗ Both ends optional

• Weak and strong entities
• Problems with entity-relationship (ER) models

– Fan traps
– Chasm traps

• Converting entity relationships into relations
– Converting one-to-one relationships into relations

∗ Mandatory for both entities
∗ Mandatory for one entity, optional for the other entity

1

∗ Optional for both entities
– Converting one-to-many relationships into relations

∗ Mandatory for both entities
∗ Mandatory for one entity, optional for another entity: many end
mandatory

∗ Mandatory for one entity, optional for another entity: many end
optional

∗ Optional for both entities
– Converting many-to-many relationships into relations

∗ Mandatory for both entities
∗ Mandatory for one entity, optional for the other entity
∗ Optional for both entities

– Summary of conversion rules
• Review questions

Objectives

At the end of this chapter you should be able to:

• Analyse a given situation to identify the entities involved.

• Be able to identify the relationships between entities, and carry out any
necessary transformations.

• Develop the model further by identifying attributes for each entity.

• Map the entities into tables suitable for Relational database implementa-
tion.

Introduction

In parallel with this chapter, you should read Chapter 11 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter is the first to address in detail the extremely important topic of
database design. The main approach described in this chapter is called Entity-
Relationship Modelling. This technique has become a widely used approach in
the development of database applications. The approach is essentially top-down,
in that the first step is to look overall at the requirements for the application be-
ing developed, identifying the entities involved. The approach progresses from
that point through the development of a detailed model of the entities, their
attributes and relationships. The Entity-Relationship Modelling process is not
formal, in the mathematical sense, but to be done well, it requires a consistent
precision to be applied to the way that entities, their relationships and their
attributes are discussed. The approach can be supplemented by methods which

2

are more formal in their approach, and that provide a bottom-up perspective
to the design process. The most commonly used of these approaches is Normal-
isation, which will be a core topic of the later chapters on database design.

Context

This chapter introduces the ideas of top-down database design, and provides the
starting point in learning how to develop a database application. The chapter
links closely with the others covering database design (Normalisation and other
design topics). The chapter also has considerable relevance for the material
in the module on performance tuning, such as the chapter on indexing, as the
decisions made during database design have a major impact on the performance
of the application.

Entities, attributes and values

Entities

Many organisations (such as businesses, government departments, supermarkets,
universities and hospitals) have a number of branches, divisions or sections in
order to deal with a variety of functions or different geographical areas. Each
branch, division or section may itself be split up into smaller units. It is possible
to regard each branch, division or section (or each unit within these) as an
organisation in its own right. Organisations require information in order to carry
out the tasks and activities for which they are responsible. The information that
these organisations need could be categorised in a number of ways, for example:

People

• Payroll

• Pensions

• Annual leave

• Sick leave

Things

• Furniture

• Equipment

• Stationery

• Fire extinguishers

Locations

• Offices

3

• Warehouses

• Stock rooms

Events

• Sale is made

• Purchase order is raised

• Item is hired

• Invoice is issued

Concepts

• Image of product

• Advertising

• Marketing

• Research and development.

Each of these can be regarded as an entity.

Important

Entity

An entity may represent a category of people, things, events, locations or con-
cepts within the area under consideration. An entity instance is a specific exam-
ple of an entity. For example, John Smith is an entity instance of an employee
entity.

Attributes

Entities have attributes. The following are typical of the attributes that an
entity might possess:

Entity: House

Attributes:

Entity: Book

Attributes:

4

Entity: Employee

Attributes:

Important

Attribute

An entity may have one or more attributes associated with it. These attributes
represent certain characteristics of the entity; for a person, attributes might be
name, age, address, etc.

Values

Using the entities and attributes shown above, the following are examples of
one set of values for a particular instance of each entity. Every occurrence of an
entity will have its own set of values for attributes it possesses.

Entity: House

Attributes:

Values:

Entity: Book

Attributes:

Values:

5

Entity: Employee

Attributes:

Values:

Primary key data elements

If the value of certain attributes (or perhaps just one attribute) is known for
a particular entity, this enables us to discover the value of other attributes
associated with that entity. The attributes (or attribute) which possess this
quality are known as keys, because they are able to ‘unlock’ the values of the
other attributes that are associated with that specific instance of an entity.
Why do we need a key? Suppose we had two members of staff with the same
(or similar) names, such as Linda Clark and Lydia Clark. It would be a simple
mistake to record something in the file of Linda Clark that should be kept in the
file for Lydia Clark (or the other way around). It would be even more difficult
to tell them apart if the name was given as just an initial and surname.

Some names may be spelt slightly differently, but sound similar (such as Clark
and Clarke), and therefore pose a further risk of identifying the wrong member
of staff.

Key

The addition of a staff number as the primary key would enable us to be sure
that when we needed to refer to one or other of these members of staff, we had
identified the correct individual. In this way 11057 Clark can be distinguished
from 28076 Clark.

The following are examples of key data elements:

• The payroll number (primary key) of a member of staff enables us to find
out the name, job title and address for that individual.

6

• The account number (primary key) enables us to find out whether the
balance of that account is overdrawn.

• The item code (primary key) in a stationery catalogue enables us to order
a particular item in a particular size and colour (e.g. a red A4 folder).

Sometimes we may need to use more than one attribute in order to arrive at a
key that will provide unique identification for all the other data elements. When
considering which attribute (or combination of attributes) might be used as a
primary key, these attributes are known as candidate keys.

Candidate keys

Where there is more than one set of attributes which could be chosen as the pri-
mary key for an entity, each of these groups of attributes are known as candidate
keys.

A company might choose either an employee’s staff number or an employee’s
National Insurance number as the primary key, as each will provide unique iden-
tification of an individual. (Note that in different countries, a slightly different
term might be used for a national code that is used to identify any one indi-
vidual, such as national ID number, etc.) The staff number and the National
Insurance number are candidate keys, until one is selected as the primary key.

At times we may refer to a collection of attributes that includes the primary key
(for example, staff number and staff name); this group of attributes is sometimes
known as a superkey.

When we need to connect together different items of data (for example, cus-
tomers and items, in order to produce orders and invoices), we can do this by
including the primary key of one entity as a data item in another entity; for
example, we would include the primary key of Customer in the Order entity to
link customers to the Orders they have placed.

Foreign keys

When a copy of the primary key for one entity is included in the collection of
attributes of another entity, the copy of the primary key held in the second
entity is known as a foreign key.

A foreign key enables a link to be made between different entities.

7

Entity-Relationship Modelling

Entity representation

One common method to represent an entity is to use entity-relationship dia-
grams, where each entity is represented by a box with two compartments, the
first for entity name and the second for attributes.

You may also come across diagrams that employ ellipses to represent the at-
tributes belonging to each entity.

The relationships that exist between two entities can be categorised according
to the following:

• one-to-one

• one-to-many

• many-to-many

In some cases, for simplicity, the attributes are omitted in the entity diagram.

One-to-one relationships between two entities

In a concert hall, each ticket holder has a seat for a single performance (the seat
number will appear on the ticket). Only one person can sit in one seat at each
performance; the relationship between a member of the audience and a seat is
therefore one-to-one.

8

Each seat in the concert hall can be sold to one person only for a particular
performance; the relationship between the seat and the member of the audience
with a ticket for that seat is also one-to-one.

Relationships between entities and attributes, between attributes, and between
entities can be shown in a variety of diagrammatic formats. The common format
is to represent each relationship as a line. The style of the line shows the
type of relationship being represented. Here, in order to represent a one-to-one
relationship, a single straight line is used between the two entities.

The overall relationship between ticket holders and seats is one-to-one for each
performance. The entity-relationship diagram above shows the one-to-one link
between a ticket holder and a concert hall seat.

In an orchestra, each individual will play one type of musical instrument; for
example, a person who plays a violin will not play a trumpet. The relationship
is one-to-one from a member of the orchestra to a type of instrument.

9

One-to-many relationships between two entities

An orchestra will have more than one musician playing a particular type of
instrument; for example, it is likely that there will be several members of the
orchestra each playing a violin. The relationship is therefore one-to-many from
a type of musical instrument to a member of the orchestra.

The entity-relationship diagram shows that there is a one-to-many relationship
between musical instrument types and members of the orchestra. The ‘crow’s
foot’ link shows that there may be more than one member of the orchestra for
each type of musical instrument.

Many-to-many relationships between two entities

An individual may attend a series of concerts during each season as a member

10

of the audience; the relationship between an individual and the concerts is one-
to-many.

Many ticket holders will attend each concert; the relationship between a concert
and members of the audience is also one-to-many.

As the relationship is one-to-many on both sides of the relationship, the rela-
tionship that exists between the two entities can be described as many-to-many.

The entity-relationship diagram above has a ‘crow’s foot’ connection at each end,
illustrating that there is a many-to-many relationship between ticket holders and
concert performances, as one ticket holder may attend many performances, and
each performance is likely to have many ticket holders present.

As it is difficult to implement a many-to-many relationship in a database system,
we may need to decompose a many-to-many relationship into two (or more)
one-to-many relationships. Here, we might say that there is a one-to-many
relationship between a ticket holder and a ticket (each ticket holder may have
several tickets, but each ticket will be held by only one person).

We could also identify a one-to-many relationship between a concert perfor-
mance and a ticket (each ticket for a particular seat will be for only one perfor-
mance, but there will be many performances each with a ticket for that seat).

11

This allows us to represent the many-to-many relationship between ticket holder
and concert performance: two one-to-many relationships involving a new entity
called Ticket For Seat. This new structure can then be implemented within a
Relational database system.

Recursive relationships

The relationships we have seen so far have all been between two entities; this
does not have to be the case. It is possible for an entity to have a relationship
with itself; for example, an entity Staff could have a relationship with itself,
as one member of staff could supervise other staff. This is known as a recur-
sive or involute relationship, and would be represented in an entity-relationship
diagram as shown below.

Exercises

Exercise 1: Identifying entities and attributes

Benchmarque International, a furniture company, keeps details Of items it sup-
plies to homes and offices (tables, chairs, bookshelves, etc). What do you think
would be the entities and attributes the furniture company would need to rep-
resent these items?

Exercise 2: Identification of primary keys

What do you think would make a suitable primary key for the entity (or entities)
representing the tables, chairs, bookshelves and other items of furniture for
Benchmarque International?

In other words, what are the candidate keys?

12

Exercise 3: Identifying relationships

At a conference, each delegate is given a bound copy of the proceedings, contain-
ing a copy of all the papers being presented at the conference and biographical
details of the speakers.

What is the relationship between a delegate and a copy of the proceedings?

Draw the entity-relationship diagram.

Exercise 4: Identifying relationships II

Many papers may be presented at a conference.

Each paper will be presented once only by one individual (even if there are
multiple authors).

Many delegates may attend the presentation of a paper.

Papers may be grouped into sessions (two sessions in the morning and three in
the afternoon).

What do you think is the relationship between:

• a speaker and a paper

• a paper and a session

Exercise 5 — Identifying relationships III

A conference session will be attended by a number of delegates. Each delegate
may choose a number of sessions. What is the relationship between conference
delegates and sessions? Draw the entity-relationship diagram.

Relationship participation condition (membership class)

Mandatory and optional relationships

We can extend the entity-relationship model by declaring that some relation-
ships are mandatory, whereas others are optional. In a mandatory relationship,
every instance of one entity must participate in a relationship with another en-
tity. In an optional relationship, any instance of one entity might participate in
a relationship with another entity, but this is not compulsory.

Important

Participation condition/membership class

The participation condition defines whether it is mandatory or optional for an
entity to participate in a relationship. This is also known as the membership
class of a relationship.

13

As there are two kinds of participation conditions (mandatory and optional),
and most entities are involved in binary relationships, it follows that there are
four main types of membership relationships, as follows:

1. Mandatory for both entities

2. Mandatory for one entity, optional for the other

3. Optional for one entity, mandatory for the other

4. Optional for both entities

It might be tempting to think that options 2 and 3 are the same, but it is
important to recognise the difference, particularly when thinking about whether
the relationship is one-to-one, one-to-many or many-to-many. A useful analogy
is to think of a bank, with customers who have savings accounts and loans. It
may be the bank’s policy that any customer must have a savings account before
they are eligible to receive a loan, but not all customers who have savings
accounts will require a loan.

We can examine how these different types of membership classes can be used
to reflect the policies of allocating staff within departments. We would expect
any member of staff in an organisation to work in a given department, but what
happens if a new department is created, or a new member of staff joins? If we
look at each combination in turn, we can see what the possibilities are:

1. Mandatory for both entities: A member of staff must be assigned to
a given department, and any department must have staff. There can be
no unassigned staff, and it is not possible to have an ‘empty’ department.

2. Mandatory for one entity, optional for the other: Any member of
staff must be attached to a department, but it is possible for a department
to have no staff allocated.

3. Optional for one entity, mandatory for the other: A member of
staff does not have to be placed in a department, but all departments
must have at least one member of staff.

4. Optional for both entities: A member of staff might be assigned to
work in a department, but this is not compulsory. A department might,
or might not, have staff allocated to work within it.

We can elaborate the standard entity-relationship notation with a solid circle to
indicate a mandatory entity, and a hollow circle for an optional entity (think
of the hollow circle like ‘o’ for optional). (You may find alternative notations
in other texts - for example, a solid line to represent a mandatory entity, and a
dotted line to indicate an optional entity. Another method places solid circles
inside entity boxes for mandatory participation, or outside entity boxes for op-
tional membership.) The use of a graphical technique enables us to represent
the membership class or participation condition of an entity and a relationship
in an entity-relationship diagram.

14

We will now explore these possibilities using a performer, agents and bookings
scenario as an example, but experimenting with different rules to see what effect
they have on the design of the database. Supposing to start with, we have the
following situation.

There are a number of performers who are booked by agents to appear at dif-
ferent venues. Performers are paid a fee for each booking, and agents earn
commission on the fee paid to each performer. We will now consider relation-
ships of different kinds between these entities.

One-to-one relationships and participation conditions

Both ends mandatory

It might be the case that each performer has only one agent, and that all
bookings for any one performer must be made by one agent, and that agent
may only make bookings for that one performer. The relationship is one-to-one,
and both entities must participate in the relationship.

The solid circle at each end of the relationship shows that the relationship is
mandatory in both directions; each performer must have an agent, and each
agent must deal with one performer.

One end mandatory, other end optional:

It might be possible for agents to make bookings that do not involve performers;
for example, a venue might be booked for an art exhibition. Each performer,
however, must have an agent, although an agent does not have to make a booking
on behalf of a performer.

The solid circle at the performer end of the relationship illustrates that a per-
former must be associated with an agent. The hollow circle at the agent end of
the relationship shows that an agent could be associated with a performer, but
that this is not compulsory. Each performer must have an agent, but not all
agents represent performers.

15

One end optional, other end mandatory:

It might be possible for performers to make bookings themselves, without using
an agent. In this case, one performer might have an agent, and that agent will
make bookings for that performer. On the other hand, a different performer
might elect to make their own bookings, and will not be represented by an agent.
All agents must represent a performer, but not all performers will be represented
by agents. The relationship is optional for the performer, but mandatory for
the agent, as shown in the diagram below.

The solid circle at the agent end of the relationship shows each agent must be
associated with a performer. The hollow circle at the performer end of the
relationship indicates that a performer could be represented by an agent, but
that this is not compulsory. Each agent must deal with only one performer, but
each performer does not have to have an agent.

Both ends optional:

Another possibility is that agents may make bookings that do not involve per-
formers; for example, a venue might be booked for an art exhibition. In addition,
performers may make bookings themselves, or might have bookings made by an
agent, but if a performer has an agent, there must be a one-to-one relationship
between them. This relationship is optional for both entities.

The hollow circles show that there is an optional relationship between a per-
former and an agent; if there is a relationship, it will be one-to-one, but it is
not compulsory either for the performer or for the agent.

One-to-many relationships and participation conditions

It might be the case that a performer has only one agent, and that all bookings
for any one performer must be made by one agent, although any agent may
make bookings for more than one performer.

Both ends mandatory:

A performer must have one or more bookings; each booking must involve one
performer.

16

The membership class is mandatory for both entities, as shown by the solid
circle. In this case, it is not possible for a booking to be made for an event
that does not involve a performer (for example, a booking could not be for an
exhibition).

One end mandatory, other end optional:

A performer must have one or more bookings, but a booking might not involve
a performer (e.g. a booking might be for an exhibition, not a performer).

The solid circle shows the compulsory nature of the relationship for a performer;
all performers must have bookings. The hollow circle shows that it is optional
for a booking to involve a performer. This means that a performer must have a
booking, but that a booking need not have a performer.

One end optional, other end mandatory:

A performer might have one or more bookings; each booking must involve one
performer.

The membership class is mandatory for a booking, but optional for a performer.
This means that it would not be possible for a booking to be for an exhibition, as
all bookings must involve a performer. On the other hand, it is not compulsory
for a performer to have a booking.

Both ends optional:

17

A performer might have one or more bookings; a booking might be associated
with a performer.

In this case, a booking could be for an exhibition as it is optional for a booking to
involve a performer, as indicated by the hollow circle. A performer might decline
to accept any bookings; this is acceptable, as it is optional for a performer to
have a booking (shown by the hollow circle).

Many-to-many relationships and participation conditions

We could say that there is a many-to-many relationship between performers
and agents, with each agent making bookings for many performers, and each
performer having bookings made by many agents. We know that we need to
decompose many-to-many relationships into (usually) two one-to-many relation-
ships, but we can still consider what these many-to-many relationships would
look like before this decomposition has taken place. We will see later that many-
to-many relationships can be converted into relations either after they have been
decomposed, or directly from the many-to-many relationship. The result of the
conversion into relations will be the same in either case.

Both ends mandatory:

An example here might be where each performer must be represented by one
or more agents, and each agent is required to make bookings for a number of
performers.

There is a many-to-many relationship between the two entities, in which both
entities must participate. Agents are not allowed to make bookings for events
that do not involve performers (such as conferences or exhibitions). Performers
must have bookings made by agents, and are not allowed to make their own
bookings.

One end mandatory, other end optional:

18

In this example, it is still necessary for performers to be represented by a number
of agents, but the agents now have more flexibility as they do not have to make
bookings for performers.

There is a many-to-many relationship between the two entities; one must par-
ticipate, but it is optional for the other entity.

One end optional, other end mandatory:

Here, performers have the flexibility to make their own bookings, or to have
bookings made by one or more agents. Agents are required to make bookings
for performers, and may not make arrangements for any other kind of event.

There is a many-to-many relationship between the two entities; it is optional for
one to participate, but participation is mandatory for the other entity.

Both ends optional

Here, performers and agents are both allowed a degree of flexibility. Performers
may make their own bookings, or may have agents make bookings for them.
Agents are permitted to make bookings for a number of performers, and also
have the ability to make other kinds of bookings where performers are not
required.

There is a many-to-many relationship between the two entities; participation is
optional for both entities.

These many-to-many relationships are likely to be decomposed into one-to-many
relationships. The mandatory/optional nature of the relationship must be pre-
served when this happens.

19

Weak and strong entities

An entity set that does not have a primary key is referred to as a weak entity
set. The existence of a weak entity set depends on the existence of a strong
entity set, called the identifying entity set. Its existence, therefore, is dependent
on the identifying entity set.

The relationship must be many-to-one from weak to identifying entity. Par-
ticipation of the weak entity set in the relationship must be mandatory. The
discriminator (or partial key) of a weak entity set distinguishes weak entities
that depend on the same specific strong entity. The primary key of a weak
entity is the primary key of the identifying entity set + the partial key of the
weak entity set.

Example: Many payments are made on a loan

• Payments don’t exist without a loan.

• Multiple loans will each have a first, second payment and so on. So, each
payment is only unique in the context of the loan which it is paying off.

The weak entity is commonly represented by two boxes.

The payment is a weak entity; its existence is dependent on the loan entity.

Problems with entity-relationship (ER) models

In this section we examine problems that may arise when creating an ER model.
These problems are referred to as connection traps, and normally occur due to
a misinterpretation of the meaning of certain relationships. We examine two
main types of connection traps, called fan traps and chasm traps, and illustrate
how to identify and resolve such problems in ER models.

Fan traps

These occur when a model represents a relationship between entity types, but
the pathway between certain entity occurrences is ambiguous. Look at the
model below.

20

The above model looks okay at first glance, but it has a pitfall. The model says
a faculty has many departments and many staff. Although the model seems to
capture all the necessary information, it is difficult to know which department
staff are affiliated to. To find out the departments the staff belong to, we will
start from the staff entity. Through the relationship between staff and faculty,
we are able to easily identify the faculties staff belong to. From the faculty, it’s
difficult to know the exact department because one faculty is associated with
many departments.

The model below removes the fan trap from the model.

Chasm traps

These occur when a model suggests the existence of a relationship between entity
types, but the pathway does not exist between certain entity occurrences.

The model represents the facts that a faculty has many departments and each
department may have zero or many staff. We can clearly note that, not all
departments have staff and not all staff belong to a department. Examples of
such staff in a university can include the secretary of the dean. He/she does not
belong to any department.

It’s difficult to answer the question, “Which faculty does the dean’s secretary
belong to?”, as the secretary to the dean does not belong to any department.

We remove the ‘chasm trap’ by adding an extra relationship from staff to faculty.

21

Converting entity relationships into relations

When we have identified the main entities and the relationships that exist be-
tween them, we are in a position to translate the entity-relationship model we
have created from a diagram into tables of data that will form the relations
for our database. The nature of the relationships between entities will make a
difference to the nature of the relations we construct; the cardinality, degree
and membership class will all affect the structure of the database.

If we design a database by using an entity-relationship model, we need to be
able to convert our design from a diagrammatic format into a series of relations
that will hold the values of the actual data items.

It would be possible to create a number of relations so that each represented
either an entity or relationship. This approach would generate a relational
database that represented the entities and the relationships between them as
identified in our data model, but it would suffer from a number of disadvan-
tages. One disadvantage would be that the number of relations created could
result in the database being unnecessarily large. There are also a number of
insertion, update and deletion anomalies, which will be examined in the chapter
on Normalisation, to which a database created in such a way would be vulner-
able. To avoid these problems, we need to specify a method that allows us
to create only those relations that are strictly necessary to represent our data
model as a database. The way we do this is guided by the nature of the rela-
tionships between the entities, in terms of the cardinality and the membership
class (participation condition).

Converting one-to-one relationships into relations

We can transform entity-relationship diagrams into relations by following simple
rules which will specify the number of relations needed, depending on the car-

22

dinality (one-to-one, one-to-many or many-to-many) and the membership class
(mandatory or optional) of the entities participating in the relationship. In the
case of one-to-one relationships, the creation of one or two relations is sufficient,
depending on whether participation is mandatory or optional.

Mandatory for both entities

A single relation will be able to represent the information represented by each
entity and the relationship that exists between them.

If we consider an earlier example, with a one-to-one mandatory relationship
between performers and agents, this could now be converted from a diagram
into a relation as part of our database.

This part of an entity-relationship model can be converted into a single relation,
Performer-details. This relation holds information about all the performers and
their agents. The agents do not need to be held in a separate relation as each
performer has one agent, and each agent represents only one performer.

Relation: Performer-details

In the relation Performer-details above, we can see that all performer informa-
tion is stored and can be accessed by the performer-id attribute, and all agent
information can be extracted by means of the agent-id attribute.

As the relationship is one-to-one and mandatory in both directions, we do not
need to store the performers and agents in separate relations, although we could
choose to do so. (If we stored performers and agents in separate relations, we
would then need to use the identifying attributes of performer-id and agent-id
as foreign keys. This means that we would be able to identify the relevant agent
in the Performer relation, and identify the appropriate performer in the Agent
relation.)

23

Mandatory for one entity, optional for the other entity

In this case, two relations will be needed, one for each entity. The relationship
could be mandatory for the first entity and optional for the second, or the other
way around. There are therefore two possibilities for performers and agents.

In this first example, a performer must be represented by an agent, but an agent
does not have to represent a performer. The relationship is therefore mandatory
for a performer, but optional for an agent.

This would convert into two relations, one for each entity. The agent identifier is
stored in the Performer relation in order to show the connection between agents
and performers where appropriate. This is known as posting an identifier (or
posting an attribute). It is important that the value of a posted identifier is not
null.

Relation: Performer

Note that the agent identifier, agent-id, is held in the Performer relation. The
attribute agent-id is a foreign key in the Performer relation. This means that
we can identify which agent represents a particular performer.

We would not want to store the performer-id in the Agent relation for this
example, as there are agents who do not represent performers, and there would
therefore be a null value for the performer-id attribute in the Agent relation.
We can see that there are agents in the Agent relation who do not represent
performers, but all performers are represented by only one agent.

Relation: Agent

24

In the second example, an agent must represent a performer, but a performer
does not need to have an agent. Here, the relationship is optional for a performer,
but mandatory for an agent.

Again, this would translate into two relations, one for each entity. On this
occasion, however, the link between performers and agents will be represented
in the Agent relation rather than the Performer relation. This is because every
agent will be associated with a performer, but not all performers will be linked
to agents. The performer-id is a foreign key in the Agent relation. We cannot
have the agent identifiers in the Performer relation as in some instances there
will be no agent for a performer, and a null value for an agent identifier is not
allowed, as it would contravene the rules on entity integrity.

Relation: Performer

Relation: Agent

25

Optional for both entities

In this scenario, a performer might or might not have an agent. Similarly,
an agent might or might not represent a performer. However, if a performer
does have an agent, that agent will not represent any other performers. The
relationship between the two entities is one-to-one, but optional on both sides.
In order to convert this relationship into a relational format, three relations will
be needed, one for each entity and one for the relationship.

This means that it is possible to have a performer without an agent, and it
is also permissible for an agent to have no performers. All performer details
will be stored in the Performers relation, and all agent data will be held in the
Agent relation. Where there is a performer with an agent, this will be shown in
the relation Works-with, which will represent the relationship between the two
entities.

Relation: Performer

The relation Performers holds details of all the performers relevant to the
database.

Relation: Agents

26

All agents within the database are stored in the relation Agents.

Relation: Works-with

Note that the relation Works-with only has entries for those agents and per-
formers who are linked together.

Converting one-to-many relationships into relations

Mandatory for both entities

If we consider the situation where a performer has a single agent, but each agent
may represent a number of performers, and the relationship is mandatory for
both entities, we have an entity-relationship as shown below.

If we convert this part of our data model into tables of data, we will have two
relations (one for each entity). In order to maintain the relationship that exists
between the two entities, we will hold a copy of the primary key of the entity
at the “one” end of the relationship as one of the attributes associated with the
entity at the “many” end of the relationship. In this example, the attribute
agent-id is a foreign key in the relation Performers.

Relation: Performers

27

Relation: Agents

Mandatory for one entity, optional for another entity: many end
mandatory

In this example, all performers must be represented by agents, and each per-
former has only one agent. The agents themselves need not be responsible for
making bookings for performers, and can be involved in other activities.

The mandatory nature of the relationship for the performer is shown by the
solid circle; the hollow circle indicates an optional relationship for an agent.
This means that there must be a relation to represent performers, and another
relation to represent agents. The links between performers and agents are shown
by having the agent identifier stored against the appropriate performer in the
Performer relation. The attribute agent-id is therefore a foreign key in the
Performer relation. All performers must have an agent associated with them,
but not all agents will be involved in a booking for a performer.

Relation: Performers

28

Relation: Agents

Mandatory for one entity, optional for another entity: many end
optional

Here, agents may make bookings for performers, and performers may also make
bookings for themselves. It is only possible for agents to make bookings for
functions that involve performers. An agent may be responsible for making
bookings for more than one performer. If a performer is represented by an
agent, each performer may have only one agent.

The mandatory nature of the relationship for the agent is shown by the solid
circle; the hollow circle indicates an optional relationship for a performer. This
means that there must be a relation to represent performers, another relation
to represent agents, and a third relation to represent those occasions when
performers have booked through agents. The links between performers and
agents are shown by having the agent identifier stored against the appropriate

29

performer in the third relation.

Relation: Performers

Relation: Agents

Relation: Agent-Performer

Optional for both entities

Here, agents may make bookings for performers, and performers may also make
bookings for themselves. It is also possible for agents to make bookings for
other functions that do not involve performers. An agent may be responsible
for making bookings for a number of performers. If a performer is represented by
an agent, each performer may have only one agent. The relationship is optional
for both entities.

30

This relationship can be converted into three relations. There will be one re-
lationship to represent the performers, another for the agents, and a third will
store details of the relationship between performers and agents (where such a
relationship exists).

Relation: Performers

Relation: Agents

Relation: Agent-Performer

31

We can see from these relations that a performer may be represented by an
agent, and an agent may represent more than one performer. Some performers
do not have agents, and some agents do not represent performers.

Converting many-to-many relationships into relations

We know that if we are dealing with many-to-many relationships, we have to
decompose them into two one-to-many relationships. Here we can see that if
we leave a many-to-many relationship as it is, it will be represented by three
relations just as if we had converted it into two one-to-many relationships.

Mandatory for both entities

In this example, all performers must be represented by agents, and all agents
must represent performers. It is not possible for performers to represent them-
selves when making bookings, neither is it possible for agents to make bookings
that do not involve performers. (Note that this does not imply that each per-
former has one agent, and each agent represents one performer; that would
imply a one-to-one relationship).

Three relations are required to represent a relationship of this kind between
two entities, one for each entity and one for the relationship itself, i.e. one
to represent the performers, another to represent the agents, and a third to
represent the relationship between the performers and the agents.

Relation: Performers

32

Relation: Agents

Relation: Agent-Performers

33

The Agent-Performers relation shows us that all performers are represented
by agents, and that all agents represent performers. Some performers are repre-
sented by more than agent, and some agents represent more than one performer.
We now have three relations representing the many-to-many relationship manda-
tory for both entities.

Mandatory for one entity, optional for the other entity

The first possibility is that the performer entity is mandatory, but the agent
entity is optional. This would mean that performers cannot make bookings for
themselves, but depend on a number of agents to make bookings for them. The
relationship is mandatory for the performer. An agent, however, is allowed to
make bookings for a number of performers, and may also agree bookings for
events that do not involve performers, such as exhibitions or conferences. The
relationship is optional for the agent.

The entity relationship diagram above shows that it is mandatory for performers,
but optional for agents to participate. This is translated into three relations be-
low. Note that in the relation Agent-Performers, all performers are represented
by an agent (or more than one agent). There are some agents in the Agent
relation who do not appear in Agent-Performers because they do not represent
performers.

34

Relation: Performers

Relation: Agents

Relation: Agent-Performers

35

The second possibility for this kind of relationship is that the performer entity
is optional but the agent entity is mandatory. In this case, a performer might
have one or more agents, but an agent must represent several performers. Here,
a performer could make a booking personally, or could have a booking made by
a number of different agents. The agents can only make bookings for performers,
and for no other kind of event.

The entity relationship diagram above illustrates optional participation for a
performer, but mandatory participation by an agent.

Relation: Performers

Relation: Agents

Relation: Agent-Performers

36

The relation Agent-Performers shows that all agents represent one or more per-
formers. Some performers are represented by more than one agent, whereas
other performers are not represented by agents at all.

Optional for both entities

We could imagine a situation where each performer could be represented by
a number of different agents, and could also make bookings without using an
agent. In addition, each agent could act for a number of different performers,
and the agents could also make bookings that did not involve performers. This
would be modelled by a many-to-many relationship between performers and
agents that was optional for both entities.

In order to represent this relationship between two entities, we would need three
relations, one for each entity and one for the relationship itself. The reason
we need three relations rather than just two (one for each entity) is that the
relationship is optional. This means that if we were to store the identifier of one
entity in the relation of the other, there would be times when we would have a
null value for the identifier as no relationship exists for a particular instance of
the entity. We cannot have a null value for an identifier, and therefore we show
the relationships that do exist explicitly in a third relation.

Relation: Performers

37

Relation: Agents

Relation: Agent-Performers

38

Summary of conversion rules

The following table provides a summary of the guidelines for converting com-
ponents of an entity-relationship diagram into relations. We need to be certain
that if we store an identifier for one entity in a relation representing another
entity, that the identifier never has a null value. If we have a null value for
an identifier, we will never be able to find the other details that should be
associated with it.

39

Review questions

• Case study: Theatrical database

Consider the design of a database in the context of the theatre. From the
description given below, identify the entities and the relationships that exist
between them. Use this information to create an entity-relationship diagram,
with optional and mandatory membership classes marked. How many entities
have you found? Now translate this data model into relations (tables of data).
Don’t forget the guidelines in order to decide how many relations you will need
to represent entities and the relationships between them. You should also think

40

about areas where you don’t have enough information, and how you would deal
with this kind of problem. You might also find that there is information that
you don’t need for building the data model.

“Authors are responsible for writing plays that are performed in theatres. Every
time a play is performed, the author will be paid a royalty (a sum of money for
each performance).

Plays are performed in a number of theatres; each theatre has maximum audi-
torium size, and many people attend each performance of a play. Many of the
theatres have afternoon and evening performances.

Actors are booked to perform roles in the plays; agents make these bookings
and take a percentage of the fee paid to the actor as commission. The roles in
the plays can be classified as leading or minor roles, speaking or non-speaking,
and male or female.”

• Explain the difference between entities and attributes. Give examples of
each.

• Distinguish between the terms ‘entity type’ and ‘entity instance’, giving
examples.

• Distinguish between the terms ‘primary key’ and ‘candidate key’, giving
examples.

• Explain what is meant by one-to-one, one-to-many and many-to-many
relationships between entities, giving an example of each.

• How are many-to-many relationships implemented in Relational
databases?

41

Chapter 7. Enhanced Entity-Relationship Mod-
elling

Table of contents

• Objectives
• Introduction
• Context
• Recap on previous concepts

– Entities
– Relationship types
– Relationship participation

• Specialization/generalization
– Representation of specialization/generalization in ER diagrams
– Constraints on specialization/generalization
– Mapping specialization/generalization to relational tables

• Aggregation
– Representation of aggregation in ER diagrams

• Composition
– Representation of composition in ER diagrams

• Additional content - XML
– What is XML?

∗ Element
∗ Attribute
∗ Example representing relational table records in XML

– Document type definition
– Namespaces
– XQuery

Objectives

At the end of this chapter you should be able to:

• Describe the concepts of specialization/generalization, aggregation and
composition.

• Illustrate how specialization/generalization, aggregation and composition
are represented in ER diagrams.

• Map the specialization/generalization relationship to tables suitable for
Relational database implementation.

1

Introduction

In parallel with this chapter, you should read Chapter 12 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter builds on the previous chapter which addressed the basic concepts
of Entity-Relationship (ER) modelling. The chapter discussed the concepts of
an entity, participation, recursive relationships, weak entities and strong entities.
It also illustrated how these concepts can be represented in the ER diagrams.
Improved computer speed and memory has, in recent years, triggered the de-
velopment of sophisticated software applications like Geographical Information
Systems (GIS). The basic features of ER modelling are not sufficient to represent
all the concepts in such applications. To address these needs, many different
semantic data models have been proposed and some of the most important se-
mantic concepts have been successfully incorporated into the original ER model.
This chapter discusses and illustrates advanced ER modelling concepts, namely
specialization/generalization, aggregation and composition.

Context

This chapter continues to address the top-down database design concepts. Like
the previous chapters, it links closely with the other chapters on database de-
sign, Normalisation and other design topics. The chapter also has considerable
relevance for the material in the module on performance tuning, such as the
chapter on indexing, as the decisions made during database design have a major
impact on the performance of the application.

Recap on previous concepts

In the previous chapter, we discussed basic concepts of ER modelling. This
sections revisits some of the important concepts covered.

Entities

An entity may represent a category of people, things, events, locations or con-
cepts within the area under consideration. An entity can have one or more
attributes or characteristics. Two notations for representing an entity are com-
mon: box notation, and the notation that employs ellipses to represent the
attributes belonging to an entity.

2

Relationship types

These express the number of entities with which another entity can be associated
via a relationship. The relationships that exist between two entities can be
categorised by the following:

• one-to-one

• one-to-many

3

• many-to-many

Relationship participation

The participation condition defines whether it is mandatory or optional for an
entity to participate in a relationship. This is also known as the membership
class of a relationship.

There are two kinds of participation conditions: mandatory and optional. Most
entities are involved in binary relationships, so it follows that there are four
main types of membership relationships:

1. Mandatory for both entities

2. Mandatory for one entity, optional for the other

3. Optional for one entity, mandatory for the other

4

4. Optional for both entities

Note: We have used the one-to-many relationship type to illustrate participation.
Refer to the previous chapter for more details on how to model participation
for other relationship types.

Specialization/generalization

We have discussed different types of relationships that can occur between entities.
Some entities have relationships that form a hierarchy. For example, a shipping
company can have different types of ships for its business. The relationship that
exists between the concept of the ship and the specific types of ships forms a
hierarchy. The ship is called a superclass. The specific types of ships are called
subclasses.

Superclass: An entity type that represents a general concept at a high level.

Subclass: An entity type that represents a specific concept at lower levels.

A subclass is said to inherit from a superclass. A subclass can inherit from many
superclasses in the hierarchy. When a subclass inherits from one or more super-
classes, it inherits all their attributes. In addition to the inherited attributes,
a subclass can also define its own specific attributes. A subclass also inherits
participation in the relationship sets in which its superclass (higher-level entity)
participates.

The process of making a superclass from a group of subclasses is called gener-
alization. The process of making subclasses from a general concept is called
specialization.

Specialization: A means of identifying sub-groups within an entity set which
have attributes that are not shared by all the entities (top-down).

Generalization: Multiple entity sets are synthesized into a higher-level entity
set, based on common features (bottom-up).

Representation of specialization/generalization in ER diagrams

A diamond notation is a common representation of specialization/generalization
relationships in ER diagrams.

5

As an example, let’s consider the following scenario:

Africa holds many historical artefacts in different locations. Each artefact is kept
in a specific location. A location can be a point, province, country or sub-region
of Africa.

The scenario has a specialization relationship between the location and different
specific types of locations (i.e. point, province, country and sub-region). This
specialization relationship is represented in the ER diagram below.

To demonstrate generalization, let’s imagine that an Artefact is one of the exam-
ples of the African cultural items. Another type of a cultural item is an Artist.
It is clear to see that a cultural item is a superclass of an artefact and artist.
This generalization relationship can be represented in the ER diagram as show
below.

6

Constraints on specialization/generalization

There are three constraints that may apply to a specialization/generalization:
membership constraints, disjoint constraints and completeness constraints.

• Membership constraints

Condition defined: Membership of a specialization/generalization rela-
tionship can be defined as a condition in the requirements e.g. tanker is a
ship where cargo = “oil”

User defined: Sometimes the designer can define the superclass-subclass
relationship. This can be done to simplify the design model or represent
a complex relationship that exists between entities.

• Disjoint constraints

Disjoint: The disjoint constraint only applies when a superclass has more
than one subclass. If the subclasses are disjoint, then an entity occurrence
can be a member of only one of the subclasses, e.g. postgrads or under-
grads – you cannot be both. To represent a disjoint superclass/subclass
relationship, ‘Or’ is used.

Overlapping: This applies when an entity occurrence may be a member of
more than one subclass, e.g. student and staff – some people are both. ‘And’ is
used to represent the overlapping specialization/generalization relationship in
the ER diagram.

7

• Completeness constraints

Total: Each superclass (higher-level entity) must belong to subclasses
(lower-level entity sets), e.g. a student must be postgrad or undergrad. To
represent completeness in the specialization/generalization relationship,
the keyword ‘Mandatory’ is used.

Partial: Some superclasses may not belong to subclasses (lower-level en-
tity sets), e.g. some people at UCT are neither student nor staff. The key-
word ‘Optional’ is used to represent a partial specialization/generalization
relationship.

8

We can show both disjoint and completeness constraints in the ER diagram.
Following our examples, we can combine disjoint and completeness constraints.

Some members of a university are both students and staff. Not all members of
the university are staff and students.

9

A student in the university must be either an undergraduate or postgraduate,
but not both.

Mapping specialization/generalization to relational tables

Specialization/generalization relationship can be mapped to relational tables in
three methods. To demonstrate the methods, we will take the student, post-
graduate and undergraduate relationship. A student in the university has a
registration number and a name. Only postgraduate students have supervisors.
Undergraduates accumulates points through their coursework.

Method 1

All the entities in the relationship are mapped to individual tables.

Student (Regno, name)

PosGrad (Regno, supervisor)

UnderGrad (Regno, points)

Method 2

Only subclasses are mapped to tables. The attributes in the superclass are
duplicated in all subclasses.

PosGrad (Regno, name, supervisor)

UnderGrad (Regno, name, points)

This method is most preferred when inheritance is disjoint and complete, e.g. ev-
ery student is either PosGrad or UnderGrad and nobody is both.

Method 3

Only the superclass is mapped to a table. The attributes in the subclasses are
taken to the superclass.

10

Student (Regno, name, supervisor, points)

This method will introduce null values. When we insert an undergraduate record
in the table, the supervisor column value will be null. In the same way, when
we insert a postgraduate record in the table, the points value will be null.

Review question 1

Discuss the specialization/generalization relationship in ER modelling.

Review question 2

Explain the three constraints that can be applied on the specializa-
tion/generalization relationship.

Aggregation

Aggregation represents a ‘has-a’ relationship between entity types, where one
represents the ‘whole’ and the other the ‘part’.

An example of aggregation is the Car and Engine entities. A car is made up of
an engine. The car is the whole and the engine is the part. Aggregation does
not represent strong ownership. This means, a part can exist on its own without
the whole. There is no stronger ownership between a car and the engine. An
engine of a car can be moved to another car.

Representation of aggregation in ER diagrams

A line with a diamond at the end is used to represent aggregation.

The ‘whole’ part must be put at the end of the diamond. For example, the
Car-Engine relationship would be represented as shown below:

Composition

Composition is a form of aggregation that represents an association between
entities, where there is a strong ownership between the ‘whole’ and the ‘part’.
For example, a tree and a branch have a composition relationship. A branch is
‘part’ of a ‘whole’ tree - we cannot cut the branch and add it to another tree.

11

Representation of composition in ER diagrams

A line with a filled diamond at the end is used to represent composition.

The example of the Tree-Branch relationship can be represented as shown below:

Review question 3

Using an example, explain the concepts of aggregation and composition.

Exercise 1

Draw the ER diagram for a small database for a bookstore. The database will
store information about books for sale. Each book has an ISBN, title, price and
short description. Each book is published by a publisher in a certain publishing
year. For each publisher, the database maintains the name, address and phone
number.

Each book is written by one or more authors. For each author, the database
maintains his/her ID, name and a short introduction. Each book is stored
in exactly one warehouse with a particular quantity. For each warehouse, the
database maintains the warehouse name, the location and the phone number.
Each book has one or more sellers, which may be either companies (corporate
vendors) or individuals (individual vendors).

For each company, the database maintains a name of the company, its address,
its phone numbers (there could be more than one phone number, each with a
number and a description) and its contact person. For each individual vendor,
the database keeps a name, a phone number and an email address. A contact
person whose company sells a book cannot be selling the same book as an
individual vendor at the same time (he/she may sell other books as an individual
seller).

Additional content - XML

What is XML?

In previous chapters, we introduced database technology and how it is used
by businesses to store data in a structured format. XML (eXtensible Markup

12

Language) has become a standard for structured data interchange among busi-
nesses. It was formally ratified by the World Wide Web Consortium (W3C) in
1998. XML uses markup for formatting plain text. Markup refers to auxiliary
information (tags) in the text that give structure and meaning.

We have demonstrated how to use relational tables to represent entities and their
attributes. XML also supports the representation of entities and attributes.

In this section, we will introduce XML. Students are encouraged to study de-
tailed books for further information. One useful website for learning XML is
http://www.w3schools.com/xml/default.asp.

Element

An element is a building block of an XML document.

• All elements are delimited by < and >.

• Element names are case-sensitive and cannot contain spaces.

The representation of an element is shown below:

<Element> …. </Element>

An XML document can contain many elements, but one must be the root ele-
ment. A root element is a parent element of all other elements.

Attribute

Elements can have attributes. Attributes are specified by name=value pairs
inside the starting tag of an element:

<Element attribute = “value” >.. </Element >

All values of the attributes are enclosed in double quotes.

An element can have several attributes, but each attribute name can only occur
once.

13

<Element attribute1 = “value1” attribute2=“value2”>

Example representing relational table records in XML

To demonstrate XML, let’s imagine we have a customer table that holds infor-
mation of customers.

We can represent the information in XML as follows:

14

Explanation

• <?xml version=“1.0” encoding=“UTF-8”?>: is the XML prolog.
The prolog is used to specify the version of XML and the encoding used.
It is optional, but if it appears in the document, it must be the first line
in the document.

• Customers element: Customers is the root element.

• Customer element: A Customer element represents a tuple in the Cus-
tomers table. The table has three attributes, CUSTOMER_ID, NAME
and LOCATION. In our XML, CUSTOMER_ID is represented as an

15

attribute of the Customer element. NAME and LOCATION are repre-
sented as child elements of the Customer element. Notice that we have
repeated the Customer element three times to capture the three records
in the Customer table.

Document type definition

The XML technology specifies the syntax for writing well-formed documents
but does not impose the structure of the document. XML document writers
are free to structure an XML document in any way they want. This can be
problematic when verifying a document. How many elements can a document
have? What elements should a document have? These questions are difficult to
answer unless we also specify the structure of the document. Document type
definition (DTD) is used to define the structure of an XML document.

DTD specifies the following:

• What elements can occur.

• What attributes an element can/must have.

• What sub-elements can/must occur inside each element, and how many
times.

DTD element syntax:

<!ELEMENT element (subelements-specification) >

DTD attribute syntax:

<!ATTLIST element (attributes) >

The DTD for the XML we defined above can be defined as shown below:

Explanation

16

• !DOCTYPE: Defines that the Customers element is the root element of
the document.

• <IELEMENT>: Defines an XML element. The first element to be
defined is the Customers element. A Customers element has one child
element, Customer, indicated in brackets. The + symbol means that the
Customer element can appear one or more times under the Customers
element. The Customer has two sub-elements, Name and Location. The
Name and Location elements have character data as a child element.

• <!ATTLIST>: Defines the attribute. The Customers element has one
attribute, customerID, of type character data.

Namespaces

XML data has to be exchanged between organisations. The same element name
may have different meaning in different organisations, causing confusion on ex-
changed documents.

Specifying a unique string as an element name avoids confusion. A better solu-
tion is to use a unique name followed by an element name.

unique-name:element-name

Adding a unique name to all element names can be cumbersome for long docu-
ments. To avoid using long unique names all over a document, we can use XML
namespaces.

The namespace FB has been declared and initialised to ‘http://www.FancyBoats.com’.
Namespaces are URIs. URIs are generic identifiers like URLs.

17

XQuery

XQuery is a language for finding and extracting elements and attributes from
XML documents. The way SQL is to relational databases, XQuery is the query
language for XML documents. For example, to display all the names of the
customers in the XML above, our XQuery will look as follows:

for $x in /Customers/Customer

return $x/Name

Exercise 2

In chapter 3, Introduction to SQL, we introduced the EMP table. Represent
the records in the table in XML.

18

Chapter 8. Data Normalisation

Table of contents

• Objectives
• Introduction
• Context
• Determinacy diagrams

– Determinants and determinacy diagrams
– Direct dependencies
– Transitive (indirect) dependencies
– Composite determinants and partial dependencies
– Multiple determinants
– Overlapping determinants
– Exploring the determinant of ‘fee’ further

• Finding keys using dunctional dependency
• Normalisation

– Un-normalised data
∗ Problems with un-normalised data

– First normal form
∗ Determinacy diagram for first normal form
∗ Insertion anomalies of first normal form
∗ Arbitrary selection of a primary key for relation in 1NF
∗ Amendment anomalies of first normal form
∗ Deletion anomalies of first normal form

– Second normal form
∗ Insertion anomalies of second normal form
∗ Amendment anomalies of second normal form
∗ Deletion anomalies of second normal form

– Third normal form
∗ Summary of the first three normal forms

• Review questions
• Discussion topic
• Application and further work

Objectives

At the end of this chapter you should be able to:

• Describe the process, strengths and weaknesses of data normalisation, and
demonstrate an understanding of when and to what extent the technique
should be applied in practice.

• Explain and apply the concepts of functional dependency and determi-
nants through the understanding and construction of determinacy dia-
grams.

1

• Describe and apply understanding of three normal forms for relations.

• Convert un-normalised data into first normal form relations, so that data
items contain only single, simple values.

• Derive second normal form relations by eliminating part-key dependencies.

• Derive third normal form relations by removing transitive dependencies.

Introduction

In parallel with this chapter, you should read Chapter 13 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

Normalisation stands on its own as a well-founded approach to database design.
In addition, normalisation links closely with the material covered in the pre-
vious two chapters on entity-relationship modelling. However, the additional
flexibility of normalised designs comes at a price — a well-normalised design
tends to perform poorly when subjected to large volumes of transactions. For
this reason, there are trade-offs to be made between the extent to which a design
is normalised and the performance response of the implemented system. The
information in this chapter has to be applied carefully, in light of the informa-
tion given in a later chapter on database design relating to de-normalisation
and physical design.

Why should we attempt to normalise data? Un-normalised data often contains
undesirable redundancy (and its associated ‘costs’ in storage, time and multiple
updates), and different degrees of normalisation (i.e. different normal forms) can
guarantee that certain creation, update and deletion anomalies can be avoided.

Context

This chapter covers the well-known approach to database design known as data
normalisation. It introduces a bottom-up technique for the development of flexi-
ble database applications. This bottom-up approach complements the top-down
entity-relationship technique presented in the first database design chapter, as
the two approaches can be used to cross-check the extent to which the overall
design satisfies the requirements of the application. By themselves, database
designs arrived at through the normalisation process, while providing great flex-
ibility, tend to perform very slowly. The complementary bottom-up and top-
down methodologies, in practice, often reveal different information, and can be
applied using different fact-finding techniques. For these reasons (of efficiency
and the benefits of multiple viewpoints to get a better final design), a balanced
approach to database design will use both approaches.

2

Determinacy diagrams

Determinants and determinacy diagrams

Diagrams can be used to indicate the dependencies between different attributes
of an entity. We saw in the earlier chapter on entity-relationship modelling
that one or more attributes could be identified as candidate keys before making
a final selection of a primary key. When a primary key has been chosen, we
may find that some attributes do not depend on the key, or some attributes
depend only on part of the key. Determinacy diagrams offer the opportunity to
examine the dependencies between attributes and the primary key in a visual
representation.

Important

Determinant

When the value of one attribute allows us to identify the value of another at-
tribute in the same relation, this first attribute is called a determinant. The
determinant of a value might not be the primary key. This is true for groups of
attributes as well, so if A is the determinant of B, A and B may either be single
attributes, or more than one attribute.

In the diagram below, it can be seen that the name of a performer depends
entirely on the performer-id (we know that this is a one-to-one relationship).
We can say that performer-id functionally determines the performer-name, and
this is shown by the arrow. In addition, the type and location of any particular
performer are also determined by the performer-id.

It might be the case that there are performers who share the same family name

3

(for example, a family of actors). Each member of the family who is an actor
will have a unique performer-id (as the attribute performer-id is the primary
key), but there may be more than one person with that particular name. The
performer-name would not make a suitable choice for primary key for this reason.
The performer-id uniquely determines the performer-name, but a performer-
name may indicate more than one performer-id.

In a similar way, there may be more than one performer of a particular type;
the performer-id will identify the performer-type for that specific individual. It
is likely that any one location may have more than one performer based there;
the location of any particular performer can be determined by means of the
performer-id as the primary key. There are several possibilities for considering
how the fee to a performer for a booking at a venue might be calculated, and
these might include:

• flat rate fee for all performers for all venues

• fee negotiated with performer

• fee depends on performer’s location

• fee depends on location of venue

• fee depends on performer type

• fee depends on date of booking

• fee depends on a combination of factors (e.g. performer and agent)

The method by which the fee is calculated will affect the way the data is mod-
elled; this is because the value of the fee can be linked to a number of other at-
tributes, and might not be determined by the performer-id alone as the primary
key. The determinacy diagrams may be different depending on the particular
method of calculating the fee.

If we consider some of the possibilities outlined above, we can identify the de-
pendencies that affect the fee and create a determinacy diagram.

Direct dependencies

An example to illustrate direct dependencies might be: flat rate fee for all
performers for all venues.

In this case, the fee could be regarded as another attribute of each performer,
or could be linked to a performance (the number of performances determining
the total amount earned). The fee could be regarded as an entity in its own
right. We would need to take into account what would happen if the fees were to
change. Would all fees change to the same new value? What would determine
whether one performer earned a different fee from another? The answers to
these questions would reveal underlying dependencies between the data.

4

If we assume that all performers are paid the same fee, and when the fee is
changed it affects all performers in exactly the same way, we can identify the
fee as a separate entity.

The value of the fee would then depend on the fee code. The fee is directly
dependent on the fee code.

(Note that we would not want to insert the exact fee as a value for all performers
because of the implications of updating the value when the fee changes.)

Transitive (indirect) dependencies

An example to illustrate transitive (also known as indirect) dependencies might
be: fee depends on location of venue.

Where the value of the fee depends on the location of the venue, it is not possible
to decide in advance what fee will be paid to a performer until details of the
venue are known. This means that a booking must be made by an agent for a
performer at a venue in order for the fee to be determined.

It will be necessary to find out whether the fee is determined by the specific
venue, or whether all venues in the same location also attract the same fee.

If each venue has its own fee, then the fee will be determined by the venue-id,
in the same way that other attributes of a particular venue, such as the name
and location, are identified by venue-id as the key. This is a direct dependency.

5

On the other hand, if the fee applies to all venues in the same area, venues must
be identified as belonging to specific areas in which a given fee applies. This is
an indirect dependency, also known as a transitive dependency.

Important

Transitive (indirect) dependency

Sometimes the value of an attribute is not determined directly from the primary
key, but through the value of another attribute which is determined by the
primary key; this relationship is known as a transitive dependency.

Another example of a transitive dependency

Consider the following attributes: fee depends on performer type.

Here the fee depends on whether the performer is an actor, dancer, singer or
some other type of performer. The different types of performer need to be

6

identified, and a fee specified in each case. The value of the fee does not depend
directly on the performer-id, but is linked to the type of performer. This is
another example of an indirect (or transitive) dependency.

Composite determinants and partial dependencies

Sometimes the determinant is not a single attribute, but made up of two or more
attributes. Consider the following: fee depends on a combination of factors
(e.g. performer and agent).

Important

Composite determinant

If more than one value is required to determine the value of another attribute,
the combination of values is known as a composite determinant.

If the fee is determined by more than one factor, both these elements must be
taken into account. This is shown in the determinacy diagram on the right by
the arrow including both the performer-id and the agent-id as the determinant
items on which the fee depends. The attributes performer-id and agent-id are
known as composite determinants.

7

Where every attribute in a primary key is required as a composite determinant
for an attribute, the attribute is said to be fully functionally dependent on the
key.

Note that the attributes that depend only on performer-id (such as the name,
type and location of each performer), or agent-id (such as the agent and location
of each agent) are shown linked directly to the appropriate key. If we take
performer-id and agent-id as the key, we can say that the performer and agent
details are partially dependent on the key. Partial dependency is when an
attribute is functionally dependent on a proper subset of the key.

Important

8

Partial dependency

If the value of an attribute does not depend on an entire composite determinant,
but only part of it, that relationship is known as a partial dependency.

Multiple determinants

It is possible that there may be more than one attribute that can act as a
determinant for other attributes. This is a slightly different situation from that
of candidate keys, as not all determinants are necessarily candidate keys. If
we wish to describe an event, we may find that there is a special relationship
between the attributes event-id and event-name; each event will have a unique
identification number, and also an unique name. The relationship between the
event-id and the event-name is one-to-one. The better choice of primary key for
the event would be event-id, which is a unique identification number.

The attribute event-name, while unique to each event, would not make such a
good choice as the key because there can be problems in obtaining an exact
match (e.g. “Quicktime”, “Quick time” and “Quick Time” would be regarded
as different names).

We can show dependencies between the attributes event-id, event-name and
event-type on a determinacy diagram.

Each event would have values for the attributes event-id, event-name and event-
type.

In the determinacy diagram below, we can see that event-id is a determinant
for the other two attributes, event-name and event-type.

9

The determinacy diagram shows that the attribute event-name is also a deter-
minant for the other two attributes, event-id and event-type. This is because
there is a one-to-one relationship between event-id and event-name.

Overlapping determinants

There are sometimes cases where there is more than one combination of at-
tributes that uniquely identifies a particular record. This means that the de-
terminants have attributes in common. In certain circumstances, there may be
a special relationship between the attributes, so that each uniquely determines
the value of the other.

An example of this may be where each module in a degree programme has a
unique module code and a unique module name. It would be possible to use
either the module code or the module name as the determinant. In addition, the
module code determines the module name, and the module name determines
the module code.

10

In the context of our example relating to performers, agents, venues and events,
we will also need to be able to identify bookings. We find that each booking
can be identified by a different combination of attributes.

When a booking is made, the performer-id, agent-id, venue-id and event-id are
all required in order to specify a particular event occurring on a given date. This
also needs to be represented using a determinacy diagram.

Each booking can be identified by the primary key, which is shown on the right
as a combination of the attributes performer-id, agent-id, venue-id and event-id.

Note that in this instance, the arrow (coming from the outer box) indicates that
all four key attributes are used to identify the booking date.

We know that each event can be identified either by the event-id or the event-
name; this means that we could have an alternative representation in the deter-
minacy diagram, substituting the attribute event-name for event-id as part of
the combined key.

An alternative primary key for each booking would be a combination of
performer-id, agent-id, venue-id and event-name.

11

Here again, the arrow (coming from the outer box) indicates that all four key
attributes are used to identify the booking date.

Here we have an overlapping key. The attribute event-name is a determinant,
although it is not a candidate key for its own data. We would not want to use
the event-name as a primary key, as it can present a problem in identifying the
relevant tuple if the spelling is not exactly the same as in the relation.

The determinacy diagram also shows the relationship between the attributes
event-id and event-name.

12

Exploring the determinant of ‘fee’ further

Consider the following determinacy diagram for attribute ‘fee’:

If a performer negotiates the same fee for all bookings, the fee depends on
the performer-id, as each performer will have their own fee. This is a direct
dependency.

13

Where the value of the fee depends the date of the booking, the value of the fee
cannot be known until details of the booking are available.

This means that a booking must be made by an agent for a performer at a venue
in order for the fee to be determined. It may be that a higher fee is paid in the
summer months than at other times of the year.

The booking date will be determined by the composite determinant made up
from the agent-id, performer-id and venue-id (as all three are involved). The
booking date itself then determines the fee. There is therefore an indirect (or
transitive) dependency between the composite key and the fee.

Finding keys using functional dependency

Functional dependency (FDs) helps to find keys for relations. To identify all
candidate keys, check whether each determinant uniquely identifies tuples in
the relation. Let’s define another important concept called attribute closure.

Attribute closure

The closure of X, written X+, is all the attributes functionally determined by X.
That is, X+ gives all the values that follow uniquely from X. Attribute closure
is used to find keys and to see if a functional dependency is true or false.

To find the closure of X+, follow the following steps:

• ans = X

• For every Y→Z such that Y � ans, add Z to ans

• Repeat until no more changes to X+ are possible

14

For example, given a relation R, such that

R(S, C, P, M, G, L, T)

FDs {SC → PMG, SL → C, CT → L, TL → C, SP → C

Can we answer the following two questions?

Is SL a key for R?

• Start with ans = {SL}

• Using 2nd FD, SL functionally determines C, so we add C to the ans, ans
= {SLC}

• Using 1st FD, SC functionally determines PMG, so we add PMG to the
ans, ans = {SLCPMG}

• No more attributes can be added because no subset of the ans functionally
determines other attributes, so (SL)+ is SLCPMG

Is SL a key for R? No, because the closure of SL is not equal to all the attributes
in R

Does SL → PG?

Yes, because PG is in (SL)+

Normalisation

In the context of databases, normalisation is a process that ensures the data is
structured in such a way that attributes are grouped with the primary key that
provides unique identification. This means that some attributes, which may not
depend directly on the primary key, may be extracted to form a new relation.

There are a number of reasons for performing normalisation; normalised data
is resilient against anomalies that may occur in updating values by insertion,
amendment or deletion, and other inconsistencies, and makes better use of stor-
age space.

The process of normalisation does not alter the values associated with the at-
tributes of an entity; rather, it develops a structure based upon the logical
connections and linkages that exist between the data.

Important

Normalisation

When a solution to a database problem is required, normalisation is the process
which is used to ensure that data is structured in a logical and robust format.
The most common transformations are from un-normalised data, through first
and second, to third normal form. More advanced transformations are possible,
including Boyce-Codd, fourth and fifth normal forms.

15

If we consider the data before it has undergone the normalisation process, we
regard it as un-normalised.

Un-normalised data

In the table below we have details of performers, their agents, performance
venues and booking dates in an un-normalised format. In this particular exam-
ple, the fee paid to the performer depends on the performer-type (for example,
the fee to all actors is 85).

16

To accommodate the size of the table, some headings have been shortened as
shown below:

• P-id: performer-id

• Perf-name: performer-name

• Perf-type: performer-type

• Perf-Loc’n: performer-location

• A-id: agent-id

• Agent-Loc’n: agent-location

• V-id: venue-id

• Venue-Loc’n: venue-location

• E-id: event-id

Problems with un-normalised data

We can see from the table that some performers have more than one booking,
whereas others have only a single booking, and some have none at all.

It is also shown in the table that agents are able to make bookings for different
performers at different venues, but some agents have made no bookings, some
venues have not been booked, and some events have not been scheduled.

The content of the table means that there is an inconsistent format, with mul-
tiple values for agents and venues associated with a single entry for some per-
formers. The table as it stands would not be suitable for direct conversion into
a relation.

Multiple venue bookings for Eagles

The performer Eagles (performer-id 112) has bookings at more than one venue,
giving multiple rather than single entries for venue details.

Multiple agent bookings for Eagles

17

The performer Eagles (performer-id 112) has bookings made by more than one
agent, and therefore there are multiple entries for agent details, rather than a
single entry.

Multiple event details for Eagles

The performer Eagles (performer-id 112) has bookings for more than one event,
so that there are multiple entries for event details, rather than just one entry.

Translating the table of un-normalised data into a relation, in what is called
first normal form, will mean that the data contained in the table in represented
in a more structured way. A relation in first normal form has only single entries
for each attribute for every tuple. We shall now investigate how to perform this
translation.

18

First normal form

The initial stage in the normalisation process is to convert a table of un-
normalised data into a relation in first normal form. This means that we must
extract the repeating groups of data that may appear in some rows of the
table, and replace them with tuples where each attribute has only one value
associated with it (at most).

Important

First normal form (1NF)

A relation is in first normal form if there is only one value at the intersection of
each row and column.

Repeating groups in an un-normalised table of data are converted to first normal
form by replacing them with tuples where each attribute has a single entry.

In order to convert an un-normalised relation into first normal form, we
must identify the key attribute(s) involved. We can see from the table of
un-normalised data that each performer has a code (performer-id), each agent
is identified by an agent-id, each venue is determined by a venue-id and each
event has an event-id.

Performer details

The details associated with each performer depend on the performer-id as the
primary key.

Note that the arrows coming directly from performer-id indicate that the per-
former attributes depend only on the key attribute performer-id, and not agent-
id, venue-id or event-id.

We know that the fee in this case depends on the type of performer, and not
directly on the primary key. This is shown in the diagram by the link between
performer-type and fee.

19

Agent details

The information about each agent depends on the agent-id as the primary key.

20

Note that the arrow from agent-id indicates that the agent attributes depend
only on agent-id as the key attribute, and not performer-id, venue-id or event-id.

Venue details

The primary key, venue-id, determines the name and location of each venue.

Note that the venue-name depends only on the venue-id as shown by the ar-
row in the diagram. The attributes performer-id, agent-id and event-id do not
determine the venue-name.

Event details

We can consider the representation of events from two angles. We have two
attributes which can be used as determinants: event-id and event-name. We
can examine each in turn using a determinacy diagram, and then show the
relationships between all three attributes (event-id, event-name and event-type)
on a single determinacy diagram.

Event-id as the determinant

The primary key, event-id, determines the name and type of each event. There
is a one-to-one relationship between event-id and event-name; either could be
used to identify the other.

21

Note that the event-name depends only on the event-id as shown by the arrow
in the diagram. The attributes performer-id, agent-id and venue-id do not
determine the event-name.

Event-name as the determinant

There is a special relationship between the attributes event-id and event-name;
each event-id and each event-name is unique.

This means that we could use either the event-id or the event-name as the
determinant for locating details about an event.

The determinacy diagram below shows the event-name being used as the deter-
minant, although we would not want to use it as the primary key, as names can
be difficult to get exactly right.

22

Event-id and event-name as determinants

We can show the special relationship between event-id and event-name by arrows
illustrating the link in each direction.

23

As either event-id or event-name can determine the event-type, there are links
between event-id and event-type, and also between event-name and event-type.

Booking detail

In addition to the performers, agents and venues, we need to be able to identify
the bookings that have been made. When a booking is made, the performer-id,
agent-id, venue-id and event-id are all required in order to specify a particular
event occurring on a given date. This also needs to be represented using a
determinacy diagram.

Each booking can be identified by the primary key, which is shown on the right
as a combination of the attributes performer-id, agent-id, venue-id and event-id.

Note that in this instance, the arrow (coming from the outer box) indicates that
all four key attributes are used to identify the booking date.

We know that each event can be identified either by the event-id or the event-
name; this means that we could have an alternative representation in the deter-
minacy diagram, substituting the attribute event-name for event-id as part of
the combined key.

24

An alternative primary key for each booking would be a combination of
performer-id, agent-id, venue-id and event-name.

Here again, the arrow (coming from the outer box) indicates that all four key
attributes are used to identify the booking date.

Here we have an overlapping key. The attribute event-name is a determinant,
although it is not a candidate key for its own data. We would not want to use
the event-name as a primary key, as it can present a problem in identifying the
relevant tuple if the spelling is not exactly the same as in the relation.

We can show the overlapping nature of the keys for the booking details in a
determinacy diagram.

The determinacy diagram below shows that the booking date could be located
through a primary key constructed from the attributes performer-id, agent-id,
venue-id and event-id, or by means of a primary key combining the attributes
performer-id, agent-id, venue-id and event-name.

The determinacy diagram also shows the relationship between the attributes
event-id and event-name.

25

It is not common to find overlapping keys; it is more usual to have a unique iden-
tifier which distinguishes between different items (for example, the performer-id
will distinguish between different performers who may happen to have the same
name). At this point in the normalisation process, overlapping keys do not
present a problem, but they will be dealt with at a later stage. We will use the
event-id in preference to the event-name for the time being, but we will need to
remember the special relationship that exists between these two attributes.

Determinacy diagram for first normal form

The information represented in these four categories (performer, agent, venue
and booking) can be displayed in a single diagram for first normal form (1NF):

26

The combined determinacy diagram (above) for first normal form shows that:

• The performer attributes (name, type, location and fee) depend only on
the key performer-id.

• The agent attributes (name and location) depend only on the key agent-id.

27

• The venue attributes (name and location) depend only on the key venue-
id.

• The event attributes (name and type) depend only on the key event-id
(we will examine the relationship between event-id and event-name later).

• The booking details depend on all four key attributes: performer-id, agent-
id ,venue-id and event-id.

The full determinacy diagram for first normal form, showing the overlapping
keys, is shown below:

The result of converting an un-normalised table of data into first normal form is
to remove repeating values, so that each line in the table has the same format,

28

with only one value in each column for each row. This means that there will
be only one value for each attribute for each tuple in a relation in first normal
form.

Where more than one booking has been made for a performer, each booking is
now given as a separate entry.

The original table of data has been converted into a relation in first normal
form, as shown below. The relation has the same structure as the determinacy
diagram, both being in first normal form, and exhibiting the following charac-
teristics:

• All performers have a performer-id as the primary key.

• Details about agents can be determined from the primary key agent-id.

• Any venue can be identified by the venue-id as the primary key.

• All events can be determined by event-id as the primary key.

• Where a booking has been made, the key attributes performer-id, agent-
id, venue-id and event-id all have values, which combine to identify each
particular booking as a composite (or compound) primary key.

We can now convert our table of un-normalised data into a relation in first
normal form (1NF). Note that there is at most a single value at the intersection
of each row and column. This process is sometimes known as ‘flattening’ the
table.

Table of relation in first normal form (1NF)

29

We can see that the relation in first normal form will still exhibit some problems
when we try to insert new tuples, update existing values or delete existing tuples.
This is because there is no primary key for the whole table, although each major
component has its own key (performer, agent, venue, event and booking).

Insertion anomalies of first normal form

There is a problem in selecting a suitable key for the table in its current format.

If we wish to insert details for a new performer, agent, venue or booking, we
need to be able to identify the key attribute and determine a value for the key
for the new record, for it to be entered as a tuple in the relation.

There is no clear candidate for a key for the whole relation in first normal form.
We cannot use the performer-id as a key, because not every record in the table
has a performer specified. The following examples illustrate this: the venue 62
Shaw has no performer, no event and no agent; the agent 1377 Webb has made
no bookings for performers, venues or events; and the event 938 New Dawn has
no performer, agent or venue. A null value cannot be allowed in a key field (for
reasons of entity integrity, as discussed in Chapter 2).

If we made up a fictitious performer-id value to use as the key when we wanted
to insert a new agent, a new venue or a new event, we would then generate
another set of problems, such as apparent double bookings.

We need to consider the possibilities for a key for the whole relation in first
normal form, and identify any problems that might arise with each option. The
use of the following attributes as the primary key will be considered in turn:

• Performer-id

30

• Agent-id

• Venue-id

• Event-id

• Performer-id, agent-id, venue-id and event-id combined

Would the attribute performer-id make a suitable key for the relation in 1NF?

The attribute performer-id is the primary key for performers, but it cannot be
used as the key for the whole relation in first normal form as there are some
cases where there is no relevant value, as shown in the following examples:

No performer-id for Shaw

The venue Shaw (venue-id 62) has not been used for any bookings, and therefore
has no performer-id associated with it that could be used as a key.

No performer-id for Webb

The agent Webb (agent-id 1377) has made no bookings for performers, and thus
there is no appropriate performer-id that could be used as a key.

No performer-id for New Dawn

There are no bookings for the event New Dawn (event-id 938), and therefore
there is no associated performer-id that could be used as a key.

Would the attribute agent-id make a suitable key for the relation in 1NF?

While it is the primary key for agents, the attribute agent-id would not make a
good choice as the key for the whole relation in first normal form as here, too,
there are times where there is no value present. This is illustrated below.

No agent-id for Shaw

No bookings have been made for the venue Shaw (venue-id 62), and therefore
no agent-id is available to be used as a key.

31

No agent-id for Tan

The actor Tan (performer-id 149) has no bookings and therefore no agent-id is
available to be used as a key.

Note that the performer-id as primary key for performers distinguishes between
149 Tan the actor, and 143 Tan the singer (who does have a booking).

No agent-id for New Dawn

There are no bookings for the event New Dawn (event-id 938), and therefore
there is no agent-id that could be used as a key.

We can conclude that the attribute agent-id would not make a suitable key for
the relation in first normal form.

Would the attribute venue-id make a suitable key for the relation in 1NF?

The attribute venue-id is the primary key for all venues, but it cannot be em-
ployed as the key for the whole relation in first normal form as there are instances
where no value has been allocated, for example:

No venue-id for Tan

The actor Tan (performer-id 149) has no bookings at a venue and therefore
there is no venue-id that can be used as a key.

32

No venue-id for Webb

The agent Webb (agent-id 1377) has made no bookings, and is therefore not
associated with any venue-id that could be used as a key.

No venue-id for New Dawn

There are no bookings for the event New Dawn (event-id 938), and therefore
there is no venue-id that could be used as a key.

We can conclude that the attribute venue-id would not make a suitable key for
the relation in first normal form.

Would the attribute event-id make a suitable key for the relation in 1NF?

The attribute event-id is the primary key for events (although the event-name
could also be used as the primary key). The examples below demonstrate that
the event-id cannot be used as the key for the whole relation in first normal
form, as there are cases where there is no value for the event-id.

No event-id for Tan

The actor Tan (performer-id 149) has no bookings at an event and therefore
there is no event-id that can be used as a key.

33

No event-id for Shaw

The venue Shaw (venue-id 62) has not been used for any bookings, and therefore
there is no event-id associated with it that could be used as a key.

No event-id for Webb

The agent Webb (agent-id 1377) has made no bookings, and thus there is no
appropriate event-id that could be used as a key.

We can conclude that the attribute event-id would not make a suitable key for
the relation in first normal form.

Would the combined attributes performer-id, agent-id, venue-id and event-id
make a suitable key for the relation in 1NF?

The combined attributes performer-id, agent-id, venue-id and event-id serve as
the primary key for all bookings, but this combination cannot be employed as
the key for the whole relation in first normal form as there are entries where the
key would be incomplete, for example:

No agent-id, venue-id or event-id for Tan

34

The actor Tan (performer-id 149) has no bookings made by an agent at a venue
for an event and therefore there is no complete combined key value.

No performer-id, agent-id or event-id for Shaw

No bookings have been made for the venue Shaw (venue-id 62), and therefore
no complete combined key is available, as there is no performer, agent or event
associated with the venue.

No performer-id, venue-id or event-id for Webb

The agent Webb (agent-id 1377) has made no bookings, and there is therefore
an incomplete combined key value for Webb (no performer, venue or event).

No performer-id, agent-id or venue-id for New Dawn

The event New Dawn has not been booked, and therefore there is no complete
combined key available as there is no performer, agent or venue associated with
the event.

35

We can conclude that the combination of the attributes performer-id, agent-id,
venue-id and event-id would not make a suitable key for the relation in first
normal form.

There is no obvious choice for a primary key. The attributes that we might
expect to be able to use as a key (such as performer-id, agent-id, venue-id
and event-id) are unsuitable because a value is not always available, and it is
not possible to have a key field with a null (or empty) value (because of the
requirements of entity integrity).

Arbitrary selection of a primary key for relation in 1NF

If we take an alternative approach and arbitrarily select the performer-id as the
key field, this will also lead to problems.

We would not be able to insert details about new agents who have yet to make
a booking, as they will not have a performer-id associated with them. Neither
would it be possible to retain the tuple on agent Webb (agent-id 1377), who has
yet to make a booking.

We would not be able to insert details about new venues that have not yet been
used for a booking, as they too will not have a performer-id associated with
them. In this instance, it would not be possible to retain the tuple on the venue
Shaw (venue-id 62).

36

We would not be able to insert details about new events that had not yet been
booked, as any such event will not have a performer-id associated with it. This
means that we would not be able to retain the tuple on the event New Dawn,
as it has not been used for a booking.

We can see that there is no single attribute, or combination of attributes, that
could be used successfully to identify any record in the table; this implies that
there will be difficulties when it comes to inserting new data as well as manip-
ulating data already in the table.

We will see that the problem of not being able to find a key for the relation
in first normal form will lead us into the creation of an improved structure for
representing data, so that there will be no ambiguity or loss of information.

Amendment anomalies of first normal form

There is a problem in updating values in a table in first normal form. If there is
more than one entry in the relation (for example, a performer who has several
bookings), any change to that individual’s details must be reflected in all such
entries, otherwise the data will become inconsistent.

Problems if performer changes location

What would happen if a performer moved to another location, or changed name
through marriage (or both)? In first normal form, the full details for a performer
are repeated every time a booking is made, and each such entry would need to
be updated to reflect the change in name or location. The performer 112 Eagles
already has three bookings; if there is any change to the performer details, all
three entries would need to be updated. If this is not done, and a further
booking is made with the updated performer details, the data in the relation
will become inconsistent.

37

Problems if agent changes location

The agent Lee (agent-id 1504) has made bookings for more than one performer,
at more than one location, so if agent Lee were to move to another location
it would be necessary to change details of the agent location in more than one
place.

Problems if agent venue details change

The venue Atlas (venue-id 59) has been booked for more than one performer,
and by more than one agent; this means that there are several entries relating to
this venue. Any change to the details of the venue (perhaps a change of name
following a change of ownership) would need to be made to every entry that
included the venue Atlas, in order to avoid inconsistencies in the data.

Problems if event details change

If one of the events were to be changed, this could affect a number of tuples

38

in the relation in first normal form. If the drama 952 Gold Days were to be
rewritten to include songs, it would then need to be reclassified as a musical,
and this information would need to be updated for every booking for that event.
Even if the new musical production were allocated a new event-id, the change
would still need to be reflected in every booking of the event.

Deletion anomalies of first normal form

Problems if an actor is deleted

What if we were to delete the record for the actor Eagles (performer-id 112)? In
this case, Eagles has three bookings, at the venues Silbury (venue-id 17), Royale
(venue-id 46) and Vostok (venue-id 75). Eagles is the only performer to have
a booking at venues Royale and Vostok. The agent Ellis (agent-id 1522), who
made the booking for Eagles at the venue Royale, has made no other bookings.
The agent Stritch (agent-id 1460), who booked Eagles into the venue Silbury,
has made no other bookings, although the venue has been booked by other
agents for other performers.

The events for which Eagles has been booked include two bookings for 952 Gold
Days (one by agent 1522 Ellis for venue 46 Royale, the other by agent 1504 Lee
for venue 75 Vostok), and a booking for event 926 Next Year (made by agent
1460 Stritch for venue 17 Silbury). As both events have also been booked for
other performers, we would not lose details of the events themselves if Eagles is
deleted from the relation. If Eagles had been the only performer for either one
of these events, the result would have been the loss of these details when Eagles
had been deleted.

If the details for performer Eagles are deleted, not only will we lose the data
about agents Ellis and Stritch, but we will also lose details of the venues Royale
and Vostok. The performer Eagles has three bookings, which involve two events,
Gold Days (which Eagles performs twice), and Next Year. As both these events
are also performed by other individuals, the deletion of data relating to Eagles
means that in this case we will not lose data about these two events. If, however,
Eagles had been the only performer booked for either of these events, the event
details would have been lost after the deletion of the performer Eagles.

39

It is worth noting that if the details for Eagles are removed from the relation, all
three occurrences would have to be removed; there would be problems of data
integrity and consistency if some were omitted.

Problems if a performer is deleted

What if we were to delete the record for 152 Peel, the dancer? This may happen
if Peel retires as a dancer.

The problem would be that not only would we remove the data related to
Peel (which is our intention), but we would also unintentionally lose the data
associated with the agent Vernon, as this is the only booking Vernon has made.
We would also lose information stored about the event 978 Swift Step, as this
is the only booking made that involves this event. Note that we would not lose
details relating to the venue 59 Atlas, as this venue has also been booked for
other performers.

Problems if an event is deleted

What would happen if the event 926 Next Year were to be withdrawn, and all
tuples containing that event deleted?

The event Next Year is involved in two bookings, one for performer 112 Eagles,
and another for performer 129 Chong.

The booking for Eagles was made by agent 1504 Lee for venue 17 Silbury. Eagles
has other bookings, agent Lee has made bookings for other performers, and the
venue Silbury has been booked for other events, so the deletion of this tuple will

40

not cause a loss of data about performers, agents or venues.

The other booking for event 926 New Year for performer Chong was made by
agent 1478 Burns at venue 79 Festive. The agent Burns and the venue Festive
are also involved in other bookings, but this was the only booking for performer
Chong. If this tuple is deleted, we will lose all details concerning the performer
129 Chong.

These examples show that we need to store information about performers,
agents, venues and events independently of each other, so that we do not risk
losing data. The solution is to convert the relation in first normal form into a
number of relations in second normal form.

Second normal form

The process of converting a relation from first normal form into second normal
form is the identification of the primary keys, and the grouping together of
attributes that relate to the key. This means that attributes that depend on dif-
ferent keys will now appear in a separate relation, where each attribute depends
only on the key, whether directly or indirectly. The purpose of converting the
relation into second normal form is to resolve many of the problems identified
with first normal form.

Important

Second normal form (2NF)

For a relation to be in second normal form, all attributes must be fully func-
tionally dependent on the primary key. Data items which are only partial
dependencies (as they are not fully functionally dependent on the primary key)
need to be extracted to form new relations.

For our performer case study, the single relation in first normal form (1NF) is
transformed into four relations in second normal form (working from the 1NF
determinacy diagram): performers, agents, venues and bookings.

Performer details

41

All data relating to performers is now grouped separately from agents, venues,
events and bookings. The determinacy diagram for performer details gives us a
performer relation in second normal form. The primary key for the performer
relation is performer-id, and the other attributes are names, performer-type, fee
and location.

The creation of an independent new relation for performers has the following
benefits, which resolve the problems encountered with the single relation in first
normal form:

• New performers can be inserted even if they have no bookings.

• A single amendment will be sufficient to update performer details even if
several bookings are involved.

• The deletion of a performer record will not result in the loss of details
concerning agents, venues or events, as performers, agents, venues and
events are now stored independently of each other.

Relation in second normal form: Performers

42

Agent details

The information concerning agents is now stored separately from that of per-
formers, venues and bookings. The determinacy diagram for agents gives us
a relation for agents in second normal form. The primary key for the agents
relation is agent-id, and the remaining attributes are name and location.

The new relation for agents has the following benefits, which resolve the prob-
lems encountered with the single relation in first normal form because the new
relation is independent from performers, venues and bookings:

• New agents can be inserted even if they have made no bookings.

• A single change will be enough to update agent details, even if several
bookings are involved.

• Agent details will now no longer be lost if a performer is deleted, as per-
formers, agents, venues and events are now stored independently of each
other.

Relation in second normal form: Agents

43

Venue details

The creation of a new relation solely to store the details of venues has the
following effects, which resolve the problems identified with the single relation
in first normal form:

• Details of a new venue can be inserted, whether or not it has been booked.

• If the name of the venue is changed, the alteration only needs to be made
once, in the venue relation, not for every booking of that venue.

• If details of a performer are deleted, and the performer had the only book-
ing at a particular venue, details of the venue will not be lost.

Relation in second normal form: Venues

44

Event details

• A new relation is created to hold details of individual events.

• Details of a new event can be inserted, whether or not it has been booked.

• If the name of the event is changed, the alteration only needs to be made
once, in the event relation, not for every booking of that event.

• If details of a performer are deleted, and the performer had the only book-
ing of a particular event, details of the event will not be lost.

The determinacy diagram could be represented as follows:

An alternative representation of the determinacy diagram illustrates that the
attribute event-name is also a determinant, although it is not a candidate key:

45

Relation in second normal form: Events

Booking details

46

Every time a booking is made, the details are recorded in the relation called
Bookings. There is no need to store all the details of the performer, agent,
venue and event for each booking that is made, as this information can be
acquired from the relevant relation for performers, agents, venues and event.
The information that is needed for the Booking relation is the performer-id,
agent-id, venue-id and event-id (these four attributes together form the key for
this relation), and the booking date.

Another possible key for the Booking relation involves the attributes performer-
id, agent-id, venue-id and event-name; as three of the four attributes in this key
are the same as the first key described for this relation, we have an example
of overlapping keys. Note that the overlapping keys are not resolved in the
transformation from first normal form to second normal form, as event-id and
event-name are part of each key. Conversion from first to second normal form
extracts all non-key attributes which are only partially dependent on the key,
and as such event-id and event-name remain as they are part of the key.

47

The determinacy diagram below shows the overlapping keys for the Bookings
relation, and also illustrates the dependencies between the attributes event-id
and event-name:

The details of the Bookings relation are shown below.

48

Relation in second normal form: Bookings

Insertion anomalies of second normal form

We cannot enter a fee for a type of performer unless there is a performer of that
type already present in the relation in second normal form. The reason for this is
that if there is no existing performer of that type, there will be no performer-id
value available as a key. If we want to add that acrobats are paid 65 (in whatever
currency), we cannot do so unless we are able to enter complete details for a
specific individual. Note that this performer would not have to have a booking,
but there must be at least one person associated with a performer-type before.

49

Amendment anomalies of second normal form

If performer Stokes (performer-id 126), who is the only comedian in the rela-
tion, retrains and changes career to become a magician, we will then lose the
information that comedians are paid a fee of 90 (in whatever currency is used).
Stokes will then be paid 72, which is the fee for all magicians.

We would also find an amendment anomaly if the fee paid to a particular type
of performer changed. If all singers were granted a new rate, all tuples relat-
ing to singers would need to be updated, otherwise the data would become
inconsistent.

Deletion anomalies of second normal form

If Gomez (performer-id 141), the only musician in the relation, decides to retire,
we will lose the information regarding the fee of 92 paid to musicians.

All these anomalies are caused by the fee paid to the performer being dependent
on the performer-type, and not directly on the primary key performer-id. This
indirect, or transitive, dependency can be resolved by transforming the relations
in second normal form into third normal form, by extracting the attributes
involved in the indirect dependency into a separate new relation.

50

Third normal form

The reason for converting a table from second normal form into third normal
form is to ensure that data depends directly on the primary key, and not through
some other relationship with another attribute (known as an indirect, or transi-
tive, dependency).

Important

Third normal form (3NF)

A relation is in third normal form if there are no indirect (or transitive) depen-
dencies between the attributes; for a relation to be in third normal form, all
attributes must be directly dependent on the primary key.

An indirect dependency is resolved by creating a new relation for each entity;
these new relations contain the transitively dependent attributes together with
the primary key.

The conversion of a relation into third normal form will resolve anomalies iden-
tified in second normal form.

We now have six relations in third normal form: Performers, Fees, Agents,
Venues, Events and Bookings.

Performer details

As before, the name and location of each performer depends on the performer-
id. We noticed in second normal form that there were problems associated
with having the fee contained within the performer relation, as the value of the
fee depended on the performer-type and not on performer-id, demonstrating a
transitive dependency.

One solution would be to create a new relation with performer-type as the key,
and the fee as the other attribute; performer-type would also remain in the
relation Performers, but the fee would be removed.

The relations for Performer and Fees follow the determinacy diagrams below.

51

Relation in third normal form: Performers

Relation in third normal form: Fees

52

A possible problem with this approach is the format of data entry of new per-
formers; if “ACROBAT”, “Acrobat” or “acrobat” are entered, they might not
be recognised as the same performer-type. In addition, if an error is made and
“arcobat” is entered, this may not be recognised. To deal with this problem, we
have used a code for performer-type in the Performer relation. This code is then
used as the key in the Fees relation, and the other attributes are performer-type
and the fee, both of which depend on the performer-code as primary key. (We
could have introduced the performer-code into the table of un-normalised data.)

The relations for Performer and Fees follow the determinacy diagrams below.

Relation in third normal form: Performers

53

Relation in third normal form: Fees

Agent details

There is no change to the determinacy diagram for Agents, as this is already in
third normal form (there were no transitive dependencies). The relation follows
the determinacy diagram below.

54

Relation in third normal form: Agents

Venue details

The data on Venues is already in third normal form as there were no transitive
dependencies; there are therefore no changes to the determinacy diagram shown
below, and the relation which follows.

55

Relation in third normal form: Venues

Event details

The Events relation is already in third normal form as there are no transitive de-
pendencies. There is the special relationship that exists between the attributes
event-id and event-name, which does not present a problem within the Events
relation itself, but creates difficulties in the Bookings relation because of the
overlapping key which results.

56

Relation in third normal form: Events

57

Booking details

The relation Bookings, with its composite determinants of performer-id, agent-
id, venue-id and event-id, or performer-id, agent-id, venue-id and event-name,
is already in third normal form as there are no transitive dependencies. The
determinacy diagrams and the associated relation are illustrated below.

This determinacy diagram illustrates the combination of performer-id, agent-id,
venue-id and event-id used as the determinant for the Bookings relation:

The next determinacy diagram shows the choice of performer-id, agent-id, venue-
id and event-name as the determinants for the Bookings relation.

58

The determinacy diagram below combines the previous two determinacy dia-
grams to show the overlapping keys for the Bookings relation, and illustrates
the dependencies between the attributes event-id and event-name.

59

The details of the Bookings relation are shown below.

Relation in third normal form: Bookings

Summary of the first three normal forms

We have seen how the original set of data items has been transformed through
the initial process of identifying dependencies between data items, the formu-
lation of successively higher normal-form collections of relations, each of which
has represented an increasingly flexible design. The steps used to derive each
successive normal form are summarised below:

• Identify data items which are the determinants of other data items, and
through the removal of any repeating groups, form the data items into an
initial first normal form relation.

• Identify any attributes that are not included in the primary key of the
relation, which are not dependent on all of the primary key (this is some-
times called ‘removing part-key dependencies’). It is also worth bearing in
mind that this step does not arise for relations that have a single-attribute
primary key.

60

• Identify any attributes that are not directly determined by the key (this
is sometimes called ‘removing transitive dependencies’).

We shall see in a later chapter on database design that there is further work
that can be done to normalise sets of relations, and alternative approaches
to reaching third normal form (3NF). However, 3NF represents a point where
we have gained a significant degree of flexibility in the design of a database
application, and it is a point at which normalisation of many applications is
considered to be complete.

Review questions

One of the biggest challenges when designing a database system is to obtain
a correct and complete set of requirements from the prospective users of the
system. Modern development methods place a strong emphasis on the need
to develop prototypes of the system, so that these can be demonstrated to
future users to clarify that what is being developed is what is actually required.
Information gathering about the way in which an application is to work is a
vital process which requires much attention to detail. This question provides
an exercise in formulating the questions to be used in a data-analysis scenario.
The importance of preparing for discussions about system requirements cannot
be over-emphasised, as users often are short of time, have other commitments,
and require guidance in describing the information required for a design.

Review question 1

Imagine that you have been commissioned by the owner of a small business to
develop a database of the projects he is running. You know that the database
is required to store details of the following:

1. The projects being undertaken, including expected start and finish dates.

2. Tasks required to complete each project.

3. Contract staff recruited to assist with the projects.

4. The budgets for projects.

5. The resources being used in projects and their costs.

Design a questionnaire you might use to assist you in obtaining the details of
dependencies between data items when discussing the database with the business
owner.

Review question 2

Given below is a possible series of answers to the questions in the previous
question. Given these responses, formulate the data items mentioned into a
first normal form relation.

61

1. How is each project identified?

Each project is to be allocated a unique project number. This number
need only be two digits long, as there will never be more that 99 projects
to be stored at one time.

2. Is it required to store both expected and actual completed start and finish
dates for projects?

Yes, all four data items are required, and the same four data items are
required for tasks as well.

3. How are tasks identified?

They also have a unique task number, which again can be safely limited
to two digits. So each task is identified by the combination of the project
number of the project within which it occurs, and its own task number.

4. Do projects have many tasks?

Yes, each project typically consists of about 10 tasks.

5. Can a task be split between more than one project?

No, a task is always considered to take place within one project only.

6. Are employees assigned to projects, or to specific tasks within projects?
How many tasks can an employee work on at one time?

Employees are assigned to specific tasks within projects, so each employee
can work on a number of tasks at one time. Furthermore, each task has
an employee allocated to it who is specifically responsible for its successful
completion. Each project has a project leader responsible for that project’s
successful completion.

7. What is required to be stored about contract staff pay?

Each staff member is paid at a monthly rate, that rate being determined
entirely by the highest qualification held by the staff member. We simply
need to record the appropriate qualification for each staff member, and
the monthly rate at which they are paid, plus the start and end dates of
their current contact.

Review question 3

Remove any part-key dependencies from the relation produced in question 2 to
produce a set of second normal form relations.

Review question 4

From the second normal form design in the previous question, produce a set of
third normal form relations, by removing any indirect or transitive dependencies.

Review question 5

62

Explain the role of determinacy diagrams in database application development.

Review question 6

What is a repeating group? Why is it necessary to remove repeating groups in
Relational database design?

Review question 7

Explain the term ‘part-key dependency’, and its role in normalisation.

Review question 8

What is the difference between second and third normal form relations?

Discussion topic

As mentioned at the start of the review questions, the process of eliciting in-
formation about the requirements of computer applications is an extremely im-
portant and potentially difficult one. Among the techniques that are commonly
used to capture the requirements of users and other stakeholders in the system
are:

• Interviews, which vary in different organisations and between individuals
in the amount of planning and pre-determined questions

• Questionnaire surveys, in the following formats: written, e-mail or web-
based

• Brainstorming

• Direct observation of users carrying out tasks

All of these techniques and more can play a useful role in capturing requirements,
and each technique has particular strengths and weaknesses. You are encouraged
to discuss with other students the strengths and weaknesses you consider each
of the techniques listed above have in obtaining accurate and comprehensive
information about the requirements for a new computer application. You should
include in the discussion any experiences you have had yourself of good or bad
practice in the process of requirements capture.

Application and further work

You are encouraged to consider the strengths and weaknesses of the application
developed in the review questions.

Firstly, identify the additional flexibility gained by each successive stage of the
normalisation process. That is, clarify the sorts of data manipulation that can
be carried out in the more normalised versions of the design, compared to the
un-normalised design.

63

Secondly, consider to what extent this extra flexibility is likely to be useful
to the business owner, and whether it is worth the overhead of managing the
additional tables.

64

Chapter 9. Advanced Data Normalisation

Table of contents

• Objectives
• Context
• Recap

– Introduction
– Before starting work on this chapter
– Summary of the first three normal forms
– Third normal form determinacy diagrams and relations of Performer

∗ Case study
• Motivation for normalising beyond third normal form

– Why go beyond third normal form?
– Insertion anomalies of third normal form
– Amendment anomalies of third normal form
– Deletion anomalies of third normal form

• Boyce-Codd and fourth normal form
– Beyond third normal form
– Boyce-Codd normal form
– Fourth normal form
– Summary of normalisation rules

• Fully normalised relations
• Entity-relationship diagram
• Further issues in decomposing relations

– Resolution of the problem
• Denormalisation and over-normalisation

– Denormalisation
– Over-normalisation

∗ Splitting a table horizontally
∗ Splitting a table vertically

• Review questions
• Discussion topic

Objectives

At the end of this chapter you should be able to:

• Convert a set of relations to Boyce-Codd normal form.

• Describe the concept of multi-valued dependency, and be able to convert
a set of relations to fourth normal form.

• Avoid a number of problems associated with decomposing relations for
normalisation.

1

• Describe how denormalisation can be used to improve the performance
response of a database application.

Context

This chapter relates closely to the previous two on database design. It finalises
the material on normalisation, demonstrates how a fully normalised design can
equally be represented as an entity-relationship model, and addresses the impact
that a target DBMS will have on the design process. The issues relating to
appropriate choices of DBMS-specific parameters, to ensure the efficient running
of the application, relate strongly to the material covered in the chapters on
indexing and physical storage. Information in all three chapters can be used
in order to develop applications which provide satisfactory response times and
make effective use of DBMS resources.

Recap

Introduction

In parallel with this chapter, you should read Chapter 14 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

In this concluding database design unit, we bring together a number of advanced
aspects of database application design. It begins by extending the coverage of
data normalisation in an earlier chapter, describing Boyce-Codd normal form (a
refinement of the original third normal form) and providing a different view of
how to generate a set of relations in third normal form. The chapter then looks
at a number of important issues to be considered when decomposing relations
during the process of normalisation. Finally, the important topic of physical
database design is included, which shows the impact that DBMS-specific pa-
rameters can have in the development of an application. Many of these con-
siderations have a direct impact on both the flexibility and the performance
response of the application.

Before starting work on this chapter

This chapter addresses a number of advanced issues relating to data normal-
isation. It is very important that you fully understand all the concepts and
techniques introduced in the previous chapter, Data Normalisation.

You should not attempt this chapter until you are confident in your understand-
ing and application of the following concepts:

• Functional dependency

2

• Fully functional dependency

• Partial functional dependency

• Direct dependency

• Transitive (indirect) dependency

• Determinants

• Determinant

• Determinacy diagrams

• Normal forms

• Un-normalised form (UNF)

• First normal form (1NF)

• Second normal form (2NF)

• Third normal form (3NF)

Summary of the first three normal forms

The following is a brief summary of the first three normal forms:

• 1NF — Identify the determinants of data items, and through the removal
of any repeating groups, arrange the data items into an initial first normal
form relation.

• 2NF — Remove part-key dependencies from the relations in first normal
form. I.e. for non-key attributes, remove those attributes that are not
fully functionally dependent on the whole of the primary key (and form
new entities where these attributes are fully functionally dependent on the
whole primary key).

• 3NF — Remove any transitive (indirect) dependencies from the set of
relations in second normal form (to produce a set of relations where all
attributes are directly dependent on the primary key).

Third normal form determinacy diagrams and relations of Performer

In this chapter we shall be extending the work from the previous chapter on the
data for the Performer case study. As a starting point, we shall first present the
determinacy diagrams and the third normal form relations developed for this
case study.

3

Case study

Determinacy diagram: Performers and Fees

Relation in third normal form: Performers

4

Relation in third normal form: Fees

Determinacy diagram: Agents

Relation in third normal form: Agents

5

Determinacy diagram: Venues

Relation in third normal form: Venues

6

Determinacy diagram: Events

Relation in third normal form: Events

7

Determinacy diagrams: Bookings

8

9

The determinacy diagram below combines the previous two determinacy dia-
grams to show the overlapping keys for the Bookings relation, and illustrates
the dependencies between the attributes event-id and event-name:

The details of the Bookings relation are shown below:

Relation in third normal form: Bookings

10

Motivation for normalising beyond third normal form

Why go beyond third normal form?

As we shall explore in this section, under certain circumstances there are anoma-
lies that can occur for data that meets all the requirements for third normal form.
Once these anomalies were identified and understood, database researchers de-
veloped the further normal forms we shall explore in this chapter.

Insertion anomalies of third normal form

There are no true insertion anomalies in the Bookings relation in third normal
form; the details about each performer, agent, venue and event are also held in
separate relations specifically for those entities, but there is data redundancy.

Relation in third normal form: Bookings

11

We can see that there is data redundancy in the Bookings relation, as every time
a particular event is involved in a booking, both the event-id and the event-name
need to be inserted into the Bookings relation.

Strictly speaking, we do not need to have both event-id and event-name in the
Bookings relation, as each determines the other. If a mistake were to be made
while inserting a new tuple, so that the event-id and the event-name did not
match, this would cause problems of inconsistency within the database. The
solution is to decide on one of the two determinants from the Events relation as
part of the composite key for the Bookings relation.

We have noted that the event-id and the event-name determine each other within
the Events relation, and this in turn creates overlapping keys in the Bookings
relation. If the relationship between event-id and event-name were to break
down, and a new event happened to have the same name as another event with
a different event-id, this could create problems in the Bookings relation.

Performer Scenario 2

We can refer to a slightly altered database design as ‘Performer Scenario 2’, in

12

order to demonstrate the effects of overlapping keys.

An issue that we need to examine is in the context of this slightly different
database. In the example we having been using, the Events relation contains
event-id, event-name and event-type. We can see that the performer-type in the
Performers relation matches the event-type in the Events relation (e.g. actors
performing in dramas, singers performing in musicals). If we now consider that
the database holds only event-id and event-name as details about each event,
this would affect the structure of the database.

Now, if we were to attempt to insert details about an event which had not yet
been booked, we would not be able to do so as we would have an incomplete
key in the Bookings relation. An event which has not been booked would have
an event-id and an event-name, but no other attributes would have a value as
there has been no booking.

Amendment anomalies of third normal form

If there were a change to the name of a particular event, this would need to be
reflected in every booking involving that event. Some events may be booked
many times, and if the change to the name of an event is not updated in each
case, we would again find problems with maintaining consistent information in
the database.

Here too, the solution is to identify either event-id or event-name as the deter-
minant from the Events relation, so that the other of these two attributes is
stored once only in the Events relation.

13

Deletion anomalies of third normal form

There are no deletion anomalies in the example we have been using. If we
consider Scenario 2, however, we will find that deletion anomalies do exist.

Performer Scenario 2

We know that in Performer Scenario 2, there is no separate Events relation.
If a booking is cancelled, we will want to delete the relevant tuple from the
Bookings relation. This means that if we delete a tuple which contained details
of an event that had no other booking, we would lose all information about that
event.

Boyce-Codd and fourth normal form

Beyond third normal form

In this section we introduce two new normal forms that are more ‘strict’ than
third normal form. For historical reasons, the simple numbering of first, second
and third deviates before getting to fourth. The two new normal forms are
called:

• Boyce-Codd normal form

• Fourth normal form

Boyce-Codd normal form

When it comes to identifying the booking, there is an ambiguity, as the booking
details could be identified by more than one combination of attributes.

As it is possible to identify details of each event either by the event-id or by
the event-name, there are two possible groupings of attributes that could be
used to identify a booking: performer-id, agent-id, venue-id and event-id, or
performer-id, agent-id, venue-id and event-name.

14

Important

Boyce-Codd normal form (BCNF)

A relation is in Boyce-Codd normal form if all attributes which are determinants
are also candidate keys.

Boyce-Codd normal form is stronger than third normal form, and is sometimes
known as strong third normal form.

Transformation into Boyce-Codd normal form deals with the problem of over-
lapping keys.

An indirect dependency is resolved by creating a new relation for each entity;
these new relations contain the transitively dependent attributes together with
the primary key.

We know that we can identify a booking by means of the attributes performer-id,
agent-id, venue-id and event-id, as shown in the determinacy diagram below.

We also know that we can identify a booking by using the attributes performer-
id, agent-id, venue-id and event-name, shown in the next determinacy diagram.

15

When we combine the two determinacy diagrams shown above, we can see that
we have an example of overlapping keys:

16

The details of the Bookings relation are shown later in this section.

Although overlapping keys are rare in practice (and some examples may appear
rather contrived), we need to be aware that they can occur, and how to deal with
them. The solution is simple: we need to decide on a single choice of attributes
so that we have only one primary key. We know that event-name would not
be an ideal choice of primary key. This is because it can be difficult to get
names exactly right (e.g. “Quicktime” is not identical to “Quick Time”), and
it may be coincidence rather than a rule that there is a one-to-one relationship
between event-id and event-name (the relationship might break down). The
choice of attribute to appear in the primary key is therefore event-id rather
than event-name.

In Boyce-Codd normal form, we have six relations: Performers, Fees, Agents,
Venues, Events and Bookings. The structure of the determinacy diagrams and
content of the relations for Performers, Fees, Agents and Venues remain un-
changed from third normal forms, and are not repeated here. There are changes
to the Events and Bookings relations, which are illustrated below. A summary
of the determinacy diagrams and the relations for this example are given in
the ‘Summary of normalisation rules’ section of this chapter, together with an
entity-relationship diagram.

Event details The choice of event-id as the primary key for the Bookings
relation means that we can show the simpler representation of the determinacy
diagram for event details, as we no longer have to consider the attribute event-

17

name as a possible key.

18

Note that in Scenario 2, where there was no separate Events relation, it would
now be necessary to create an Events relation in order to transform the Bookings
relation from third normal form into Boyce-Codd normal form.

Booking details Now that we have decided that event-id is the more suitable
attribute for use as part of the key for the Bookings relation, we no longer
need to store the event-name, which is already held in the Events relation. The
problem of the overlapping keys has now been resolved, and the key for the
Bookings relation is the combination of the attributes performer-id, agent-id,

19

venue-id and event-id.

The Bookings relation no longer needs to hold the attribute event-name, as this
is already held in the Events relation.

Relation in Boyce-Codd normal form: Bookings

20

Exercise 1

Define Boyce-Codd normal form.

Fourth normal form

The normalisations process so far has produced a set of five relations, which are
robust against insertion, amendment and deletion anomalies. If at this stage
it were decided to introduce further details into the relations, it would still be
possible to do so. Database designers and developers would be well advised to
start again with the normalisations process if changes are proposed to the data.
However, for this example, we will introduce some new information that only
affects the performers.

We are now required to add further details to the Performers relation, to show
their knowledge and skills in two other areas: languages and hobbies.

Important

Fourth normal form (4NF) A relation is in fourth normal form if there are
no multi-valued dependencies between the attributes.

Multi-valued dependencies occur where there are a number of attributes that
depend only on the primary key, but exist independently of each other.

21

The representation of languages spoken and hobbies would be a simple enough
requirement if each performer spoke exactly one language and had only one
hobby. However, our performers are multi-talented, and some speak many
languages, and others have several hobbies. Furthermore, the languages and
hobbies are not related to each other. This presents us with a problem: how
can we represent this in the relation? We know we cannot have a group of items
under the headings Languages and Hobbies, as this would contravene the rules
for first normal form.

The relation below is an attempt at representing some of this information, using
a small number of performers as an example.

Relation: Some-Performers-Example 1

Relation: Some-Performers-Example 1

If we look at this relation, while it conforms to the rules for first normal form
(there are no repeating groups), there is still some ambiguity in its meaning. If
we look at Baron’s hobbies, we can see that ‘art’ has been identified, but that
there is no entry for the attribute ‘language’. Does this mean that Baron does
not speak any other languages? We know this is not true, because there are
other entries that demonstrate that Baron speaks three languages. If we take
the alternative view, and look at another entry for Baron, we can see that Baron
speaks Italian, but from this entry it could appear that Baron has no hobbies.
This approach is not the solution to the problem.

Another attempted solution pairs languages and hobbies together, but some-
times there is a language but no hobby (or the other way around).

Relation: Some-Performers-Example 2

Relation: Some-Performers-Example 2

22

In this new approach, we have entered each hobby against a language. However,
we are still faced with problems. If Steed decides to give up poetry as a hobby,
we will lose the information that Steed speaks English. If Baron’s French gets
‘rusty’ and is deleted from the relation, we will lose the information that Baron’s
hobby is art.

Relation: Some-Performers-Example 3

Relation: Some-Performers-Example 3

In this next attempt, all languages are paired with all hobbies; this means that
there is a great amount of redundancy, as basic data about the performers is
repeated each time. We have a problem with Jones, who does not appear to
have a hobby, which questions whether this entry is valid. In addition, if Steed
learns a new language, it would be necessary to repeat this new language paired
with Steed’s existing hobbies. This option is also an unsatisfactory method of
solution.

The solution to this problem is to divide the information that we are trying
to represent into a group of new relations; one containing the basic performer
information as before, another showing details of languages spoken, and a third
maintaining a record of hobbies.

This transformation deals with the problems of multi-valued facts and associated
redundancies in the data; we can now convert the relation into three relations

23

in fourth normal form.

Naturally, the new relations would hold data for all the performers, although
only an extract from each relation is given here.

Relation in fourth normal form: Some-Performers

Relation in fourth normal form: Some-Performers-Languages

Relation in fourth normal form: Some-Performers-Hobbies

Exercise 2

24

Define fourth normal form.

Summary of normalisation rules

The rules used for converting a group of data items which are un-normalised into
a collection of normalised relations are summarised in the table below. Remem-
ber that in some cases we might choose not to normalise the data completely,
if this would lead to inefficiency in the database.

The conversion from fourth normal form to fifth normal form is included for
completeness. We will not be examining the definition of fifth normal form in
detail; it is concerned with avoiding unnecessary duplication of tuples when new
relations are created by joining together existing relations. The cause of this
problem is the existence of interdependent multi-valued data items.

Fully normalised relations

We now have five relations which are fully normalised, and can be represented by
means of determinacy diagrams, relations, and an entity-relationship diagram.
Each relation has a corresponding entity in the entity-relationship diagram.

Performer details

25

All performers appear in the Performers relation. The primary key is performer-
id, and the other attributes are performer-name, performer-code (which identi-
fies the performer-type) and performer-location.

Fully normalised relation: Performers

Fee details

Each performer is paid a fee depending on the performer-type. The rates of
pay for each performer-type are stored in the Fees relation, together with a
performer-code, which is the primary key.

26

Agent details

All agents are recorded in the Agents relation, where the primary key is agent-id,
and the remaining attributes are agent-name and agent-location.

27

Venue details

There are a number of venues available for bookings, and these are stored in
the Venues relation. The primary key is venue-id, and the other attributes are
venue-name and venue-location.

28

Event details

All events which can be booked are listed in the Events relation; the primary
key is event-id, and the other attributes are event-name and event-type.

29

Booking details

Every booking made by an agent, for a performer, at a venue, for an event, is
stored in the Bookings relation. The primary key is a combination of performer-
id, agent-id, venue-id and event-id; the remaining attribute is booking date.

30

31

Note that this assumes there can only be one booking involving a particular
combination of performer, agent, venue and event. This means that we cannot
have multiple bookings made involving the same performer, agent, venue and
event, as the primary key would be the same for each booking and we would
therefore lose unique identification of bookings.

In order to accommodate multiple bookings involving the same entities, we
could include the booking date as part of the key, but then we would not be
able to distinguish between morning and evening performances on the same date
(unless we included time as well as date).

Entity-relationship diagram

The determinacy diagrams and relations, which are now fully normalised, can
also be viewed as entities linked by relationships using the data modelling tech-
nique described in the chapter on entity-relationship modelling. Each determi-
nacy diagram represents a relation, which in turn corresponds to an entity, as
can be seen in the entity-relationship diagram below. The relationships that
exist between each entity are summarised below the diagram.

32

This entity relationship diagram represents the following:

• Each performer may have many bookings, so the relationship between
performer and booking is one-to-many.

• A performer earns a fee, the value of which depends on the performer type,
so the relationship between performer and fee is one-to-one (a performer
can only be of one type).

• An agent may make a number of bookings, so the relationship between
agent and booking is one-to-many.

• Any venue may have been booked several times, which makes the relation-
ship between venue and booking one-to-many.

• Each event may be involved in a number of bookings, so this relationship
is also one-to-many.

33

• The relationships that exist between performers, agents, venues and events
are shown by their connections through the bookings.

Exercise 3

Why have so many normal forms?

Further issues in decomposing relations

When moving to a higher normal form, we often have a choice about the way
in which we can decompose a relation into a number of other relations. This
section examines problems that can arise if the wrong decomposition is chosen.

As an example, supposing within a government department responsible for in-
telligence gathering, we wish to record details of employees in the department,
and the levels of their security clearance, which describe the levels of access
employees have to secret information. The table might contain the following
attributes:

Relation EMPLOYEE (Employee, Security_code, Level)

Where Employee is the primary key and provides some convenient means of
identifying each employee, Security_code identifies the security clearance of that
employee, and Level identifies the level of access to secret information possessed
by anyone having that Security_code.

The determinants in this relation are:

Employee determines Security_code

Security_code determines Level

So we have two functional dependencies, respectively Security_code is func-
tionally dependent on Employee, and Level is functionally dependent on Se-
curity_code. We also have a transitive, or indirect dependency, of Level on
Employee; that is, an employee’s level of security clearance does depend on who
that employee is, but only via the value of their Security_code.

This relation is in second normal form; i.e. it contains no repeating groups and
no part-key dependencies, but it does contain a transitive dependency.

In order to convert relation EMPLOYEE to third normal form, we need to
decompose it to remove the transitive dependency of Level on Employee. Until
we make this decomposition, we have the following insert, update and deletion
anomalies:

• We cannot create a new Security_code until we have an Employee to
whom we wish to allocate it.

34

• If we change the Level of a Security_code, i.e. change the Level of infor-
mation employees who hold that code can access, then in relation EM-
PLOYEE, we would have to propagate the update throughout all the
employees who hold that Level.

• If we remove the last Employee holding a particular Security_code, we
loose the information about the Level of clearance assigned to that Secu-
rity_code.

To perform the decomposition, suppose we split relation EMPLOYEE into two
relations as follows:

Decomposition A

Relation EMPLOYEE-CLEARANCE (Employee, Level)

Relation SECURITY_LEVEL (Security_code, Level)

There are problems with this decomposition. Supposing we wish to change the
security clearance for a given Employee. We can change the value of Level in
relation SECURITY_CLEARANCE, but unfortunately, this update is not in-
dependent of the data held in relation SECURITY_LEVEL. In order for the
change to have taken place in the SECURITY-CLEARANCE relation, one of
two things must have arisen. Either the Employee in question has changed
his/her Security_code, in which case no update need be made to relation SE-
CURITY_LEVEL, or the Level associated with the Security_code possessed by
the Employee has changed, in which case relation SECURITY_LEVEL must
be changed to reflect this.

The problem has arisen because the two relations in decomposition A are not
independent of one another. There is in fact a functional dependency between
them: the fact that Security_code is functionally dependent on Employee. In de-
composition A, instead of storing in the same relation those data items that are
functionally dependent on one another, we have split the functional dependency
of Security_code on Employee across the two relations, preserving the transi-
tive dependency of Level on Employee in relation SECURITY_CLEARANCE.
The problems this gives is that we cannot then make updates to one of these
relations without considering whether updates are required to the other. As a
further example, if we make updates to relation SECURITY_LEVEL, changing
the Level of access associated with each Security_code, we must make sure that
these updates are propagated to relation SECURITY_CLEARANCE, i.e. that
the employees who possess the altered security codes have their Level attribute
updated to reflect the changes in the SECURITY_LEVEL relation.

Resolution of the problem

The solution to this problem is to ensure that when making decompositions,
we preserve the functional dependencies of data items within the resulting rela-

35

tions, rather than splitting them between the different relations. For the above
example, the correct decomposition would therefore be as follows:

Decomposition B

Relation EMPLOYEE_CODE (Employee, Security_code)

Relation ACCESS_LEVEL (Security_code, Level)

This decomposition allows us to manipulate the level of security granted to an
individual employee (in relation EMPLOYEE_CODE) independently of that
which specifies in general the level of access associated with security codes (main-
tained in relation ACCESS_LEVEL).

Denormalisation and over-normalisation

Denormalisation

As the normalisation process progresses, the number of relations required to
represent the data of the application being normalised increases. This can lead
to performance problems when it comes to performing queries and updates on
the implemented system, because the increased number of tables require multi-
ple JOINs to combine data from different tables. These performance problems
can be a major issue in larger applications (by larger we mean both in terms of
numbers of tables and quantity of data).

To avoid these performance problems, it is often decided not to normalise an
application all the way to fourth normal form, or, in the case of an existing
application which is performing slowly, to denormalise an existing application.
The process of denormalisation consists of reversing (or in the case of a new
application, not carrying out in the first place) the steps to fully normalise
an application. Whether this is appropriate for any given application depends
critically on two factors:

• Whether the size of the application is sufficient that it will run slowly on
the hardware/software platform being used.

• Whether failing to carry out certain steps in the normalisation process
will compromise the requirements of the applications users.

Supposing, for example, we have a relation in which we wish to store the details
of companies, the departments making up the companies and the locations of
the departments. We might describe such a relation as follows:

Relation COMPANY (Company, Department, Location)

A row in the relation indicates that a particular Department of a specific Com-
pany is based at a particular Location. The primary key of relation COMPANY
is the attribute Company. Assuming that Location depends directly on the De-
partment of any particular Company, there is a transitive dependency between

36

Company and Location, via Department. To convert relation COMPANY to
third normal form, we would decompose it into:

Relation DEPARTMENT (Company, Department)

Relation LOCATION (Department, Location)

This would avoid the insert, update and deletion anomalies associated with
second normal form relations, giving us the ability to manipulate the information
about which departments make up a particular company quite independently
of the information about where particular departments are located. This is the
additional flexibility provided by taking the step of converting the application
to third normal form. However, if we wish to store information about a large
number of companies and departments, and we will not need to manipulate the
location information about departments independently of the information about
which departments make up a company, then we may choose not to proceed to
third normal form, but to leave relation COMPANY in second normal form.
Thus we’d retain the Company, Department and Location attributes in one
relation, where they can be queried and manipulated together, without the
need for JOINs.

If we choose to leave relation COMPANY in second normal form, what we will
have lost in terms of flexibility is as follows:

• The ability to create new departments at specific locations without allo-
cating them to a specific company.

• The ability to create new departments at specific locations without allo-
cating them to a specific company.

Note that in this particular case, the update anomaly does not arise, as each
department is assumed to appear only once in relation COMPANY. Users of
the application may feel that the flexibility provided by third normal form is
simply not required in this application, in which case we can opt for the second
normal form design, with its improved performance.

The same arguments apply when considering whether to take any steps that
lead to a higher normal form; there is always a trade-off similar to the above,
between the increased flexibility of a more normalised design versus a faster-
running application in a less normalised design, due to the smaller number of
relations. When Relational database systems first arrived in the early ’80s, their
performance was generally slow, and this had an influence in slowing down their
adoption by some companies. Since that time, a huge amount of research and
development has gone into improving the performance of Relational systems.
This development work, plus the considerable improvements in the processing
speed of hardware, tends to suggest that the need to denormalise applications
should be reduced; however, it remains an important option for application
designers seeking to develop well-tuned applications.

37

Over-normalisation

A further technique for improving the performance response of database appli-
cations, is that of over-normalisation. This technique is so-called because it
results in a further decomposition of the relations of an application, but for
different reasons than that of the usual normalisation process. In normalisation,
we are seeking to satisfy user requirements for improved application flexibility,
and to eliminate data redundancy. In contrast, the decompositions made during
over-normalisation are generally done so to improve application performance.

As an example, we shall take the case of a company possessing a large table of
customer information, supposing the table contains several thousand rows, and
that the customers are more or less equally divided into those based in the home
country of the company and overseas.

There are essentially two approaches to over-normalisation of a table — we can
divide it up either horizontally or vertically.

Splitting a table horizontally

The most common approach is to split a table horizontally. In the case of
the large customer table, we might split it into two tables, one for home-based
customers, and the other for overseas customers.

Splitting a table vertically

The alternative approach of vertical partitioning might be used if the columns of
a table fell naturally into two or more logical subsets of information; for example,
if several columns of the customer table contained data specific to credit-limit as-
sessment, whereas others contained more general contact and customer-profiling
information. If this were the case, we might split the table vertically, one par-
tition containing credit-limit assessment information, and the other containing
the more general customer details. It is important when performing vertical
partitioning in this way that the primary key of the entity involved, in this
case, Customer, is retained in both partitions, enabling all of the data for the
same entity instance (here for a specific customer) to be re-assembled through
a JOIN.

Example of over-normalisation

So, for the process of over-normalisation, tables can be split into a number of
horizontal or vertical fragments. For example, if the customers in the above
example contained a ‘region’ attribute, which indicated in which region of the
world they are based, then rather than a simple dual split into home-based
and overseas customers, we might create a separate partition for each regional
grouping of customers.

38

There are a number of reasons why relations may be fragmented in this way, most
of which are directly concerned with improving performance. These objectives
are briefly examined below:

• Splitting a large table into a number of smaller tables often reduces the
number of rows or columns that need to be scanned by specific query or
update transactions for an application. This is particularly true when
the partitions created are a good match to different business functions
of the application - for example, in the customer table example above, if
customers in different regions of the world undergo different types of query
and update processing.

• The smaller tables retrieved by queries restricted to one, or even a few, of
a number of partitions will take up less space in main memory than the
large number of rows fetched by a query on a large table. This often means
that the small quantity of data is able to remain in memory, available for
further processing if required, rather than being swapped back to disk, as
would be likely to happen with a larger data set.

Just as a good match to business functions for the chosen partitions means
the over-normalisation process will work well in improving performance, a poor
match to transaction requirements could lead to a poorer performance, because
the over-normalised design could lead to an increased number of JOINs.

Review questions

Review question 1

Consider the following scenario.

A database is being designed to store details of a hospital’s clinics and the
doctors who work in them. Each doctor is associated with just one hospital.
Each clinic has a two-to-three-hour session during which a doctor who is a
specialist in a particular field of medicine, sees patients with problems in that
specialist area; for example, a diabetic clinic would be run by a doctor who is
a specialist in diabetes. The same clinic may occur in a number of different
hospitals; for example, several hospitals may run a diabetes clinic. Doctors may
hold a number of different clinics. Clinic within the same hospital are always
held by the same doctor. The relation is therefore of the following form:

Relation CLINIC (Hospital, Clinic, Doctor)

A row in the relation signifies that a particular clinic is held by a particular
doctor in a specific hospital.

1. What are the determinants in the above relation?

2. Demonstrate that relation CLINIC is not in BCNF. Which normal form
is it in?

39

3. Explain any insertion, update or deletion problems that might arise with
relation CLINIC. How might these be resolved?

Review question 2

A library holds a database of the loans and services used by its members. Each
member may borrow up to 10 books at a time, and may reserve sessions making
use of library facilities, such as time on an Internet PC, a Multimedia PC,
booking a ticket for a performance at the library theatre, etc.

Describe how the above scenario could be handled in the process of normalisa-
tion.

Review question 3

It is required to develop a database which can provide information about soccer
teams: the number of games they have played, won, drawn and lost, and their
current position in the league.

Write down your thoughts on the issues involved in supporting the requirement
to provide the current league position, and how this is best satisfied.

Review question 4

If BCNF is a stronger definition of 3NF, and provides a more concise definition
of the normalisation process, why is it worth understanding the step-by-step
processes of moving from an un-normalised design to 3NF? Why is BCNF a
stronger normal form than 3NF?

Review question 5

A binary relation is a relation containing just two attributes. Is it true that any
binary relation must be in BCNF?

Review question 6

What is the difference between a repeating group and a multi-valued depen-
dency?

Review question 7

True or false: Splitting a functional dependency between two relations when
decomposing to a higher normal form is to be preferred to splitting a transitive
dependency. Give reasons to justify your assertion.

Review question 8

Explain the difference between denormalisation and over-normalisation. What
do the two techniques have in common, and what differences do they have?

Review question 9

A chemical plant produces chemical products in batches. Raw materials are
fed through various chemical processes called a production run, which turns
the raw materials into a final product. Each batch has a unique number, as

40

does each product produced by the plant. We can also assume that product
names are unique. Each production run results in the production of a quantity
of a particular product. We assume that only one product is produced in any
given production run, and so different production runs are required for different
products. The design of a relation to store the details of production runs could
look as follows:

Relation PRODUCTION_RUN (Product_no, Product_name, Batch_no,
Quantity)

In which normal form is relation PRODUCTION_RUN? Explain the reasoning
behind your assertion.

Resolve any anomalies that could arise in the manipulation of rows in the PRO-
DUCTION_RUN relation.

Review question 10

A company wishes to store details of its employees, their qualifications and
hobbies. Each employee has a number of qualifications, and independently of
these, a number of hobbies.

Produce a normalised design for storing this information.

Review question 11

We saw earlier the issues surrounding storing some types of derived data; for
example, the league position of soccer teams. Supposing we wish to store the
number of points accumulated by such teams, given the rules that:

• A win is awarded 3 points

• A draw is awarded 1 point

• There are no points for a defeat

Consider any problems that might be associated with the storage of the number
of points obtained by teams in such a league.

Discussion topic

Normalisation has been the second major technique we have examined for use
in the design of database applications, the other being entity-relationship mod-
elling. You are encouraged to discuss your feelings about the relative usefulness
of these two approaches with respect to the following:

• Learnability. Which of the two techniques have you found easier to learn?
Do not settle for merely identifying which technique was easier to learn,
but examine what it is about the techniques that makes one or other of
them easier to learn.

41

• Usability. Which of the techniques have you found easier to use so far in
the chapters you have worked through, and which would you expect to be
more useful in commercial application development? Be sure to back your
assertions with an explanation of why you believe them to be true.

Finally, consider what you believe the relative strengths and weaknesses of the
two design approaches to be, and consider to what extent these are or are not
complementary.

42

Chapter 10. Declarative Constraints and
Database Triggers

Table of contents

• Objectives
• Introduction
• Context
• Declarative constraints

– The PRIMARY KEY constraint
– The NOT NULL constraint
– The UNIQUE constraint
– The CHECK constraint

∗ Declaration of a basic CHECK constraint
∗ Complex CHECK constraints

– The FOREIGN KEY constraint
∗ CASCADE
∗ SET NULL
∗ SET DEFAULT
∗ NO ACTION

• Changing the definition of a table
– Add a new column
– Modify an existing column’s type
– Modify an existing column’s constraint definition
– Add a new constraint
– Drop an existing constraint

• Database triggers
– Types of triggers

∗ Event
∗ Level
∗ Timing

– Valid trigger types
• Creating triggers

– Statement-level trigger
∗ Option for the UPDATE event

– Row-level triggers
∗ Option for the row-level triggers

– Removing triggers
– Using triggers to maintain referential integrity
– Using triggers to maintain business rules

• Additional features of Oracle
– Stored procedures
– Function and packages
– Creating procedures
– Creating functions

1

– Calling a procedure from within a function and vice versa
• Discussion topics
• Additional content and activities

Objectives

At the end of this chapter you should be able to:

• Know how to capture a range of business rules and store them in a
database using declarative constraints.

• Describe the use of database triggers in providing an automatic response
to the occurrence of specific database events.

• Discuss the advantages and drawbacks of the use of database triggers in
application development.

• Explain how stored procedures can be used to implement processing logic
at the database level.

Introduction

In parallel with this chapter, you should read Chapter 8 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter introduces you to some of the most advanced features of Relational
databases and SQL, namely declarative constraints, database triggers and stored
procedures. These features have been made available in popular DBMSs such
as Oracle. They provide those DBMSs with greater flexibility and power in
dealing with complexities in many demanding business applications.

The reason for studying these advanced database features is that we need to
address a growing trend of providing mechanisms for the processing as well as
storage of data in database systems. Declarative constraints are a means of
recording some types of business rules within a database system, and by doing
so, have them systematically applied across all the applications operating on the
database. Database triggers and stored procedures are additional mechanisms
provided in some of the most powerful DBMSs (e.g. Oracle) for storing and
applying logic at the database rather than application level.

The contents of this chapter are closely related to some of the others in this
module. The distribution of processing in an application is an area of design
that has developed with the evolution of client-server computing. A database de-
signer now has choices about whether to place some aspects of business logic at
the server (where the database resides), by having them built into the database
system and enforced at that level, or at the client where it is enforced at the

2

application level. This chapter extends the SQL constructs studied in the chap-
ter on Advanced SQL and discusses how business rules can be captured at the
database level. Because of the design decisions that need to be made about the
placing of business logic, this chapter also relates to the two on database design,
and the chapter on distributed databases and client-server applications.

Because different DBMSs may implement those advanced features in different
ways, our study will be focused on the related functionality provided by Or-
acle. Oracle PL/SQL statements will be used to provide examples to enable
detailed discussions. Other DBMSs should provide similar functionalities, but
you should consult with the system’s documentation should you come across
any incompatibilities. All SQL statements are in capital letters.

Context

For any complex database application, it is likely that there will be two or more
tables involved to store information. It is also likely that data within the same
table or in different tables will have to maintain some kind of relationship to
reflect the corresponding business logic. In addition, some attributes (columns)
of a table may need to have certain conditions imposed on them, and these
conditions, which are often used to capture necessary business rules, need to be
satisfied at all times.

In order to accommodate these practical needs of database applications, the
SQL standard provides mechanisms to maintain the integrity of databases; that
is, the integrity of data within a single table or in different tables as a whole.
Declarative constraints are one of such mechanisms. They are used to define,
according to the business application rules, conditions on columns and tables.
Once defined (i.e. declared), these conditions will be enforced by the DBMS
automatically.

As can be seen from the above description, the types of declarative constraints
that can be declared are predefined by the DBMS, which conforms to the SQL
standard. Usually they are used to store and enforce the kinds of business rules
which are generally needed across different applications. Although they are sim-
ple to use and maintain, they lack some necessary flexibility and may not always
be able to satisfy some specific needs of individual applications. To compensate
for this, some DBMSs (e.g. Oracle) provide another type of mechanism to ensure
database integrity: database triggers and stored procedures.

A procedure is a set of SQL or PL/SQL (in the case of Oracle) statements used
together to execute a particular function. Database triggers are a mechanism
that allows a database designer to write procedures that are automatically exe-
cuted whenever a predefined situation (an event) is raised by the execution of
INSERT, UPDATE or DELETE statements on a table or view. Because the
database designer is responsible for creating triggers and writing procedures,
he/she has an overall control. This control can be used to capture and build

3

business logic into the database as necessary. As a result, this mechanism of-
fers greater flexibility and fewer restrictions for the designer to develop complex
database applications. In short, database triggers and procedures are not only
able to enforce integrity constraints, but can also be used to write customised
functions to satisfy individual applications’ needs.

In the rest of this chapter, we are going to study in detail declarative constraints,
database triggers and procedures. We will see how they are used in practical
applications, what the advantages and drawbacks are, and what the solutions
are to potential problems.

To facilitate detailed discussions, suppose we need to implement a database for a
university. The basic requirements state that there are four entities: STUDENT,
MODULE, LECTURER and DEPT. A student can attend as many modules as
necessary, and a module must be attended by at least one student. A module
must be taught by one and only one lecturer, but a lecturer may teach between
one and four modules. A student should be enrolled to a department; a module
should be offered by one and only one department; a lecturer should belong to
one and only one department.

It is not difficult to see that we will need to implement five tables: four tables
for the four entities and one table (called RECORD) for the many-to-many
relationship between STUDENT and MODULE.

• STUDENT (SID, SNAME, DNAME, SLEVEL, SEMAIL).

• LECTURER (EID, LNAME, LEMAIL, DNAME).

• MODULE (CODE, TITLE, EID, DNAME).

• DEPT (DNAME, LOCATION).

• RECORD (SID, CODE, MARK).

In the STUDENT table, SID is the student’s identity number and the primary
key, SNAME is the student’s name, DNAME is the department to which the
student has enrolled, SLEVEL is the level the student is at, and SEMAIL is
the student’s email address. In the LECTURER table, EID is the employee
identity number for the lecturer and the primary key, LNAME is the lecturer’s
name, LEMAIL is the lecturer’s email address and ENAME is the name of the
department. In the MODULE table, CODE is the code of the module and
the primary key, TITLE is the title of the module, EID is the name of the
lecturer taking the module and DNAME is the name of the department the
module belongs to. The DEPT table has only two attributes, department name
DNAME (primary key) and location of the department in the university. In the
RECORD table, SID is the student number, CODE is the code of the module
and MARK is the mark a student obtained from attending a module. The SID
and CODE makes a primary key.

4

Declarative constraints

Constraints are a mechanism provided within the DDL SQL standard to main-
tain the consistency and integrity of a database and, at the same time, enforce
certain business rules in the database application. There are five different types
of declarative constraints in SQL that can be defined on a database column
within a table, and they are as follows:

• PRIMARY KEY

• NOT NULL

• UNIQUE

• CHECK

• FOREIGN KEY

The PRIMARY KEY constraint

The PRIMARY KEY constraint is used to maintain the so-called entity integrity.
When such a constraint is declared on a column of a table, the DBMS enforces
the following rules:

• The column value must be unique within the table.

• The value must exist for any tuple (a record or a row of data) that is to
be stored in the table. That is, the column cannot have a NULL value.

For the STUDENT table in our university database, for example, we have SID
as the key attribute. As a normal business rule, all students must have a valid
and unique ID number as soon as they are enrolled. Thus, the SID column must
have a unique value and cannot be null. To enforce this business rule, we can
have the PRIMARY KEY constraint declared on the column when creating the
STUDENT table. One way to do this is:

CREATE TABLE STUDENT (

SID NUMBER(5) CONSTRAINT PK_STUDENT PRIMARY KEY,

SNAME VARCHAR2(30),

DNAME VARCHAR2(30),

SLEVEL NUMBER(1),

SEMAIL VARCHAR2(40));

In the above SQL statement, the constraint is declared by using the keywords
CONSTRAINT and PRIMARY KEY. A column definition clause with such a
constraint declaration is called a column constraint clause. “PK_STUDENT”
is a user-defined name for the constraint. It is optional, but when defined, it

5

can help the database designer and user to pinpoint a violation of this con-
straint. The reason is that when this particular constraint is violated, the
DBMS will generate an error/warning message which includes the constraint’s
name. A usual convention for defining a PRIMARY KEY constraint’s name is
“PK_Table_Name”.

There is an alternative way to declare the PRIMARY KEY constraint:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30),

SLEVEL NUMBER(1),

SEMAIL VARCHAR2(40),

CONSTRAINT PK_STUDENT PRIMARY KEY (SID));

OR

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30),

SLEVEL NUMBER(1),

SEMAIL VARCHAR2(40),

PRIMARY KEY (SID));

In this SQL statement, a separate clause (called table constraint clause) is used
to define the constraint. The column name (e.g. SID) must be explicitly stated
in the list (i.e. within the brackets ()). If the table has a composite key, then
the list will include all the key attributes. For example, to create the RECORD
table, we have:

CREATE TABLE RECORD (

SID NUMBER(5),

CODE VARCHAR2(6),

MARK NUMBER(3),

CONSTRAINT PK_RECORD PRIMARY KEY (SID, CODE));

By enforcing the PRIMARY KEY constraint, the DBMS can prevent any at-
tempt or mistake of inserting or updating a student record with a duplicate
student number. It also ensures that every student on record has a valid ID

6

number. In the RECORD table, it ensures that each record has a unique com-
bination of SID and CODE values, which means that a student will never be
allowed to have two or more records for the same module.

It must be emphasised that a table can have at most one PRIMARY KEY
constraint, and it is actually optional (a table does not have to have a PRIMARY
KEY constraint). However, it is rare that a table be created without such a
constraint, because tables usually do have a primary key.

Review question 1

1. What types of constraints can be declared in SQL?

2. What rules are enforced by the PRIMARY KEY constraint?

3. Is it true that a table must have at least one PRIMARY KEY constraint?

The NOT NULL constraint

The NOT NULL constraint is imposed on any column that must have a value.
In the STUDENT table, for example, the attributes DNAME and SLEVEL can
have this constraint declared on them to reflect the application requirement that
whenever a student is enrolled, he/she must be assigned to a department and
be at a certain level.

To declare the constraint on DNAME and SLEVEL, we can use the following
SQL statement to create table STUDENT:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) CONSTRAINT NN_STUDENT_DNAME NOT
NULL,

SLEVEL NUMBER(1) NOT NULL,

SEMAIL VARCHAR2(40),

CONSTRAINT PK_STUDENT PRIMARY KEY (SID));

You may have noticed that the constraint on DNAME has been given a user-
defined name “NN_STUDENT_DNAME”, while the one on SLEVEL has not.
It is optional to name a NOT NULL constraint. Unlike the PRIMARY KEY
constraint, it does not make much difference whether or not you choose to
define a name for the constraint. In Oracle, when the NOT NULL constraint is
violated, the system will generate an error message. However, this message will
not include the name of the NOT NULL constraint, even if one is defined.

7

Also notice that when a constraint is not to be given a user-defined name, the
keyword CONSTRAINT is not used. The same applies to other constraint
definitions.

The UNIQUE constraint

The UNIQUE constraint is the same as the PRIMARY KEY constraint, except
NULL values are allowed. In the STUDENT table, for example, the SEMAIL
attribute should have this constraint. The reason is that according to the uni-
versity’s policy, a student may or may not be given an email account. However,
when one is given, the email account name must be unique. By enforcing this
constraint on SEMAIL, the DBMS can ensure that different students will not
be allowed to have the same email addresses. For those who do not have an
email account, the SEMAIL column can have NULL values.

To declare the UNIQUE constraint on SEMAIL, we can use the following SQL
statement to create table STUDENT:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) NOT NULL,

SLEVEL NUMBER(1) NOT NULL,

SEMAIL VARCHAR2(40) CONSTRAINT UK_STUDENT_SEMAIL
UNIQUE,

CONSTRAINT PK_STUDENT PRIMARY KEY (SID));

Again, an optional user-defined name “UK_STUDENT_SEAMIL” is given to
the constraint. This is a good practice in Oracle, because when the UNIQUE
constraint is violated, the system will generate an error message containing the
name. Similar to the PRIMARY KEY constraint, the constraint’s name helps
pinpoint the violation. You can avoid giving the constraint a name and just use
the UNIQUE keyword:

SEMAIL VARCHAR2(40) UNIQUE

Review question 2

Why is it a good practice to give a name to a declarative constraint?

The CHECK constraint

Declaration of a basic CHECK constraint

8

The CHECK constraint defines a discrete list of values that a column can have.
This list of values may be literally expressed within the constraint declaration
or may be defined using a mathematical expression. In the STUDENT table,
for example, a student must be at a level between 0 and 3. To impose such a
constraint, the CREATE statement for the STUDENT table will be as follows:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) NOT NULL,

SLEVEL NUMBER(1) NOT NULL CONSTRAINT CK_STUDENT_LEVEL
CHECK ((SLEVEL>=0) AND (SLEVEL<=3)),

SEMAIL VARCHAR2(40) CONSTRAINT UK_STUDENT_SEMAIL
UNIQUE,

CONSTRAINT PK_STUDENT PRIMARY KEY (SID));

Notice two things in the above CREATE statement. First, the CHECK con-
straint can be declared in a column constraint clause and concatenated (linked)
with other NOT NULL, UNIQUE and/or PRIMARY KEY constraints. When
a column constraint clause is concatenated, there is no separator between the
different constraints, just a comma after the last constraint. Second, the check
condition (e.g. (SLEVEL>=0) AND (SLEVEL<=3)) can include logical con-
nectors such as AND and OR. Thus, it is possible to define a complex condition.

Alternatively, the CHECK constraint can be defined using a table constraint
clause, such as:

CREATE TABLE STUDENT (

SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) NOT NULL,

SLEVEL NUMBER(1) NOT NULL,

SEMAIL VARCHAR2(40) CONSTRAINT UK_STUDENT_SEMAIL
UNIQUE,

CONSTRAINT PK_STUDENT PRIMARY KEY (SID),

CONSTRAINT CK_STUDENT_LEVEL CHECK ((SLEVEL>=0) AND
(SLEVEL<=3)));

It is worth mentioning that when the CHECK constraint is applied to a list of
literal values, the values are case sensitive. For example, if only students in the
Department of Computing Science or Information Technology are allowed to be

9

in the database, a CHECK constraint is defined on DNAME in the following
way:

……

DNAME VARCHAR2(30) NOT NULL, ……,

CHECK (DNAME IN (‘Computing Science’, ‘Information Technology’)), ……;

Any value that does not exactly match the specified values (including ‘Comput-
ing science’) will cause a violation.

Complex CHECK constraints

It is also possible to create a CHECK constraint that is constructed from mul-
tiple columns of the table. In this case, because it applies to more than one
column, the constraint must be declared with a table constraint clause rather
than a column constraint clause. For example, instead of declaring two CHECK
constraints on SLEVEL and DNAME respectively, we can use a single constraint
called CK_STUDENT_VALIDITY as follows:

CREATE TABLE STUDENT (SID NUMBER(5),

SNAME VARCHAR2(30),

DNAME VARCHAR2(30) NOT NULL,

SLEVEL NUMBER(1) NOT NULL,

SEMAIL VARCHAR2(40) CONSTRAINT UK_STUDENT_SEMAIL
UNIQUE,

CONSTRAINT PK_STUDENT PRIMARY KEY (SID),

CONSTRAINT CK_STUDENT_VALIDITY CHECK (((SLEVEL>=0) AND
(SLEVEL<=3))

AND (DNAME IN (‘Computing Science’, ‘Information Technology’))));

This CREATE statement will create the same STUDENT table as the earlier
statement that uses two separate CHECK constraints.

Review question 3

What is the purpose of using a CHECK constraint?

The FOREIGN KEY constraint

We saw in earlier chapters, when introducing the Relational model, that entities
are often linked by a one-to-many relationship. For example, a department
may contain many employees, so we say there is a one-to-many relationship
between instances of the department entity and instances of the employee entity.

10

Entities related in this way are sometimes referred to as parents and children;
in the example above, the parent entity would be the department table, and the
employee entity would be the child table.

A foreign key is a column or a set of columns (attributes) that links each row
in the child table containing the foreign key to the row of the parent table
containing the matching key value. The FOREIGN KEY constraint enforces
referential integrity, which means that, if the foreign key contains a value, that
value must refer to an existing, valid row in the parent table.

In our university database, for example, SID and CODE are foreign keys in the
RECORD table (notice that SID and CODE together form the primary key
for RECORD as well), and RECORD has two parent tables STUDENT and
MODULE. For a row in RECORD, there must be an existing student row with
the same SID value in STUDENT, and a valid row in MODULE with the same
CODE value. Otherwise, the referential integrity is broken. One important
implication of this, is that when using FOREIGN KEY constraints, the parent
tables must be created before the child tables, and the parent tables must be
populated before the child tables, in order to avoid constraint violations. It is
important to bear in mind this required order of doing things when undertaking
practical work involving FOREIGN KEY constraints.

The following SQL statement can be used to declare the FOREIGN KEY con-
straints on SID and CODE when creating the RECORD table.

CREATE TABLE RECORD (

SID NUMBER(5),

CODE VARCHAR2(6),

MARK NUMBER(3),

CONSTRAINT PK_RECORD PRIMARY KEY (SID, CODE),

CONSTRAINT FK_RECORD_SID FOREIGN KEY (SID) REFERENCES
STUDENT,

FOREIGN KEY (CODE) REFERENCES MODULE);

It can be seen from the above example that:

• The FOREIGN KEY constraint can be given an optional name. In the
example, FK_RECORD_SID is the name for the constraint on SID. To
define the name, the keyword CONSTRAINT must be used. Otherwise,
it is omitted as in the case of declaring the constraint on CODE.

• The keywords FOREIGN KEY define which column (or columns) is the
foreign key column to be constrained.

• The keyword REFERENCES indicates the parent table.

11

By declaring and enforcing the FOREIGN KEY constraint, the DBMS can
ensure that the referential integrity is maintained in both the child table(s) and
the parent table(s).

In the child table, the DBMS will not allow any INSERT or UPDATE operation
that attempts to create a foreign key value without a matching candidate key
value in the corresponding parent table (as indicated by the REFERENCES
clause).

In the parent table, the DBMS ensures that appropriate actions are taken for any
UPDATE or DELETE operation that attempts to change or delete a candidate
key value that is being referenced by some rows in the child table. The kind of
actions that can be taken are user definable. They are CASCADE, SET NULL,
SET DEFAULT and NO ACTION.

CASCADE

This action can be triggered by either a DELETE or an UPDATE operation.

When a parent row is deleted, all its child rows are also deleted. This action
can subsequently be applied to each child row deleted, because such rows may
themselves have a candidate key that is used as a foreign key in some other
tables. Thus, this action may be executed in a cascading manner.

The CASCADE option can be specified in SQL as follows:

CREATE TABLE RECORD (

SID NUMBER(5),

CODE VARCHAR2(6),

MARK NUMBER(3),

CONSTRAINT PK_RECORD PRIMARY KEY (SID, CODE),

FOREIGN KEY (SID) REFERENCES STUDENT ON DELETE CASCADE,

FOREIGN KEY (CODE) REFERENCES MODULE);

In this example, when a student row is deleted from the STUDENT table, all
his/her records will also be removed from the RECORD table.

When the candidate key value is changed (by a UPDATE operation), the foreign
key column in the child table is set to the same new value. Similar to CASCADE
by DELETE, such update actions can be carried out in a cascading manner to
the child tables of the child table and so on. For example, when a student’s
identity number (SID) is changed, all his/her records in the RECORD table
should have the new SID value to replace the old. In Oracle, such an action can
be defined by creating a trigger (to be discussed later).

12

SET NULL

When a row is deleted from the parent table, all its child rows will have their
corresponding foreign key column set to NULL. This option is only valid if the
foreign key column allows NULL value (i.e. it has neither the PRIMARY KEY
constraint nor the NOT NULL constraint).

Similarly, when the candidate key value of the parent row is changed, all its child
rows may have their corresponding foreign key column set to NULL. Again, this
option is valid if and only if the foreign key column allows NULL value.

The SET NULL option can be specified in Oracle by creating corresponding
triggers.

SET DEFAULT

By having this option, the operation of deleting the parent row or updating the
candidate key value in the parent table will set the corresponding foreign key
column in the child table to its default value. This option is only valid if the
foreign key column has a DEFAULT value specified.

Again in Oracle, this option can be implemented using appropriate triggers.

NO ACTION

This is the option by default. If there is no other option specified, the DBMS
will reject any DELETE or UPDATE in the parent table that may affect rows
in the child tables. Any such illegal attempt (to break the referential integrity)
will raise an error message in Oracle.

Review question 4

1. Does the keyword CONSTRAINT always need to be used in declaring a
constraint?

2. What are the rules enforced by the FOREIGN KEY constraint?

Activity 1 - Creating tables with appropriate constraints

For the university database described in the Context section, we now want to
use SQL to create five tables as specified below:

STUDENT

• SID: a five-digit number, which is also the primary key of the table.

• SNAME: a string of characters; maximum length is 30.

• SLEVEL: a single-digit integer; must have a value.

• SEMAIL: a string of characters; maximum length is 40; must be unique.

• DNAME: foreign key referring to the DEPT table; must have a value.

13

MODULE

• CODE: a string of 6 letters and/or numbers; primary key of the table.

• TITLE: a string of characters; maximum length is 45; must be unique.

• EID: foreign key referring to the LECTURER table; must have a value.

• DNAME: foreign key referring to the DEPT table; must have a value.

LECTURER

• EID: a six-digit number; primary key of the table.

• LNAME: a string of characters; maximum length is 30.

• LEMAIL: a string of characters; maximum length is 40; must be unique.

• DNAME: foreign key referring to the DEPT table; must have a value.

DEPT

• DNAME: a string of characters; maximum length is 30; primary key of
the table.

• LOCATION: a string of characters; maximum length is 35; must have a
value.

RECORD

• SID: foreign key referring to the STUDENT table; primary key attribute.

• CODE: foreign key referring to the MODULE table; primary key attribute.

• MARK: an integer.

Activity 2 - Inserting data into the tables and enforcing constraints

Having created the five tables, we can now insert data records into them. The
records that are to be stored are listed below. Insert each of them and see
what happens after the insertion of the highlighted rows, bearing in mind the
constraints that some of the columns may have.

14

15

Activity 3 - Maintaining referential integrity

We have learned that by declaring and enforcing the FOREIGN KEY constraint,
the DBMS can ensure that the referential integrity is maintained in both the
child table(s) and the parent table(s).

In the child table, the DBMS will not allow any INSERT or UPDATE operation
that attempts to create a foreign key value without a matching candidate key
value in the corresponding parent table (as indicated by the REFERENCES
clause). We have seen one of such examples in Activity 2.

In the parent table, the DBMS ensures that appropriate actions are taken for any
UPDATE or DELETE operation that attempts to change or delete a candidate
key value that is being referenced by some rows in the child table.

Now try to perform the following two operations on our university database and
see what happens:

• Operation 1: Change the name of the Department of Computing Science
to simply ‘Computing’ in the DEPT table.

• Operation 2: Delete all level 3 students from the STUDENT table.

16

Changing the definition of a table

Once created, a table’s definition can still be changed using the ALTER TABLE
command in SQL. Different DBMSs implement ALTER TABLE differently, pro-
viding more or less functionality than that specified in the SQL standard. In
Oracle, the following operations can be carried out on a table using appropriate
ALTER TABLE statements:

• Add a new column, including a constraint declaration for that column.

• Modify an existing column’s type, with certain restrictions.

• Modify an existing column’s constraint definition, with certain restric-
tions.

• Add a new constraint to an existing column.

• Drop (remove) an existing constraint from a column.

Add a new column

Suppose we now want to create a new column in the RECORD table to
store the date on which the mark was obtained. The column is to be named
EXAM_DATE, and can be added in the following way:

ALTER TABLE RECORD

ADD EXAM_DATE DATE;

If there is an application requirement stating that the exam date must not be
earlier than 1st January 1998 in order for the mark to be valid, we can include
a CHECK constraint as well when creating the new column. In this case, the
following SQL statement is used instead of the previous one:

ALTER TABLE RECORD

ADD EXAM_DATE DATE CONSTRAINT CK_RECORD_DATE CHECK
(TO_CHAR(EXAM_DATE, ‘YYMMDD’) >= ‘980101’);

The constraint is given a name “CK_RECORD_DATE”. The system function
TO_CHAR is used to convert EXAM_DATE into a string so that it can be
compared with ‘980101’, representing 1st January 1998. Other constrains can
be specified in the column constraint clause in a similar way.

Modify an existing column’s type

Using the ALTER TABLE command, we can modify the type definition of a
column with the following restrictions:

17

• If there is data (except NULL) present in the column, then the type of
this column cannot be changed. The type definition can only be changed
if the table is empty, or all values in the column concerned are NULL.

• If the type definition is changed on a column with a UNIQUE or PRI-
MARY KEY constraint, it may potentially become incompatible with the
data type of a referencing FOREIGN KEY. Thus, the ALTER TABLE
command should be used with caution.

The following SQL statement changes the data type of SID in the RECORD
table to NUMBER(9) (the original type was NUMBER(5)):

ALTER TABLE RECORD

MODIFY SID NUMBER(9);

Notice that SID in RECORD is a foreign key referencing SID in STUDENT
which still has the type NUMBER(5). However, because NUMBER(9) and
NUMBER(5) are compatible, this ALTER TABLE operation is allowed. If we
attempt to change SID to be of type VARCHAR2(5), it will be rejected because
of incompatible data types.

Modify an existing column’s constraint definition

There are a number of possibilities for modifying a constraint definition. If a
column has the NOT NULL constraint, it can be changed to NULL to allow
null values, and vice versa.

For example, the SEMAIL column in the STUDENT table did allow NULL
values. If we wish to change this, the following SQL statement is used:

ALTER TABLE STUDENT MODIFY SEMAIL NOT NULL;

Notice that the above operation is valid if and only if the table is empty or the
SEMAIL column does not have any NULL value. Otherwise, the operation is
rejected.

The SEMAIL column can also be changed back to allow NULL values as follow-
ing:

ALTER TABLE STUDENT MODIFY SEMAIL NULL;

For other existing constraints (i.e. UNIQUE, CHECK and FOREIGN KEY), if
they need be changed, they have to be removed first (DROP) and then new
ones added (ADD).

Add a new constraint

New constraints, such as UNIQUE, CHECK and FOREIGN KEY, can be added
to a column.

18

In our university database, for example, we may add a UNIQUE constraint on
SNAME in the STUDENT table. As a result, no students can have the same
name in the database.

ALTER TABLE STUDENT

ADD CONSTRAINT UK_STUDENT_SNAME UNIQUE(SNAME);

In the RECORD table, if we want to ensure that MARK is always less than or
equal to 100, we can add a CHECK constraint on MARK as follows:

ALTER TABLE RECORD ADD CONSTRAINT CK_RECORD_MARK
CHECK (MARK <= 100);

In the LECTURER table, DNAME is a foreign key with a link to the DEPT
table. If we did not declare a FOREIGN KEY constraint on DNAME when
creating LECTURER, we can add it now using the following statement:

ALTER TABLE LECTURER

ADD CONSTRAINT FK_LECTURER_DNAME

FOREIGN KEY (DNAME) REFERENCES DEPT;

All the keywords in the statements are highlighted. Notice that we have given
names to all the newly added constraints. They will be helpful when constraints
have to be dropped.

Drop an existing constraint

The ALTER TABLE … DROP command is used to remove an existing constraint
from a column. This operation is effectively to delete its definition from the data
dictionary of the database.

Earlier, we added a UNIQUE constraint (named UK_STUDENT_SNAME)
on SNAME in the STUDENT table. It prevents any students having the same
name. Obviously it is not practically useful, because it is always possible that
some students may happen to have the same name. In order to remove this
constraint, we can use the following SQL statement:

ALTER TABLE STUDENT DROP CONSTRAINT UK_STUDENT_SNAME;

Notice that in order to drop a constraint, its name has to be specified in the
DROP clause. There is no difficulty if the constraint has a user-defined name.
However, if the user does not give a name to the constraint when it is declared,
the DBMS will automatically assign a name to it. To remove such a constraint,
the system-assigned name has to be found out first. It can be done in Oracle,
but it causes some unnecessary trouble. This may be another incentive to define
a name for a constraint when it is declared.

Review question 5

19

1. How does one change the definition of a constraint on a column?

2. How does one remove an existing constraint?

Activity 4 - Changing an existing column’s constraint

In Activity 2, when we were trying to insert the following record:

into the STUDENT table, an error occurred. This was because there was a
NOT NULL constraint declared on SLEVEL. As a result, the SLEVEL column
cannot take NULL values. The insertion did not take place.

In this activity, we will change the constraint on SLEVEL from NOT NULL to
NULL so that NULL value is allowed. Write an SQL statement to perform the
change and then re-insert the record into the STUDENT table. It should now
be held in the table.

Activity 5 - Adding a new constraint to a column

When the RECORD table was created, there was no constraint on MARK. As a
normal business rule, however, we know that a student’s mark should always be
between 0 and 100. Thus, we can declare an appropriate constraint to enforce
this rule. Since the RECORD table has already been created, we need to use
the ALTER TABLE command to add the new constraint.

Write a proper SQL statement to perform the required operation. Having added
the new constraint, try to increase all the marks in module CS1234 by 80 and
see what happens.

Activity 6 - Modifying an existing FOREIGN KEY constraint

In Activity 3, we could not delete level 3 students from the STUDENT table,
because they were still being referenced by some child rows via the foreign key
SID in the RECORD table.

Now suppose that we want to relax the constraint a bit so that we may remove
student rows from the STUDENT table together with their child rows. In this
case, the FOREIGN KEY constraint on SID in RECORD needs be changed to
include the option to allow cascade deletions.

Write proper SQL statements to perform the required modification. Remember
that for existing constraints such as FOREIGN KEY, UNIQUE and CHECK, if
they need be modified, they have to be removed first and then new ones added.

Now, having modified the constraint, perform the operation to delete all level
3 students from the STUDENT table. Then check both the STUDENT and
RECORD tables to see what rows have been deleted.

20

Database triggers

A trigger defines an action the database should take when some database-related
event occurs. Triggers may be used to:

• Supplement declarative constraints, to maintain database integrity.

• Enforce complex business rules.

• Audit changes to data.

Different DBMSs may implement the trigger mechanism differently. In this
chapter, we use Oracle to discuss triggers. In Oracle, a trigger consists of a set of
PL/SQL statements. The execution of triggers is transparent to the user. They
are executed by the DBMS when specific types of data manipulation commands
are performed on specific tables. Such commands include INSERT, UPDATE
and DELETE.

Because of their flexibility, triggers may supplement database integrity con-
straints. However, they should not be used to replace them. When enforcing
business rules in an application, you should first rely on the declarative con-
straints available in the DBMS (e.g. Oracle); only use triggers to enforce rules
that cannot be coded through declarative constraints. This is because the en-
forcement of the declarative constraints is more efficient than the execution of
user-created triggers.

It is worth mentioning that in order to create a trigger on a table, you must be
able to alter that table and any other table that may subsequently be affected
by the trigger’s action. You need to ensure that you have sufficient privilege to
do so.

Types of triggers

In Oracle, there are fourteen types of triggers that can be implemented using
PL/SQL. Once again, note that other DBMSs may not have the same support,
and that you should consult your system’s documentation if you encounter any
problems. The type of a trigger is defined by the following three features:

• Event

• Level

• Timing

Event

Refers to the triggering SQL statement; that is, INSERT, UPDATE or DELETE.
A single trigger can be designed to fire on any combination of these SQL state-
ments.

21

Level

Refers to statement-level versus row-level triggers. The level of a trigger denotes
whether the trigger fires once per SQL statement or once for each row affected
by the SQL statement.

Statement-level triggers execute once for each SQL statement. For example, if
an UPDATE statement updates 300 rows in a table, the statement-level trigger
of that table would only be executed once. Thus, these triggers are not often
used for data-related activities. Instead, they are normally used to enforce
additional security measures on the types of transactions that may be performed
on a table.

Statement-level triggers are the default type of triggers created via the CREATE
TRIGGER command.

Row-level triggers execute once for each row operated upon by a SQL statement.
For example, if an UPDATE statement updates 300 rows in a table, the row-level
trigger of that table would be executed 300 times. Also, row-level triggers have
access to column values of the row currently being operated upon by the SQL
statement. They can evaluate the contents of each column for that row. Thus,
they are the most common type of triggers and are often used in data-auditing
applications.

Row-level triggers are created using the FOR EACH ROW clause in the CRE-
ATE TRIGGER command.

It is important to know that a trigger can only be associated with one table,
but a table can have a mixture of different types of triggers.

Timing

Timing denotes whether the trigger fires BEFORE or AFTER the statement-
level or row-level execution. In other words, triggers can be set to occur im-
mediately before or after those triggering events (i.e. INSERT, UPDATE and
DELETE).

Within the trigger, one will be able to reference the old and new values involved
in the transaction. ‘Old’ refers to the data as it existed prior to the transaction.
UPDATE and DELETE operations usually reference such old values. ‘New’ val-
ues are the data values that the transaction creates (such as being INSERTed).

If one needs to set a column value in an inserted row via a trigger, then a BE-
FORE INSERT trigger is required in order to access the ‘new’ values. Using an
AFTER INSERT trigger would not allow one to set the inserted value, since the
row will already have been inserted into the table. For example, the BEFORE
INSERT trigger can be used to check if the column values to be inserted are
valid or not. If there is an invalid value (according to some pre-specified business

22

rules), the trigger can take action to modify it. Then only validated values will
be inserted into the table.

AFTER row-level triggers are often used in auditing applications, since they do
not fire until the row has been modified. Because the row has been successfully
modified, it implies that it has satisfied the referential integrity constraints
defined for that table.

In Oracle, there is a special BEFORE type of trigger called an INSTEAD OF
trigger. Using an INSTEAD OF trigger, one can instruct Oracle what to do
instead of executing the SQL statement that has activated the trigger. The code
in the INSTEAD OF trigger is executed in place of the INSERT, UPDATE or
DELETE triggering transaction.

Valid trigger types

To summarise, the fourteen types of triggers are listed below.

Triggered by INSERT:

• BEFORE INSERT statement-level.

• BEFORE INSERT row-level.

• AFTER INSERT statement-level.

• AFTER INSERT row-level.

Triggered by UPDATE:

• BEFORE UPDATE statement-level.

• BEFORE UPDATE row-level.

• AFTER UPDATE statement-level.

• AFTER UPDATE row-level.

Triggered by DELETE:

• BEFORE DELETE statement-level.

• BEFORE DELETE row-level.

• AFTER DELETE statement-level.

• AFTER DELETE row-level.

To replace the triggering event:

• INSTEAD OF statement-level.

• INSTEAD OF row-level.

23

The first twelve types of triggers are most commonly used, and are discussed in
this chapter. The INSTEAD OF triggers are more complex than others, and
interested students are advised to refer to books specifically dealing with Oracle
PL/SQL programming.

Review question 6

What is a database trigger? Should triggers be used to replace declarative
constraints and why?

Creating triggers

Instead of presenting a formal syntax for creating triggers, a number of examples
are used to illustrate how different types of triggers are created.

Statement-level trigger

This type of trigger is created in the following way:

CREATE TRIGGER first_trigger_on_student

BEFORE INSERT ON STUDENT BEGIN

[the trigger body consisting of PL/SQL code;]

END;

The CREATE TRIGGER clause must define the trigger’s name. In the
example, it is called “first_trigger_on_student”. In practice, the name
must be something that can reflect what the trigger does. In this sense,
“first_trigger_on_student” is not a good choice of name, but merely for
convenience of illustrating the syntax.

In the next clause (after CREATE TRIGGER), the timing and triggering event
must be specified. In our example, the trigger will fire BEFORE (timing) any
INSERT (event) operation ON the STUDENT table. Obviously, timing can
also be AFTER, and event be UPDATE or DELETE.

The last part of a trigger definition is the BEGIN/END block containing
PL/SQL code. It specifies what action will be taken after the trigger is invoked.

In the above example, instead of defining a single triggering event (INSERT), a
combination of the three events may be specified as follows:

CREATE OR REPLACE TRIGGER first_trigger_on_student

BEFORE INSERT OR UPDATE OR DELETE ON STUDENT BEGIN

[the trigger body consisting of PL/SQL code;]

END;

24

In this case, any of the INSERT UPDATE, and DELETE operations will
activate the trigger. Also notice that instead of using a CREATE TRIG-
GER clause, we use CREATE OR REPLACE TRIGGER. Because the
“first_trigger_on_student” trigger is already in existence, the keywords
CREATE OR REPLACE are used. For defining new triggers, the keyword
CREATE alone is sufficient

Option for the UPDATE event

If the timing and triggering event are simply defined as

BEFORE UPDATE ON STUDENT

then UPDATE on any column will fire the trigger. In Oracle, we have the option
to specify a particular column whose update will activate the trigger. Updates
on other columns will have no effects on the trigger.

For example, we can define a trigger specifically for UPDATE on DNAME in
the STUDENT table (meaning whenever a student changes department, the
trigger fires). This trigger is called “second_trigger_on_student”.

CREATE TRIGGER second_trigger_on_student

BEFORE UPDATE OF DNAME ON STUDENT

BEGIN [the trigger body consisting of PL/SQL code;]

END;

Notice the option “OF column’s name” is used for the UPDATE operation.

Row-level triggers

To define a row-level trigger, the FOR EACH ROW clause must be included
in the CREATE TRIGGER statement. For example, if we want to have a
trigger for each INSERT, UPDATE and DELETE operation on every row that
is affected, we can create the trigger in the following way:

CREATE TRIGGER third_trigger_on_student

AFTER INSERT OR UPDATE OR DELETE ON STUDENT

FOR EACH ROW

BEGIN

[the trigger body consisting of PL/SQL code;]

END;

The trigger will fire whenever a row has been inserted, updated or deleted. At
the row-level, we can also add the option for the UPDATE event.

25

CREATE OR REPLACE TRIGGER third_trigger_on_student

AFTER INSERT OR UPDATE OF DNAME OR DELETE ON STUDENT

FOR EACH ROW

BEGIN

[the trigger body consisting of PL/SQL code;]

END;

Option for the row-level triggers

For row-level triggers, there is another optional clause which can be used to
further specify the exact condition for which the trigger should fire. This is the
“WHEN ‘condition’ ” clause. The ‘condition’ must be evaluated to be TRUE for
the trigger to fire. If it is evaluated to be FALSE or does not evaluate because
of NULL values, the trigger will not fire.

For example, if we want to take some action when a student is moved to the
Department of Computing Science, we can define a trigger like the following:

CREATE TRIGGER fourth_trigger_on_student

AFTER UPDATE OF DNAME ON STUDENT

FOR EACH ROW WHEN (NEW.DNAME = ‘Computing Science’)

BEGIN

[the trigger body consisting of PL/SQL code;]

END;

Notice how the WHEN clause is used to specify the exact condition for the
trigger to fire. The ‘condition’ can be a complex Boolean expression connected
by AND/OR logical operators.

Also, the notation “NEW.column_name” (such as NEW.DNAME) refers to the
column (e.g. DNAME) which has a new value as a result of an INSERT or
UPDATE operation. Similarly, the notation “OLD.column_name” refers to the
column which still has the old value prior to an UPDATE or DELETE operation.
These two notations are very useful for maintaining data integrity. (Note that
in the BEGIN … END block, a colon ‘:’ needs to be placed before OLD and
NEW.)

Another example: Suppose we want to take some action when a student is to
leave the Department of English. We can define an appropriate trigger in the
following way:

CREATE TRIGGER fifth_trigger_on_student

BEFORE UPDATE OF DNAME OR DELETE ON STUDENT

26

FOR EACH ROW WHEN (OLD.DNAME = ‘English’)

BEGIN

[the trigger body consisting of PL/SQL code;]

END;

Compare “fifth_trigger_on_student” with “fourth_trigger_on_student”, and
see how they are different.

Removing triggers

Existing triggers can be deleted via the DROP TRIGGER command. For ex-
ample, the “first_trigger_on_student” trigger is removed from the STUDENT
table in the following way:

DROP TRIGGER first_trigger_on_student;

Using triggers to maintain referential integrity

As studied in the earlier part of this chapter, the FOREIGN KEY constraint is
often used for ensuring the referential integrity among parent and child tables.
However, the FOREIGN KEY constraint can only enforce standard integrity
rules. They are:

• The foreign key column in the child table cannot reference non-existing
rows in the parent table.

• If the DELETE CASCADE option is not chosen, a row in the parent table
that is being referenced via a foreign key column cannot be deleted.

• If the DELETE CASCADE option is chosen, the row can be deleted to-
gether with all the rows in the child table which reference the parent row.

If other non-standard rules have to be enforced as well, then appropriate triggers
need to be created. Some possible non-standard rules are:

• Cascade updates.

• Set the foreign key column to NULL on updates and deletes.

• Set a default value to the foreign key column on updates and deletes. The
meanings of these rules have been explained before.

It must be emphasised that if triggers are used instead of the standard FOR-
EIGN KEY constraint, then for each of the integrity rules (standard and non-
standard), one or more triggers may need to be implemented. Also, the FOR-
EIGN KEY constraint must not be declared when creating the corresponding
tables. Otherwise, the triggers will not work, because the standard FOREIGN
KEY constraint will override the trigger actions.

27

In this section, we are going to see two examples of using triggers to implement
the DELETE CASCADE rule and the UPDATE CASCADE rule. The two
tables concerned are STUDENT and RECORD:

STUDENT(SID, SNAME, DNAME, SLEVEL, SEMAIL)

RECORD(SID, CODE, MARK)

We know that SID in RECORD is a foreign key linking to STUDENT.

To create the trigger to cascade deletes:

CREATE TRIGGER cascade_deletes_student_record

BEFORE DELETE ON STUDENT

FOR EACH ROW

BEGIN

DELETE FROM RECORD

WHERE RECORD.SID = :OLD.SID;

END;

It can be seen from the above example that, before the parent row is deleted from
the STUDENT table, all the child rows in the RECORD table are deleted. This
maintains the referential integrity. (In the PL/ SQL code, :OLD.SID represents
the SID of the row in the STUDENT table, which is to be deleted.)

To create the trigger to cascade updates:

CREATE TRIGGER cascade_updates_student_record

AFTER UPDATE OF SID ON STUDENT

FOR EACH ROW

BEGIN

UPDATE RECORD

SET RECORD.SID = :NEW.SID

WHERE RECORD.SID = :OLD.SID;

END;

Again, it can be seen from the example that, after the parent row is updated
in the STUDENT table, all the child rows in the RECORD table are updated
accordingly. This maintains the referential integrity.

28

Using triggers to maintain business rules

In the Context section, it was mentioned that in the university database, a
lecturer can teach no more than four modules (i.e. this is a business rule). This
restriction can be enforced by defining a trigger on the MODULE table to
ensure that no lecturer has more than four corresponding rows in the table.
The MODULE table’s structure is as following:

MODULE(CODE, TITLE, EID, DNAME)

To create the trigger,

CREATE TRIGGER max_teaching_load

BEFORE INSERT OR UPDATE OF EID ON MODULE

FOR EACH ROW

DECLARE NO_OF_MODULES INTEGER(1);

BEGIN

SELECT COUNT(*) INTO NO_OF_MODULES

FROM MODULE

WHERE MODULE.EID = :NEW.EID;

IF NO_OF_MODULES >= 4 THEN

RAISE_APPLICATION_ERROR(-20001, ‘Maximum teaching load exceeded
for this lecturer!’);

END IF;

END;

In the above code, the DECLARE NO_OF_MODULES INTEGER(1) clause
defines an integer variable called NO_OF_MODULES.

In this example, the key point is that we use the RAISE_APPLICATION_ERROR
procedure (system provided) to generate an error message and stop the execu-
tion of any INSERT or UPDATE OF EID operation which may result in a lec-
turer teaching more than four modules. In RAISE_APPLICATION_ERROR,
the number -20001 is a user-defined error number for the condition (the number
must be between –20001 and –20999), and the text in single quotes is the error
message to be displayed on the screen.

Now suppose that the university has another rule stating that a student’s mark
cannot be changed by more than 10% of the original mark. In this case, we can
define a trigger on the RECORD table in the following way:

CREATE OR REPLACE TRIGGER mark_change_monitoring

BEFORE UPDATE OF MARK ON RECORD

29

FOR EACH ROW

BEGIN

IF ((:NEW.MARK/:OLD.MARK) >= 1.1) OR ((:OLD.MARK/:NEW.MARK)
>= 1.1)

THEN

RAISE_APPLICATION_ERROR(-20002, ‘Warning: Large percentage change
in marks prohibited.’);

END IF;

END;

The above two examples should have shown you what triggers are capable of
doing. In fact, using Oracle’s PL/SQL language, one can write much more
complex triggers to enforce various business rules. The discussion of PL/SQL is
beyond the scope of this module. Interested students are again advised to refer
to any book specifically dealing with Oracle PL/SQL programming for more
information on writing triggers.

Review question 7

1. When and how do we use triggers to maintain referential integrity?

2. How do we use triggers to implement business rules in the database?

Activity 7 - Creating triggers to prevent updates and deletions

In the university database, we can see that the rows in the DEPT table are often
referenced by many child rows in a number of other tables (e.g. STUDENT,
LECTURER and MODULE). Although there are FOREIGN KEY constraints
declared on the child tables to maintain the referential integrity, we can still
define a trigger in the parent table (i.e. DEPT) to stop any attempt to change
the name of the department and/or to remove any of the DEPT rows. This is
corresponding to the business rule stating that once a university department is
established, it will be there ‘forever’ and will not be allowed to change name
(we assume that such a rule is necessary).

In this activity, write appropriate PL/SQL statements to create the trigger.
After the trigger is created, try to change the name of some departments in
DEPT and delete a row from DEPT, and see what happens. Find out how the
trigger works.

Note that in order to execute PL/SQL statements in some DBMSs (including
Oracle’s SQL*PLUS), you may need to end the block of statements with a ‘/’.
Consult your DBMS’s documentation for any additional semantics requirements.

Activity 8 - Creating triggers to maintain data validity

In Activity 5, we have declared a CHECK constraint on MARK in the RECORD
table. Any mark that is not between 0 and 100 will cause a violation of the

30

constraint. Applying the CHECK constraint, however, we would not know
whether the mark is greater than 100 or smaller than 0 (i.e. a negative number).

In this activity, we will create a trigger to replace the original CHECK constraint,
which can tell us how the restriction on MARK is violated. Whenever the value
of MARK is beyond the valid range (0 – 100), the trigger will generate an error
message informing users whether it is greater than 100 or a negative number.

Write proper PL/SQL statements to create the trigger, and use some SQL UP-
DATE and INSERT statements to test it. Remember we need to drop the
CHECK constraint first, otherwise it will override any other triggers on MARK.

Activity 9 - Creating triggers to validate new column values

In the STUDENT table, the column SLEVEL can only take value 0, 1, 2, 3 or
NULL. Any other value is illegal. In order to ensure that only valid values are
stored in SLEVEL, we can create a trigger to automatically validate any new
value to be updated or inserted. The rules are:

• If a new value is smaller than 0, then set it to 0 before updating or inserting
it.

• An appropriate message is always displayed on the screen to inform the
user that a proper validation has been carried out.

Write proper PL/SQL statements to create the trigger, and use some SQL UP-
DATE and INSERT statements to test it.

Note that the Oracle’s DBMS_OUTPUT.PUT_LINE procedure can be used
to display text on screen. The basic syntax is:

DBMS_OUTPUT.PUT_LINE (‘the text to be displayed in single quotes’);

Remember that for Oracle, in order to use DBMS_OUTPUT.PUT_LINE to
display text on screen, you need to execute the command “SET SERVEROUT-
PUT ON” once in the SQL*PLUS environment.

Additional features of Oracle

The rest of this chapter deals with some additional features that are present in
Oracle. In other advanced DBMSs, similar features are also available. Again,
please consult your DBMS’s documentation to find out whether or not it sup-
ports the following features.

Stored procedures

Some sophisticated business rules and application logic can be implemented
and stored as procedures within Oracle. In fact, triggers are special types of

31

procedures associated with tables and invoked (called upon) by pre-specified
events.

Stored procedures, containing SQL or PL/SQL statements, allow one to move
code that enforces business rules from the application to the database. As a
result, the code can be stored once for use by different applications. Also, the
use of stored procedures can make one’s application code more consistent and
easier to maintain. This principle is similar to the good practice in general
programming in which common functionality should be coded separately as
procedures or functions.

Some of the most important advantages of using stored procedures are sum-
marised as follows:

• Because the processing of complex business rules can be performed within
the database, significant performance improvement can be obtained in
a networked client-server environment (refer to client-server chapters for
more information).

• Since the procedural code is stored within the database and is fairly static,
applications may benefit from the reuse of the same queries within the
database. For example, the second time a procedure is executed, the
DBMS may be able to take advantage of the parsing that was previously
performed, improving the performance of the procedure’s execution.

• Consolidating business rules within the database means they no longer
need to be written into each application, saving time during application
creation and simplifying the maintenance process. In other words, there
is no need to reinvent the wheel in individual applications, when the rules
are available in the form of procedures.

Function and packages

In Oracle, a procedure is implemented to perform certain operations when called
upon by other application programs. Depending on the operations, it may not
return any value, or it might return one or more values via corresponding vari-
ables when its execution finishes. Unlike procedure, a function always returns
a value to the caller as a result of completing its operations. It is also worth
mentioning that a function may be invoked by code within a procedure, and a
procedure may be called from within a function.

In Oracle, groups of procedures, functions, variables and SQL statements can be
organised together into a single unit, called a package. To execute a procedure
within a package, one must first specify the package name, followed by the
procedure name, as shown in the following example:

DBMS_OUTPUT.PUT_LINE(‘This is an example to show how to use a pro-
cedure within a package.’);

32

In the example, DBMS_OUTPUT is the package containing a number of pro-
cedures relating to displaying message on the screen. PUT_LINE is a proce-
dure within the DBMS_OUTPUT package that can take a string of characters
(i.e. the text in the single quotes) and output them onto the screen.

Note that in order to use Oracle’s DBMS_OUTPUT.PUT_LINE procedure to
display text on screen, you need to execute the command SET SERVEROUT-
PUT ON once in the SQL*PLUS environment.

Creating procedures

We use the following example to illustrate how to create a procedure:

CREATE PROCEDURE check_student_mark (id_number IN INTEGER, mod-
ule_code IN VARCHAR2, the_mark OUT INTEGER)

AS

BEGIN

SELECT MARK INTO the_mark

FROM RECORD

WHERE SID = id_number AND CODE = module_code;

END;

It can be seen from the example, that the syntax for creating procedures is
somewhat similar to that of creating triggers, except that we need to specify
the input and/or output variables to be used in the procedure.

The CREATE PROCEDURE clause defines the procedure’s name (e.g.
“check_student_mark”) as well as variables. The keyword IN defines an input
variable together with its data type (e.g. id_number IN INTEGER), and OUT
defines an output variable together with its data type(e.g. the_mark OUT
INTEGER). The query result is returned via the output variable “the_mark”.

After the keyword AS, the BEGIN/END block contains PL/SQL code to imple-
ment the required operations. It can be as simple as containing a single SQL
statement, as in our example. It can also be as complex as necessary.

The created procedure can then be used to retrieve the mark for a particular
student on a specific module. For example,

check_student_mark(12345, ‘BIS42’, the_mark)

will retrieve the mark for the student with identity number of 12345 on module
BIS42. The query result is stored in the variable “the_mark”.

The CREATE PROCEDURE clause is used for creating a new procedure. To
replace an existing one, we can use CREATE OR REPLACE PROCEDURE.

33

Creating functions

Again we use an example to illustrate how to create a function:

CREATE FUNCTION retrieve_my_mark (id_num IN INTEGER, mod_code
IN VARCHAR2)

RETURN INTEGER

IS

my_mark INTEGER;

BEGIN

SELECT MARK INTO my_mark

FROM RECORD

WHERE SID = id_num AND CODE = mod_code; RETURN (my_mark);

END;

It can be seen from the example, that the syntax for creating functions is sim-
ilar to that of creating procedures. However, there are a couple of important
differences.

The CREATE FUNCTION clause defines the function’s name (e.g. “re-
trieve_my_mark”) as well as input variables. The keyword IN defines an input
variable together with its data type (e.g. id_num IN INTEGER).

The RETURN keyword specifies the data type of the function’s return value,
which can be any valid PL/SQL data type (e.g. RETURN INTEGER). Every
function must have a RETURN clause, because the function must, by definition,
return a value to the calling environment.

In the BEGIN/END block, the RETURN(my_mark) command performs the
necessary action to return the required value to the calling environment.

The created function can then be used to retrieve the mark for a particular
student on a specific module. For example,

my_mark := retrieve_my_mark(12345, ‘CSC4001’)

will retrieve the mark for the student with identity number of 12345 on module
CSC4001. The query result is returned and held in the variable “my_mark”.

The CREATE FUNCTION clause is used for creating a new function. To replace
an existing one, we can use CREATE OR REPLACE FUNCTION.

34

Calling a procedure from within a function and vice versa

If the check_student_mark procedure has already been created, then it can be
used by function retrieve_my_mark. In this case, the function is redefined as
following:

CREATE OR REPLACE FUNCTION retrieve_my_mark (id_num IN INTE-
GER, mod_code IN VARCHAR2)

RETURN INTEGER

IS

my_mark INTEGER;

BEGIN

check_student_mark(id_num, mod_code, my_mark); RETURN (my_mark);

END;

It can be seen from the above example, that instead of rewriting an SQL retrieval
statement, the procedure check_student_mark is used to retrieve the mark and
store the result in the variable my_mark. And then the value held in my_mark
is returned as the value of the function.

Similarly, if the function is created first, then it may be invoked from within the
procedure.

Review question 8

Why are stored procedures useful in databases?

Discussion topics

Having studied this chapter, we should have obtained a fair amount of knowledge
about declarative constraints, database triggers and stored procedures. We have
seen in Oracle that PL/SQL is a very useful as well as powerful language for
creating triggers to enforce business rules.

Now use any database application with which you may be familiar (e.g. for a
bank, a car-rental company, etc) to discuss in general what kind of application
logic and/or business rules should be implemented in the database using con-
straints and triggers. The objective of this discussion is to help you understand
further the usefulness and benefits of the techniques.

Additional content and activities

In this chapter, we have studied the five declarative constraints and the mecha-
nisms for creating database triggers and procedures in more advanced DBMSs

35

such as Oracle. We have seen that the constraints, database triggers and proce-
dures can be effectively used to incorporate application logic and enforce busi-
ness rules in databases.

A number of examples have been provided in this chapter. As additional ac-
tivities, you may wish to try out those examples, using the university database
that has been created during previous activities.

We have also seen in this chapter that the PL/SQL language of Oracle plays
a very important role in creating database triggers and procedures. In fact,
PL/SQL is a powerful language in Oracle that enables us to construct flexible
triggers and procedures to deal with various complex application issues. Al-
though we were not able to cover PL/SQL to a sufficient extent, interested
students who want to develop further knowledge on PL/SQL are advised to
read relevant books.

36

Chapter 11. File Organisation and Indexes

Table of contents

• Objectives
• Introduction
• Context
• Organising files and records on disk

– Record and record type
– Fixed-length and variable-length records in files
– Allocating records to blocks
– File headers
– Operations on files

• File organisations - organising records in files
– Heap file organisation
– Sorted sequential file organisation

∗ Binary search algorithm
∗ Performance issues

– Hash file organisation
∗ Hashing techniques
∗ External hashing
∗ Dynamic hashing
∗ Performance issues

• Single-level ordered indexes
– Primary indexes

∗ Performance issues
– Clustering indexes

∗ Performance issues
– Secondary indexes

∗ Index on key field
∗ Performance issues
∗ Index on a non-key field

– Summary of single-level ordered indexes
• Multilevel indexes

– The principle
– The structure
– Performance issues

• Dynamic multilevel indexes using B-trees and B+ trees
– The tree data structure
– Search trees

∗ Definition of a search tree
– B-trees: Balanced trees

∗ Definition of a B-tree
∗ Performance issues

– B+ trees
∗ Definition of a B+ tree

1

∗ Performance issues
∗ Search, insertion and deletion with B+ trees
∗ Dealing with overflow
∗ Dealing with underflow

– B* tree: A variation of B-tree and B+ tree
– Summary

Objectives

At the end of this chapter you should be able to:

• Describe how files and records can be placed on disks, and the effective
ways in which records can be organised in files.

• Describe a number of different types of indexes commonly found in modern
database environments.

• Understand the data structures which can support the various indexes.

• Be fully aware of the proper ways in which indexes are used.

• Use standard SQL syntax to create and remove different types of index on
a set of tables.

• Be aware of the typical approaches used in industry and commerce to
improve database performance through indexing.

Introduction

In parallel with this chapter, you should read Chapter 16 and Chapter 17 of
Ramez Elmasri and Shamkant B. Navathe, ” FUNDAMENTALS OF Database
Systems“, (7th edn.).

In this chapter, we will study how files and records can be placed on disks, and
what the effective ways are in which records can be organised in files. The three
file organisations we will learn in this chapter are heap file, sorted file and hash
file. The only one goal in applying these various file organisation techniques is
to provide the database system with good performance.

It is not only important that a database is designed well, but part of the design
process also involves ensuring that the structure of the developed system is
efficient enough to satisfy users’ requirements now and into the future.

Database tuning involves techniques that can be used to improve performance.
It is an important and complex subject to which a number of chapters are de-
voted in this module. We will be looking into design issues of indexes, and
the appropriate ways of using indexes. Indexes play a similar role in database

2

systems as they do in books, in that they are used to speed up access to infor-
mation. File structures can be affected by different indexing techniques, and
they in turn will affect the performance of the databases.

It is worth emphasising again the importance of file organisations and their
related access methods. Tuning techniques can help improve performance, but
only to the extent that is allowed by a particular file organisation. For example,
if you have a Ford car, you may obtain a better performance if you have the
car’s engine tuned. However, no matter how hard you tune it, you will never be
able to get a Ferrari’s performance out of it.

Indexes can help database developers build efficient file structures and offer effec-
tive access methods. When properly used and tuned, the database performance
can be improved further. In fact, indexes are probably the single most impor-
tant mechanism explicitly available to database developers and administrators
for tuning the performance of a database.

The contents of this chapter are related to discussions on Database Administra-
tion and Further Performance Tuning Techniques.

Context

In this chapter, we will describe the techniques used to store large amounts of
structured data on disks. These techniques are important for database design-
ers, DBAs (database administrators) and implementers of a DBMS. Database
designers and DBAs must know the advantages and disadvantages of each stor-
age method in order to develop and operate a DBMS for a specific application.
Even an off-the-shelf DBMS will usually have different options available for or-
ganising the data, and the process of physical database design involves selecting
the most appropriate data organisation technique for the given set of application
requirements.

A typical database application will always need to access the database and
retrieve some data for processing. Whenever a certain portion of the data is
needed, it must be located on disk, loaded to main memory for processing, and
then written back to the disk if changes have been made.

The data stored on disk is organised as files of records. Each record is a collection
of data values that can be interpreted as facts about entities, their attributes
and relationships. Records should be stored on disk in a manner that makes it
possible to locate them efficiently whenever they are needed.

There are a number of commonly used file organisations which can determine
how the records of a file are physically placed on disk. In this chapter, we will
be discussing:

• Heap file: which places records on disk in no particular order.

3

• Sorted sequential file: which holds records in a particular order based
on the value of a specified field (i.e. attribute).

• Hashed file: which uses a hash function to decide where a record should
be placed on disk.

In this chapter, we will also introduce access structures called indexes, which
are used to speed up the retrieval of records if certain requirements on search
conditions are met. An index for a file of records works just like an index
catalogue in a library. In a normal library environment, for example, there
should be catalogues such as author indexes and book title indexes. A user may
use one of these indexes to quickly find the location of a required book, if he/she
knows the author(s) or title of the book.

Each index (access structure) offers an access path to records. Some types of
indexes, called secondary access paths, do not affect the physical placement of
records on disk; rather, they provide alternative search paths for locating the
records efficiently based on the indexing fields. Other types of indexes can only
be constructed on a file with a particular primary organisation.

The focus of our study in this chapter will be on the following:

• Primary indexes

• Clustering indexes

• Secondary indexes

• Multilevel indexes

• B-tree and B+ tree structures.

It must be emphasised that different indexes have their own advantages and
disadvantages. There is no universally efficient index. Each technique is best
suited for a particular type of database application.

The merits of indexes can be measured in the following aspects:

• Access types: The kind of access methods that can be supported effi-
ciently (e.g. value-based search or range search).

• Access time: Time needed to locate a particular record or a set of
records.

• Insertion efficiency: How efficient an insertion operation is.

• Deletion efficiency: How efficient a deletion operation is.

• Storage overhead: The additional storage requirement of an index struc-
ture.

It is worth noting that a file of records can have more than one index, just like
for books there can be different indexes such as author index and title index.

4

An index access structure is usually constructed on a single field of a record in
a file, called an indexing field. Such an index typically stores each value of the
indexing field, along with a list of pointers to all disk blocks that contain records
with that field value. The values in the index are usually sorted (ordered) so
that we can perform an efficient binary search on the index.

To give you an intuitive understanding of an index, we look at library indexes
again. For example, an author index in a library will have entries for all authors
whose books are stored in the library. AUTHOR is the indexing field and all
the names are sorted according to alphabetical order. For a particular author,
the index entry will contain locations (i.e. pointers) of all the books this author
has written. If you know the name of the author, you will be able to use this
index to find his/her books quickly. What happens if you do not have an index
to use? This is similar to using a heap file and linear search. You will have to
browse through the whole library looking for the book.

An index file is much smaller than the data file, and therefore searching the
index using a binary search can be carried out quickly. Multilevel indexing goes
one step further in the sense that it eliminates the need for a binary search, by
building indexes to the index itself. We will be discussing these techniques later
on in the chapter.

Organising files and records on disk

In this section, we will briefly define the concepts of records, record types and
files. Then we will discuss various techniques for organising file records on disk.

Record and record type

A record is a unit which data is usually stored in. Each record is a collection
of related data items, where each item is formed of one or more bytes and
corresponds to a particular field of the record. Records usually describe entities
and their attributes. A collection of field (item) names and their corresponding
data types constitutes a record type. In short, we may say that a record type
corresponds to an entity type and a record of a specific type represents an
instance of the corresponding entity type.

The following is an example of a record type and its record:

5

A specific record of the STUDENT type:

STUDENT(9901536, “James Bond”, “1 Bond Street, London”, “Intelligent Ser-
vices”, 9)

Fixed-length and variable-length records in files

A file basically contains a sequence of records. Usually all records in a file are
of the same record type. If every record in the file has the same size in bytes,
the records are called fixed-length records. If records in the file have different
sizes, they are called variable-length records.

Variable-length records may exist in a file for the following reasons:

• Although they may be of the same type, one or more of the fields may be
of varying length. For instance, students’ names are of different lengths.

• The records are of the same type, but one or more of the fields may be a
repeating field with multiple values.

• If one or more fields are optional, not all records (of the same type) will
have values for them.

• A file may contain records of different record types. In this case, records
in the file are likely to have different sizes.

For fixed-length records, the exact size of each record can be determined in
advance. As a result, they can easily be allocated to blocks (a block is the unit
of transfer of data between main memory and disk). Also, we can identify the
starting byte position of each field relative to the starting position of the record,
because each of such records has the same fields, and the field lengths are fixed
and known beforehand. This provides us with a simple way to find field values
of a record in the file.

For records with variable-length fields, we may not know the exact lengths of
those fields in advance. In order to determine the bytes that are needed to

6

accommodate those fields, we can use special separator characters, which do
not appear in any field value (such as ˜, @, or !), to terminate the variable-
length fields. An alternative to this approach is to store the exact length of a
variable-length field explicitly in the record concerned.

A repeating field needs one separator character to separate the repeating values
of the field, and another separator character to indicate termination of the field.
In short, we need to find out the exact size of a variable-length record before
allocating it to a block or blocks. It is also apparent that programs that process
files of variable-length records will be more complex than those for fixed-length
records, where the starting position and size of each field are known and fixed.

We have seen that fixed-length records have advantages over variable-length
records with respect to storage and retrieving a field value within the record.
In some cases, therefore, it is possible and may also be advantageous to use
a fixed-length record structure to represent a record that may logically be of
variable length.

For example, we can use a fixed-length record structure that is large enough to
accommodate the largest variable-length record anticipated in the file. For a
repeating field, we could allocate as many spaces in each record as the maximum
number of values that the field can take. In the case of optional fields, we may
have every field included in every file record. If an optional field is not applicable
to a certain record, a special null value is stored in the field. By adopting such
an approach, however, it is likely that a large amount of space will be wasted
in exchange for easier storage and retrieval.

Allocating records to blocks

The records of a file must be allocated to disk blocks because a block is the
unit of data transfer between disk and main memory. When the record size is
smaller than the block size, a block can accommodate many such records. If
a record has too large a size to be fitted in one block, two or more blocks will
have to be used.

In order to enable further discussions, suppose the size of the block is B bytes,
and a file contains fixed-length records of size R bytes. If B # R, then we can
allocate bfr = #(B/R)# records into one block, where #(x)# is the so-called
floor function which rounds the value x down to the next integer. The value bfr
is defined as the blocking factor for the file.

In general, R may not divide B exactly, so there will be some leftover spaces in
each block equal to B – (bfr * R) bytes .

If we do not want to waste the unused spaces in the blocks, we may choose to
store part of a record in them and the rest of the record in another block. A
pointer at the end of the first block points to the block containing the other
part of the record, in case it is not the next consecutive block on disk. This

7

organisation is called ‘spanned’, because records can span more than one block.
If records are not allowed to cross block boundaries, the organisation is called
‘unspanned’.

Unspanned organisation is useful for fixed-length records with a length R #
B. It makes each record start at a known location in the block, simplifying
record processing. For variable-length records, either a spanned or unspanned
organisation can be used. It is normally advantageous to use spanning to reduce
the wasted space in each block.

For variable-length records using spanned organisation, each block may store
a different number of records. In this case, the blocking factor bfr represents
the average number of records per block for the file. We can then use bfr to
calculate the number of blocks (b) needed to accommodate a file of r records:

b = #(r/bfr)# blocks

where #(x)# is the so-called ceiling function which rounds the value x up to
the nearest integer.

It is not difficult to see that if the record size R is bigger than the block size B,
then spanned organisation has to be used.

File headers

A file normally contains a file header or file descriptor providing information
which is needed by programs that access the file records. The contents of a
header contain information that can be used to determine the disk addresses of
the file blocks, as well as to record format descriptions, which may include field
lengths and order of fields within a record for fixed-length unspanned records,
separator characters, and record type codes for variable-length records.

To search for a record on disk, one or more blocks are transferred into main
memory buffers. Programs then search for the desired record or records within
the buffers, using the header information.

If the address of the block that contains the desired record is not known, the
programs have to carry out a linear search through the blocks. Each block is
loaded into a buffer and checked until either the record is found or all the blocks
have been searched unsuccessfully (which means the required record is not in
the file). This can be very time-consuming for a large file. The goal of a good
file organisation is to locate the block that contains a desired record with a
minimum number of block transfers.

Operations on files

Operations on files can usually be grouped into retrieval operations and update
operations. The former do not change anything in the file, but only locate

8

certain records for further processing. The latter change the file by inserting or
deleting or modifying some records.

Typically, a DBMS can issue requests to carry out the following operations (with
assistance from the operating-system file/disk managers):

• Find (or Locate): Searches for the first record satisfying a search con-
dition (a condition specifying the criteria that the desired records must
satisfy). Transfers the block containing that record into a buffer (if it is
not already in main memory). The record is located in the buffer and
becomes the current record (ready to be processed).

• Read (or Get): Copies the current record from the buffer to a program
variable. This command may also advance the current record pointer to
the next record in the file.

• FindNext: Searches for the next record in the file that satisfies the search
condition. Transfers the block containing that record into a buffer, and
the record becomes the current record.

• Delete: Deletes the current record and updates the file on disk to reflect
the change requested.

• Modify: Modifies some field values for the current record and updates
the file on disk to reflect the modification.

• Insert: Inserts a new record in the file by locating the block where the
record is to be inserted, transferring that block into a buffer, writing the
(new) record into the buffer, and writing the buffer to the disk file to reflect
the insertion.

• FindAll: Locates all the records in the file that satisfy a search condition.

• FindOrdered: Retrieves all the records in the file in a specified order.

• Reorganise: Rearranges records in a file according to certain criteria.
An example is the ‘sort’ operation, which organises records according to
the values of specified field(s).

• Open: Prepares a file for access by retrieving the file header and preparing
buffers for subsequent file operations.

• Close: Signals the end of using a file.

Before we move on, two concepts must be clarified:

• File organisation: This concept generally refers to the organisation of
data into records, blocks and access structures. It includes the way in
which records and blocks are placed on disk and interlinked. Access struc-
tures are particularly important. They determine how records in a file
are interlinked logically as well as physically, and therefore dictate what
access methods may be used.

9

• Access method: This consists of a set of programs that allow operations
to be performed on a file. Some access methods can only be applied to
files organised in certain ways. For example, indexed access methods can
only be used in indexed files.

In the following sections, we are going to study three file organisations, namely
heap files, sorted files and hash files, and their related access methods.

Review question 1

1. What are the different reasons for having variable-length records?

2. How can we determine the sizes of variable-length records with variable-
length fields when allocating them to disk?

3. When is it most useful to use fixed-length representations for a variable-
length record?

4. What information is stored in file headers?

5. What is the difference between a file organisation and an access method?

File organisations - organising records in files

Heap file organisation

The heap file organisation is the simplest and most basic type of organisation.
In such an organisation, records are stored in the file in the order in which they
are inserted, and new records are always placed at the end of the file.

The insertion of a new record is very efficient. It is performed in the following
steps:

• The last disk block of the file is copied into a buffer.

• The new record is added.

• The block in the buffer is then rewritten back to the disk.

Remember the address of the last file block can always be kept in the file header.

The search for a record based on a search condition involves a linear search
through the file block by block, which is often a very inefficient process. If only
one record satisfies the condition then, on average, half of the file blocks will
have to be transferred into main memory before the desired record is found. If
no records or several records satisfy the search condition, all blocks will have to
be transferred.

To modify a record in a file, a program must:

• find it;

• transfer the block containing the record into a buffer;

10

• make the modifications in the buffer;

• then rewrite the block back to the disk.

As we have seen, the process of finding the record can be time-consuming.

To remove a record from a file, a program must:

• find it;

• transfer the block containing the record into a buffer;

• delete the record from the buffer;

• then rewrite the block back to the disk.

Again, the process of finding the record can be time-consuming.

Physical deletion of a record leaves unused space in the block. As a consequence,
a large amount of space may be wasted if frequent deletions have taken place. An
alternative method to physically deleting a record is to use an extra bit (called
a deletion marker) in all records. A record is deleted (logically) by setting the
deletion marker to a particular value. A different value of the marker indicates a
valid record (i.e. not deleted). Search programs will only consider valid records in
a block. Invalid records will be ignored as if they have been physically removed.

No matter what deletion technique is used, a heap file will require regular reor-
ganisation to reclaim the unused spaces due to record deletions. During such
reorganisation, the file blocks are accessed consecutively and some records may
need to be relocated to fill the unused spaces. An alternative approach to re-
organisation is to use the space of deleted records when inserting new records.
However, this alternative will require extra facilities to keep track of empty
locations.

Both spanned and unspanned organisations can be used for a heap file of ei-
ther fixed-length records or variable-length records. Modifying a variable-length
record may require deleting the old record and inserting a new record incorpo-
rating the required changes, because the modified record may not fit in its old
position on disk.

Exercise 1

A file has r = 20,000 STUDENT records of fixed length, each record has
the following fields: ID# (7 bytes), NAME (35 bytes), ADDRESS (46 bytes),
COURSE (12 bytes), and LEVEL (1 byte). An additional byte is used as a dele-
tion marker. This file is stored on the disk with the following characteristics:
block size B = 512 bytes; inter-block gap size G = 128 bytes; number of blocks
per track = 20; number of tracks per surface = 400. Do the following exercises:

1. Calculate the record size R.

2. Calculate the blocking factor bfr.

11

3. Calculate the number of file blocks b needed to store the records, assuming
an unspanned organisation.

Exercise 2

Suppose we now have a new disk device which has the following specifications:
block size B = 2400 bytes; inter-block gap size G = 600 bytes. The STUDENT
file in Exercise 1 is stored on this disk, using unspanned organisation. Do the
following exercises:

1. Calculate the blocking factor bfr.

2. Calculate the wasted space in each disk block because of the unspanned
organisation.

3. Calculate the number of file blocks b needed to store the records.

4. Calculate the average number of block accesses needed to search for an
arbitrary record in the file, using linear search.

Review question 2

Discuss the different techniques for record deletion.

Sorted sequential file organisation

Records in a file can be physically ordered based on the values of one of their
fields. Such a file organisation is called a sorted file, and the field used is called
the ordering field. If the ordering field is also a key field, then it is called the
ordering key for the file.

The following figure depicts a sorted file organisation containing the STUDENT
records:

12

13

The sorted file organisation has some advantages over unordered files, such as:

• Reading the records in order of the ordering field values becomes very
efficient, because no sorting is required. (Remember, one of the common
file operations is FindOrdered.)

• Locating the next record from the current one in order of the ordering field
usually requires no additional block accesses, because the next record is
often stored in the same block (unless the current record is the last one in
the block).

• Retrieval using a search condition based on the value of the ordering field
can be efficient when the binary search technique is used.

In general, the use of the ordering field is essential in obtaining the advantages.

Binary search algorithm

A binary search for disk files can be performed on the blocks rather than on the
records. Suppose that:

• the file has b blocks numbered 1, 2, …, b;

• the records are ordered by ascending value of their ordering key;

• we are searching for a record whose ordering field value is K;

• disk addresses of the file blocks are available in the file header.

The search algorithm is described below in pseudo-codes:

Explanations:

14

• The binary search algorithm always begins from the middle block in the
file. The middle block is loaded into a buffer.

• Then the specified ordering key value K is compared with that of the first
record and the last record in the buffer.

• If K is smaller than the ordering field value of the first record, then it
means that the desired record must be in the first half of the file (if it is in
the file at all). In this case, a new binary search starts in the upper half
of the file and blocks in the lower half can be ignored.

• If K is bigger than the ordering field value of the last record, then it means
that the desired record must be in the second half of the file (if it is in the
file at all). In this case, a new binary search starts in the lower half of the
file and blocks in the upper half can be ignored.

• If K is between the ordering field values of the first and last records, then
it should be in the block already in the buffer. If not, it means the record
is not in the file at all.

Referring to the example in the figure above, suppose we want to find a student’s
record whose ID number is 9701890. We further assume that there are five blocks
in the file (i.e. the five blocks shown in the figure). Using the binary search, we
start in block 3 and find that 9701890 (the specified ordering field value) is
smaller than 9703501 (the ordering field value of the first record). Thus, we
move to block 2 and read it into the buffer. Again, we find that 9701890 is
smaller than 9702381 (the ordering field value of the first record of block 2). As
a result, we read in block 1 and find 9701890 is between 9701654 and 9702317.
If the record is in the file, it has to be in this block. By conducting a further
search in the buffer, we can find the record.

Performance issues

The sorted file organisation can offer very efficient retrieval performance only if
the search is based on the ordering field values. For example, the search for the
following SQL query is efficient:

select NAME, ADDRESS from STUDENT

where ID# = 9701890;

If ID# is not in the condition, the linear search has to be used and there will
be no performance advantages.

Update operations (e.g. insertion and deletion) are expensive for an ordered file
because we must always maintain the order of records in the file.

To insert a new record, we must first find its correct position among existing
records in the file, according to its ordering field value. Then a space has to be
made at that location to store it. This involves reorganisation of the file, and for

15

a large file it can be very time-consuming. The reason is that on average, half
the records of the file must be moved to make the space. For record deletion,
the problem is less severe, if deletion markers are used and the file is reorganised
periodically.

One option for making insertion more efficient is to keep some unused space in
each block for new records. However, once this space is used up, the original
problem resurfaces.

The performance of a modification operation depends on two factors: first, the
search condition to locate the record, and second, the field to be modified.

• If the search condition involves the ordering field, the efficient binary
search can be used. Otherwise, we have to conduct a linear search.

• A non-ordering field value can be changed and the modified record can be
rewritten back to its original location (assuming fixed-length records).

• Modifying the ordering field value means that the record may change its
position in the file, which requires the deletion of the old record followed
by the insertion of the modified one as a new record.

Reading the file records in order of the ordering field is efficient. For example,
the operations corresponding to the following SQL query can be performed
efficiently:

select ID#, NAME, COURSE from STUDENT

where LEVEL = 2

order by ID#;

The sorted file organisation is rarely used in databases unless a primary index
structure is included with the file. The index structure can further improve the
random access time based on the ordering field.

Review question 3

1. What major advantages do sorted files have over heap files?

2. What is the essential element in taking full advantage of the sorted organ-
isation?

3. Describe the major problems associated with the sorted files.

Exercise 3

Suppose we have the same disk and STUDENT file as in Exercise 2. This time,
however, we assume that the records are ordered based on ID# in the disk file.
Calculate the average number of block accesses needed to search for a record
with a given ID#, using binary search.

16

Hash file organisation

The hash file organisation is based on the use of hashing techniques, which can
provide very efficient access to records based on certain search conditions. The
search condition must be an equality condition on a single field called hash field
(e.g. ID# = 9701890, where ID# is the hash field). Often the hash field is also
a key field. In this case, it is called the hash key.

Hashing techniques

The principle idea behind the hashing technique is to provide a function h,
called a hash function, which is applied to the hash field value of a record and
computes the address of the disk block in which the record is stored. A search
for the record within the block can be carried out in a buffer, as always. For
most records, we need only one block transfer to retrieve that record.

Suppose K is a hash key value, the hash function h will map this value to a
block address in the following form:

h(K) = address of the block containing the record with the key value K

If a hash function operates on numeric values, then non-numeric values of the
hash field will be transformed into numeric ones before the function is applied.

The following are two examples of many possible hash functions:

• Hash function h(K) = K mod M: This function returns the remainder of
an integer hash field value K after division by integer M. The result of the
calculation is then used as the address of the block holding the record.

• A different function may involve picking some digits from the hash field
value (e.g. the 2nd, 4th and 6th digits from ID#) to form an integer, and
then further calculations may be performed using the integer to generate
the hash address.

The problem with most hashing functions is that they do not guarantee that
distinct values will hash to distinct addresses. The reason is that the hash field
space (the number of possible values a hash field can take) is usually much
larger than the address space (the number of available addresses for records).
For example, the hash function h(K) = K mod 7 will hash 15 and 43 to the
same address 1 as shown below:

43 mod 7 = 1

15 mod 7 = 1

A collision occurs when the hash field value of a new record that is being inserted
hashes to an address that already contains a different record. In this situation,
we must insert the new record in some other position. The process of finding
another position is called collision resolution.

17

The following are commonly used techniques for collision resolution:

• Open addressing: If the required position is found occupied, the pro-
gram will check the subsequent positions in turn until an available space
is located.

• Chaining: For this method, some spaces are kept in the disk file as
overflow locations. In addition, a pointer field is added to each record
location. A collision is resolved by placing the new record in an unused
overflow location and setting the pointer of the occupied hash address
location to the address of that overflow location. A linked list of overflow
records for each hash address needs to be maintained.

• Multiple hashing: If a hash function causes a collision, a second hash
function is applied. If it still does not resolve the collision, we can then
use open addressing or apply a third hash function and so on.

Each collision resolution method requires its own algorithms for insertion, re-
trieval, and deletion of records. Detailed discussions on them are beyond the
scope of this chapter. Interested students are advised to refer to textbooks
dealing with data structures.

In general, the goal of a good hash function is to distribute the records uniformly
over the address space and minimise collisions, while not leaving many unused
locations. Also remember that a hash function should not involve complicated
computing. Otherwise, it may take a long time to produce a hash address, which
will actually hinder performance.

External hashing

Hashing for disk files is called external hashing. To suit the characteristics of
disk storage, the hash address space is made of buckets. Each bucket consists
of either one disk block or a cluster of contiguous (neighbouring) blocks, and
can accommodate a certain number of records.

A hash function maps a key into a relative bucket number, rather than assigning
an absolute block address to the bucket. A table maintained in the file header
converts the relative bucket number into the corresponding disk block address.

The collision problem is less severe with buckets, because as many records as
will fit in a bucket can hash to the same bucket without causing any problem.
If the collision problem does occur when a bucket is filled to its capacity, we
can use a variation of the chaining method to resolve it. In this situation, we
maintain a pointer in each bucket to a linked list of overflow records for the
bucket. The pointers in the linked list should be record pointers, which include
both a block address and a relative record position within the block.

Dynamic hashing

18

Some hashing techniques allow the hash function to be modified dynamically
to accommodate the growth or shrinkage of the database. These are called
dynamic hash functions.

Extendable hashing is one form of dynamic hashing, and it works in the following
way:

• We choose a hash function that is uniform and random. It generates values
over a relatively large range.

• The hash addresses in the address space (i.e. the range) are represented
by d-bit binary integers (typically d = 32). As a result, we can have a
maximum of 232 (over 4 billion) buckets.

• We do not create 4 billion buckets at once. Instead, we create them on
demand, depending on the size of the file. According to the actual number
of buckets created, we use the corresponding number of bits to represent
their address. For example, if there are four buckets at the moment, we
just need 2 bits for the addresses (i.e. 00, 01, 10 and 11).

• At any time, the actual number of bits used (denoted as i and called global
depth) is between 0 (for one bucket) and d (for maximum 2d buckets).

• Value of i grows or shrinks with the database, and the i binary bits are
used as an offset into a table of bucket addresses (called a directory). In
search algorithm above, 3 bits are used as the offset (i.e. 000, 001, 010, …,
110, 111).

• The offsets serve as indexes pointing to the buckets in which the corre-
sponding records are held. For example, if the first 3 bits of a hash value
of a record are 001, then the record is in the bucket pointed by the 001
entry.

• It must be noted that there does not have to be a distinct bucket for each
of the 2i directory locations. Several directory locations (i.e. entries) with
the same first j bits (j <= i) for their hash values may contain the same
bucket address (i.e. point to the same bucket) if all the records that hash
to these locations fit in a single bucket.

• j is called the local depth stored with each bucket. It specifies the number
of bits on which the bucket contents are based. In search algorithm above,
for example, the middle two buckets contain records which have been
hashed based on the first 2 bits of their hash values (i.e. starting with 01
and 10), while the global depth is 3.

The value of i can be increased or decreased by one at a time, thus doubling
or halving the number of entries in the directory table. Doubling is needed if
a bucket whose local depth j is equal to the global depth i, overflows. Halving
occurs if i > j for all the buckets after some deletions occur.

Retrieval - To find the bucket containing the search key value K:

19

• Compute h(K).

• Take the first i bits of h(K).

• Look at the corresponding table entry for this i-bit string.

• Follow the bucket pointer in the table entry to retrieve the block.

Insertion - To add a new record with the hash key value K:

• Follow the same procedure for retrieval, ending up in some bucket.

• If there is still space in that bucket, place the record in it.

• If the bucket is full, we must split the bucket and redistribute the records.

• If a bucket is split, we may need to increase the number of bits we use in
the hash.

To illustrate bucket splitting (see the figure below), suppose that a new record
to be inserted causes overflow in the bucket whose hash values start with 01 (the
third bucket). The records in that bucket will have to be redistributed among
two buckets: the first contains all records whose hash values start with 010, and
the second contains all those whose hash values start with 011. Now the two
directory entries for 010 and 011 point to the two new distinct buckets. Before
the split, they point to the same bucket. The local depth of the two new buckets
is 3, which is one more than the local depth of the old bucket.

20

If a bucket that overflows and is split used to have a local depth j equal to
the global depth i of the directory, then the size of the directory must now be
doubled so that we can use an extra bit to distinguish the two new buckets. In
the above figure, for example, if the bucket for records whose hash values start
with 111 overflows, the two new buckets need a directory with global depth i =
4, because the two buckets are now labelled 1110 and 1111, and hence their local
depths are both 4. The directory size is doubled and each of the other original
entries in the directory is also split into two, both with the same pointer as the
original entries.

Deletion may cause buckets to be merged and the bucket address directory may
have to be halved.

In general, most record retrievals require two block accesses – one to the direc-
tory and the other to the bucket. Extendable hashing provides performance
that does not degrade as the file grows. Space overhead is minimal, because
no buckets need be reserved for future use. The bucket address directory only
contains one pointer for each hash value of current prefix length (i.e. the global

21

depth). Potential drawbacks are that we need to have an extra layer in the
structure (i.e. the directory) and this adds more complexities.

Performance issues

Hashing provides the fastest possible access for retrieving a record based on its
hash field value. However, search for a record where the hash field value is not
available is as expensive as in the case of a heap file.

Record deletion can be implemented by removing the record from its bucket. If
the bucket has an overflow chain, we can move one of the overflow records into
the bucket to replace the deleted record. If the record to be deleted is already
in the overflow, we simply remove it from the linked list.

To insert a new record, first, we use the hash function to find the address of
the bucket the record should be in. Then, we insert the record into an available
location in the bucket. If the bucket is full, we will place the record in one of
the locations for overflow records.

The performance of a modification operation depends on two factors: first, the
search condition to locate the record, and second, the field to be modified.

• If the search condition is an equality comparison on the hash field, we can
locate the record efficiently by using the hash function. Otherwise, we
must perform a linear search.

• A non-hash field value can be changed and the modified record can be
rewritten back to its original bucket.

• Modifying the hash field value means that the record may move to an-
other bucket, which requires the deletion of the old record followed by the
insertion of the modified one as a new record.

One of the most notable drawbacks of commonly used hashing techniques (as
presented above) is that the amount of space allocated to a file is fixed. In other
words, the number of buckets is fixed, and the hashing methods are referred to
as static hashing. The following problems may occur:

• The number of buckets is fixed, but the size of the database may grow.

• If we create too many buckets, a large amount of space may be wasted.

• If there are too few buckets, collisions will occur more often.

As the database grows over time, we have a few options:

• Devise a hash function based on current file size. Performance degradation
will occur as the file grows, because the number of buckets will appear to
be too small.

• Devise a hash function based on the expected file size. This may mean
the creation of too many buckets initially and cause some space wastage.

22

• Periodically reorganise the hash structure as file grows. This requires
devising new hash functions, recomputing all addresses and generating
new bucket assignments. This can be costly and may require the database
to be shut down during the process.

Review question 4

1. What is a collision and why is it unavoidable in hashing?

2. How does one cope with collisions in hashing?

3. What are the most notable problems that static hashing techniques have?

Suppose we have a VIDEO file holding VIDEO_TAPE records for a rental shop.
The records have TAPE# as the hash key with the following values: 2361, 3768,
4684, 4879, 5651, 1829, 1082, 7107, 1628, 2438, 3951, 4758, 6967, 4989, 9201.
The file uses eight buckets, numbered 0 to 7. Each bucket is one disk block and
can store up to two records. Load the above records into the file in the given
order, using the hash function h(K) = K mod 8. The open addressing method
is used to deal with any collision.

1. Show how the records are stored in the buckets.

2. Calculate the average number of block accesses needed for a random re-
trieval based on TAPE#.

Activity 1 - Record Deletion in Extensible Hashing

The purpose of this activity is to enable you to consolidate what you have
learned about extendable hashing. You should work out yourself how to delete
a record from a file with the extendable hashing structure. What happens if a
bucket becomes empty due to the deletion of its last record? When the size of
the directory may need to be halved?

Single-level ordered indexes

There are several types of single-level ordered indexes. A primary index is an
index specified on the ordering key field of a sorted file of records. If the records
are sorted not on the key field but on a non-key field, an index can still be built
that is called a clustering index. The difference lies in the fact that different
records have different values in the key field, but for a non-key field, some records
may share the same value. It must be noted that a file can have at most one
physical ordering field. Thus, it can have at most one primary index or one
clustering index, but not both.

A third type of index, called a secondary index, can be specified on any non-
ordering field of a file. A file can have several secondary indexes in addition to its
primary access path (i.e. primary index or clustering index). As we mentioned
earlier, secondary indexes do not affect the physical organisation of records.

23

Primary indexes

A primary index is built for a file (the data file) sorted on its key field, and
itself is another sorted file (the index file) whose records (index records) are
of fixed-length with two fields. The first field is of the same data type as the
ordering key field of the data file, and the second field is a pointer to a disk
block (i.e., the block address).

The ordering key field is called the primary key of the data file. There is one
index entry (i.e., index record) in the index file for each block in the data file.
Each index entry has the value of the primary key field for the first record in a
block and a pointer to that block as its two field values. We use the following
notation to refer to an index entry i in the index file:

<K(i), P(i)>

K(i) is the primary key value, and P(i) is the corresponding pointer (i.e. block
address).

For example, to build a primary index on the sorted file shown below (this is
the same STUDENT file we saw in exercise 1), we use the ID# as primary key,
because that is the ordering key field of the data file:

24

25

Each entry in the index has an ID# value and a pointer. The first three index
entries of such an index file are as follows:

<K(1) = 9701654, P(1) = address of block 1>

<K(2) = 9702381, P(2) = address of block 2>

<K(3) = 9703501, P(3) = address of block 3>

The figure below depicts this primary index. The total number of entries in the
index is the same as the number of disk blocks in the data file. In this example,
there are b blocks.

The first record in each block of the data file is called the anchor record of that
block. A variation to such a primary index scheme is that we could use the last
record of a block as the block anchor. However, the two schemes are very similar
and there is no significant difference in performance. Thus, it is sufficient to
discuss just one of them.

26

A primary index is an example of a sparse index, in the sense that it contains an
entry for each disk block rather than for every record in the data file. A dense
index, on the other hand, contains an entry for every data record. A dense index
does not require the data file to be a sorted file. Instead, it can be built on any
file organisation (typically, a heap file).

By definition, an index file is just a special type of data file of fixed-length
records with two fields. We use the term ‘index file’ to refer to data files storing
index entries. The general term ‘data file’ is used to refer to files containing the
actual data records such as STUDENT.

Performance issues

The index file for a primary index needs significantly fewer blocks than does the
file for data records for the following two reasons:

• There are fewer index entries than there are records in the data file, be-
cause an entry exists for each block rather than for each record.

• Each index entry is typically smaller in size than a data record because
it has only two fields. Consequently, more index entries can fit into one
block. A binary search on the index file hence requires fewer block accesses
than a binary search on the data file.

If a record whose primary key value is K is in the data file, then it has to be
in the block whose address is P(i), where K(i) <= K < K(i+1). The ith block
in the data file contains all such records because of the physical ordering of the
records based on the primary key field. For example, look at the first three
entries in the index in the last figure.

<K(1) = 9701654, P(1) = address of block 1>

<K(2) = 9702381, P(2) = address of block 2>

<K(3) = 9703501, P(3) = address of block 3>

The record with ID#=9702399 is in the 2nd block because K(2) <= 9702399 <
K(3). In fact, all the records with an ID# value between K(2) and K(3) must
be in block 2, if they are in the data file at all.

To retrieve a record, given the value K of its primary key field, we do a binary
search on the index file to find the appropriate index entry i, and then use the
block address contained in the pointer P(i) to retrieve the data block. The fol-
lowing example explains the performance improvement, in terms of the number
of block accesses that can be obtained through the use of primary index.

Example 1

Suppose that we have an ordered file with r = 40,000 records stored on a disk
with block size B = 1024 bytes. File records are of fixed-length and are un-
spanned, with a record size R = 100 bytes. The blocking factor for the data file

27

would be bfr = #(B/R)## = #(1024/100)## = 10 records per block. The
number of blocks needed for this file is b = #(r/bfr)## = #(40000/10)##
= 4000 blocks. A binary search on the data file would need approximately
#(log2b)## = #(log24000)## = 12 block accesses.

Now suppose that the ordering key field of the file is V = 11 bytes long, a
block pointer (block address) is P = 8 bytes long, and a primary index has been
constructed for the file. The size of each index entry is Ri = (11 + 8) = 19 bytes,
so the blocking factor for the index file is bfr i = #(B/Ri)## = #(1024/19)#

= 53 entries per block. The total number of index entries ri is equal to the
number of blocks in the data file, which is 4000. Thus, the number of blocks
needed for the index file is bi = #(ri/bfri)### = #(4000/53)### = 76 blocks.
To perform a binary search on the index file would need #(log2bi)### =
#(log276)### = 7 block accesses. To search for the actual data record using
the index, one additional block access is needed. In total, we need 7 + 1 =
8 block accesses, which is an improvement over binary search on the data file,
which required 12 block accesses.

A major problem with a primary index is insertion and deletion of records. We
have seen similar problems with sorted file organisations. However, they are
more serious with the index structure because, if we attempt to insert a record
in its correct position in the data file, we not only have to move records to
make space for the newcomer but also have to change some index entries, since
moving records may change some block anchors. Deletion of records causes
similar problems in the other direction.

Since a primary index file is much smaller than the data file, storage overhead
is not a serious problem.

Exercise 4

Consider a disk with block size B = 512 bytes. A block pointer is P = 8 bytes
long, and a record pointer is Pr = 9 bytes long. A file has r = 50,000 STUDENT
records of fixed-size R = 147 bytes. In the file, the key field is ID#, whose length
V = 12 bytes. Answer the following questions:

1. If an unspanned organisation is used, what are the blocking factor bfr and
the number of file blocks b?

2. Suppose that the file is ordered by the key field ID# and we want to
construct a primary index on ID#. Calculate the index blocking factor
bfri.

3. What are the number of first-level index entries and the number of first-
level index blocks?

4. Determine the number of block accesses needed to search for and retrieve
a record from the file using the primary index, if the indexing field value
is given.

28

Clustering indexes

If records of a file are physically ordered on a non-key field which may not have
a unique value for each record, that field is called the clustering field. Based on
the clustering field values, a clustering index can be built to speed up retrieval
of records that have the same value for the clustering field. (Remember the
difference between a primary index and a clustering index.)

A clustering index is also a sorted file of fixed-length records with two fields.
The first field is of the same type as the clustering field of the data file, and the
second field is a block pointer. There is one entry in the clustering index for
each distinct value of the clustering field, containing the value and a pointer to
the first block in the data file that holds at least one record with that value for
its clustering field. The figure below illustrates an example of the STUDENT
file (sorted by their LEVEL rather than ID#) with a clustering index:

29

In the above figure, there are four distinct values for LEVEL: 0, 1, 2 and 3.
Thus, there are four entries in the clustering index. As can be seen from the
figure, many different records have the same LEVEL number and can be stored
in different blocks. Both LEVEL 2 and LEVEL 3 entries point to the third block,
because it stores the first record for LEVEL 2 as well as LEVEL 3 students. All
other blocks following the third block must contain LEVEL 3 records, because
all the records are ordered by LEVEL.

Performance issues

Performance improvements can be obtained by using the index to locate a record.
However, the record insertion and deletion still causes similar problems to those
in primary indexes, because the data records are physically ordered.

To alleviate the problem of insertion, it is common to reserve a whole block
for each distinct value of the clustering field; all records with that value are
placed in the block. If more than one block is needed to store the records for
a particular value, additional blocks are allocated and linked together. To link
blocks, the last position in a block is reserved to hold a block pointer to the
next block. If there is no following block, then the block pointer will have null
value.

Using this linked-blocks structure, no records with different clustering field val-
ues can be stored in the same block. It also makes insertion and deletion more
efficient than without the linked structure. More blocks will be needed to store
records and some spaces may be wasted. That is the price to pay for improving
insertion efficiency. The figure below explains the scheme:

30

A clustering index is another type of sparse index, because it has an entry for
each distinct value of the clustering field rather than for every record in the file.

Secondary indexes

A secondary index is a sorted file of records (either fixed-length or variable-
length) with two fields. The first field is of the same data type as an indexing

31

field (i.e. a non-ordering field on which the index is built). The second field
is either a block pointer or a record pointer. A file may have more than one
secondary index.

In this section, we consider two cases of secondary indexes:

• The index access structure constructed on a key field.

• The index access structure constructed on a non-key field.

Index on key field

Before we proceed, it must be emphasised that a key field is not necessarily an
ordering field. In the case of a clustering index, the index is built on a non-key
ordering field.

When the key field is not the ordering field, a secondary index can be constructed
on it where the key field can also be called a secondary key (in contrast to a
primary key where the key field is used to build a primary index). In such a
secondary index, there is one index entry for each record in the data file, because
the key field (i.e. the indexing field) has a distinct value for every record. Each
entry contains the value of the secondary key for the record and a pointer either
to the block in which the record is stored or to the record itself (a pointer to an
individual record consists of the block address and the record’s position in that
block).

A secondary index on a key field is a dense index, because it includes one entry
for every record in the data file.

Performance issues

We again use notation <K(i), P(i)> to represent an index entry i. All index
entries are ordered by value of K(i), and therefore a binary search can be per-
formed on the index.

Because the data records are not physically ordered by values of the secondary
key field, we cannot use block anchors as in primary indexes. That is why an
index entry is created for each record in the data file, rather than for each block.
P(i) is still a block pointer to the block containing the record with the key field
value K(i). Once the appropriate block is transferred to main memory, a further
search for the desired record within that block can be carried out.

A secondary index usually needs more storage space and longer search time than
does a primary index, because of its larger number of entries. However, much
greater improvement in search time for an arbitrary record can be obtained by
using the secondary index, because we would have to do a linear search on the
data file if the secondary index did not exist. For a primary index, we could
still use a binary search on the main data file, even if the index did not exist.

32

Example 2 explains the improvement in terms of the number of blocks accessed
when a secondary index is used to locate a record.

Example 2

Consider the file in Example 1 with r = 40,000 records stored on a disk with
block size B = 1024 bytes. File records are of fixed-length and are unspanned,
with a record size R = 100 bytes. As calculated previously, this file has b =
4000 blocks. To do a linear search on the file, we would require b/2 = 4000/2
= 2000 block accesses on average to locate a record.

Now suppose that we construct a secondary index on a non-ordering key field
of the file that is V = 11 bytes long. As in Example 1, a block pointer is P =
8 bytes long. Thus, the size of an index entry is Ri = (11 + 8) = 19 bytes, and
the blocking factor for the index file is bfri = #(B/Ri)## = # (1024/19) ##
= 53 entries per block. In a dense secondary index like this, the total number
of index entries ri is equal to the number of records in the data file, which is
40000. The number of blocks needed for the index is hence bi = #(ri/bfri)##
= #(40000/53)## = 755 blocks. Compare this to the 76 blocks needed by the
sparse primary index in Example 1.

To perform a binary search on the index file would need #(log2bi)## =
#(log2755)## = 10 block accesses. To search for the actual data record using
the index, one additional block access is needed. In total, we need 10 + 1 =
11 block accesses, which is a huge improvement over the 2000 block accesses
needed on average for a linear search on the data file.

Index on a non-key field

Using the same principles, we can also build a secondary index on a non-key
field of a file. In this case, many data records can have the same value for the
indexing field. There are several options for implementing such an index.

Option 1: We can create several entries in the index file with the same K(i)
value – one for each record sharing the same K(i) value. The other field P(i)
may have different block addresses, depending on where those records are stored.
Such an index would be a dense index.

Option 2: Alternatively, we can use variable-length records for the index entries,
with a repeating field for the pointer. We maintain a list of pointers in the index
entry for K(i) – one pointer to each block that contains a record whose indexing
field value equals K(i). In other words, an index entry will look like this: <K(i),
[P(i, 1), P(i, 2), P(i, 3), ……]>. In either option 1 or option 2, the binary search
algorithm on the index must be modified appropriately.

Option 3: This is the most commonly adopted approach. In this option, we
keep the index entries themselves at a fixed-length and have a single entry for
each indexing field value. Additionally, an extra level of indirection is created to
handle the multiple pointers. Such an index is a sparse scheme, and the pointer

33

P(i) in index entry <K(i), P(i)> points to a block of record pointers (this is
the extra level); each record pointer in that block points to one of the data
file blocks containing the record with value K(i) for the indexing field. If some
value K(i) occurs in too many records, so that their record pointers cannot fit
in a single block, a linked list of blocks is used. The figure below explains this
option.

From the above figure, it can be seen that instead of using index entries like
<K(i), [P(i, 1), P(i, 2), P(i, 3), ……]> and <K(j), [P(j, 1), P(j, 2), P(j, 3), ……]>
as in option 2, an extra level of data structure is used to store the record pointers.
Effectively, the repeating field in the index entries of option 2 is removed, which
makes option 3 more appealing.

34

It should be noted that a secondary index provides a logical ordering on the data
records by the indexing field. If we access the records in order of the entries in
the secondary index, the records can be retrieved in order of the indexing field
values.

Summary of single-level ordered indexes

The following table summarises the properties of each type of index by com-
paring the number of index entries and specifying which indexes are dense or
sparse and which use block anchors of the data file.

Review question 5

1. What are a primary index, a clustering index and a secondary index?

2. What is a dense index and what is a sparse index?

3. Why can we have at most one primary or clustering index on a file, but
several secondary indexes?

4. Why does a secondary index need more storage space and longer search
time than a primary index?

5. What is the major problem with primary and clustering indexes?

6. Why does a secondary index provide a logical ordering on the data records
by the indexing field?

Exercise 5

Consider the same disk file as in Exercise 4. Answer the following questions
(you need to utilise the results from Exercise 4):

35

• Suppose the key field ID# is NOT the ordering field, and we want to build
a secondary index on ID#. Is the index a sparse one or a dense one, and
why?

• What is the total number of index entries? How many index blocks are
needed (if using block pointers to the data file)?

• Determine the number of block accesses needed to search for and retrieve
a record from the file using the secondary index, if the indexing field value
is given.

Multilevel indexes

The principle

The index structures that we have studied so far involve a sorted index file. A
binary search is applied to the index to locate pointers to a block containing
a record (or records) in the file with a specified indexing field value. A binary
search requires #log2bi)# block accesses for an index file with bi blocks, because
each step of the algorithm reduces the part of the index file that we continue to
search by a factor of 2. This is why the log function to the base 2 is used.

The idea behind a multilevel index is to reduce the part of the index that we
have to continue to search by bfri, the blocking factor for the index, which is
almost always larger than 2. Thus, the search space can be reduced much faster.
The value of bfri is also called the fan-out of the multilevel index, and we will
refer to it by the notation fo. Searching a multilevel index requires #log2bi)#
block accesses, which is a smaller number than for a binary search if the fan-out
is bigger than 2.

The structure

A multilevel index considers the index file, which was discussed in the previous
sections as a single-level ordered index and will now be referred to as the first
(or base) level of the multilevel structure, as a sorted file with a distinct value
for each K(i). Remember we mentioned earlier that an index file is effectively a
special type of data file with two fields. Thus, we can build a primary index for
an index file itself (i.e. on top of the index at the first level). This new index to
the first level is called the second level of the multilevel index.

Because the second level is a primary index, we can use block anchors so that
the second level has one entry for each block of the first-level index entries. The
blocking factor bfri for the second level – and for all subsequent levels – is the
same as that for the first-level index, because all index entries are of the same
size; each has one field value and one block address. If the first level has r1
entries, and the blocking factor – which is also the fan-out – for the index is bfri

36

= fo, then the first level needs #(r1/fo)# blocks, which is therefore the number
of entries r2 needed at the second level of the index.

The above process can be repeated and a third-level index can be created on top
of the second-level one. The third level, which is a primary index for the second
level, has an entry for each second-level block. Thus, the number of third-level
entries is r3 = #(r2/fo)#. (Important note: We require a second level only
if the first level needs more than one block of disk storage, and similarly, we
require a third level only if the second level needs more than one block.)

We can continue the index-building process until all the entries of index level d fit
in a single block. This block at the dth level is called the top index level (the first
level is at the bottom and we work our way up). Each level reduces the number
of entries at the previous level by a factor of fo – the multilevel index fan-out –
so we can use the formula 1 # (r1/((fo)d)) to calculate d. Hence, a multilevel
index with r1 first-level entries will need d levels, where d = #(logfo(r1))#.

Important

The multilevel structure can be used on any type of index, whether it is a
primary, a clustering or a secondary index, as long as the first-level index has
distinct values for K(i) and fixed-length entries. The figure below depicts a
multilevel index built on top of a primary index.

37

It can be seen above that the data file is a sorted file on the key field. There is a
primary index built on the data file. Because it has four blocks, a second-level
index is created which fits in a single block. Thus, the second level is also the
top level.

38

Performance issues

Multilevel indexes are used to improve the performance in terms of the number
of block accesses needed when searching for a record based on an indexing field
value. The following example explains the process.

Example 3

Suppose that the dense secondary index of Example 2 is converted into a mul-
tilevel index. In Example 2, we have calculated that the index blocking factor
bfri = 53 entries per block, which is also the fan-out for the multilevel index.
We also knew that the number of first-level blocks b1 = 755. Hence, the num-
ber of second-level blocks will be b2 = #(b1/fo)## = #(755/53)### = 15
blocks, and the number of third-level blocks will be b3 = #(b2/fo)### =
#(15/53)### = 1 block. Now at the third level, because all index entries can
be stored in a single block, it is also the top level and d = 3 (remember d =
#(logfo(r1))

= #(log53(40000))### = 3, where r1 = r = 40000).

To search for a record based on a non-ordering key value using the multilevel
index, we must access one block at each level plus one block from the data file.
Thus, we need d + 1 = 3 + 1 = 4 block accesses. Compare this to Example 2,
where 11 block accesses were needed when a single-level index and binary search
were used.

Note

It should be noted that we could also have a multilevel primary index which
could be sparse. In this case, we must access the data block from the file before
we can determine whether the record being searched for is in the file. For a
dense index, this can be determined by accessing the first-level index without
having to access the data block, since there is an index entry for every record
in the file.

As seen earlier, a multilevel index improves the performance of searching for a
record based on a specified indexing field value. However, the problems with
insertions and deletions are still there, because all index levels are physically
ordered files. To retain the benefits of using multilevel indexing while reducing
index insertion and deletion problems, database developers often adopt a mul-
tilevel structure that leaves some space in each of its blocks for inserting new
entries. This is called a dynamic multilevel index and is often implemented by
using data structures called B-trees and B+ trees, which are to be studied in
the following sections.

Review question 6

1. How does the multilevel indexing structure improve the efficiency of search-
ing an index file?

39

2. What are the data file organisations required by multilevel indexing?

Exercise 6

Consider a disk with block size B = 512 bytes. A block pointer is P = 8 bytes
long, and a record pointer is Pr = 9 bytes long. A file has r = 50,000 STUDENT
records of fixed-size R = 147 bytes. The key field ID# has a length V = 12
bytes. (This is the same disk file as in Exercise 4 and 5. Previous results should
be utilised.) Answer the following questions:

1. Suppose the key field ID# is the ordering field, and a primary index has
been constructed (as in Exercise 4). Now if we want to make it into a
multilevel index, what is the number of levels needed and what is the
total number of blocks required by the multilevel index?

2. Suppose the key field ID# is NOT the ordering field, and a secondary
index has been built (as in Exercise 5). Now if we want to make it into
a multilevel index, what is the number of levels needed and what is the
total number of blocks required by the multilevel index?

Dynamic multilevel indexes using B-trees and B+ trees

The tree data structure

B-trees and B+ trees are special types of the well-known tree data structure. A
tree is formed of nodes. Each node in the tree, except for a special node called
the root, has one parent node and any number (including zero) of child nodes.
The root node has no parent. A node that does not have any child nodes is
called a leaf node; a non-leaf node is called an internal node.

The level of a node is always one more than the level of its parent, with the level
of the root node being zero. A sub-tree of a node consists of that node and all
its descendant nodes (i.e. its child nodes, the child nodes of its child nodes, and
so on). The figure below gives a graphical description of a tree structure:

40

Usually we display a tree with the root node at the top. One way to implement
a tree is to have as many pointers in each node as there are child nodes of that
node. In some cases, a parent pointer is also stored in each node. In addition
to pointers, a node often contains some kind of stored information. When a
multilevel index is implemented as a tree structure, this information includes
the values of the data file’s indexing field that are used to guide the search for
a particular record.

Search trees

A search tree is a special type of tree that is used to guide the search for a
record, given the value of one of its fields. The multilevel indexes studied so far
can be considered as a variation of a search tree. Each block of entries in the
multilevel index is a node. Such a node can have as many as fo pointers and fo
key values, where fo is the index fan-out.

The index field values in each node guide us to the next node (i.e. a block at the
next level) until we reach the data file block that contains the required record(s).
By following a pointer, we restrict our search at each level to a sub-tree of the
search tree and can ignore all other nodes that are not in this sub-tree.

Definition of a search tree

A search tree of order p is a tree such that each node contains at most p – 1
search values and p pointers in the order <P1, K1, P2, K2, ……, Pq-1, Kq-1,
Pq>, where p and q are integers and q # p.

41

Each Pi is a pointer to a child node (or a null pointer in the case of a leaf node),
and each Ki is a search value from some ordered set of values. All search values
are assumed unique. The figure below depicts in general a node of a search tree:

Two constraints must hold at all times on the search tree:

• Within each node (internal or leaf), K1 < K2 < …… < Kq-1.

• For all values X in the sub-tree pointed at by Pi, we must have Ki-1 < X
< Ki for 1 < i < q; X < Ki for i = 1; and Ki-1 < X for i = q.

Whenever we search for a value X, we follow the appropriate pointer Pi according
to the formulae in the second condition above.

A search tree can be used as a mechanism to search for records stored in a disk
file. The values in the tree can be the values of one of the fields of the file,
called the search field (same as the indexing field if a multilevel index guides
the search). Each value in the tree is associated with a pointer to the record in
the data file with that value. Alternatively, the pointer could point to the disk
block containing that record.

The search tree itself can be stored on disk by assigning each tree node to a
disk block. When a new record is inserted, we must update the search tree by
including in the tree the search field value of the new record and a pointer to
the new record (or the block containing the record).

Algorithms are essential for inserting and deleting search values into and from
the search tree while maintaining the two constraints. In general, these algo-
rithms do not guarantee that a search tree is balanced (balanced means that
all of the leaf nodes are at the same level). Keeping a search tree balanced is
important because it guarantees that no nodes will be at very high levels and

42

hence require many block accesses during a tree search. Another problem with
unbalanced search trees is that record deletion may leave some nodes in the tree
nearly empty, thus wasting storage space and increasing the number of levels.

Please note that you will not be expected to know the details of given algorithms
in this chapter, as the assessment will focus on the advantages and disadvantages
of indexing for performance tuning. The algorithms are only provided for the
interested reader.

Review question 7

1. Describe the tree data structure.

2. What is meant by tree level and what is a sub-tree?

B-trees: Balanced trees

A B-tree is a search tree with some additional constraints on it. The additional
constraints ensure that the tree is always balanced and that the space wasted
by deletion, if any, never becomes excessive.

For a B-tree, however, the algorithms for insertion and deletion become more
complex in order to maintain these constraints. Nonetheless, most insertions
and deletions are simple processes; they become complicated when we want to
insert a value into a node that is already full or delete a value from a node which
is just half full. The reason is that not only must a B-tree be balanced, but also,
a node in the B-tree (except the root) cannot have too many (a maximum limit)
or too few (half the maximum) search values.

Definition of a B-tree

A B-tree of order p is a tree with the following constraints:

• Each internal node is of the form <P1, <K1, Pr1>, P2, <K2, Pr2>, ……,
Pq-1, <Kq-1, Prq-1>, Pq> where q <= p. Each Pi is a tree pointer –
a pointer to another node in the B-tree. Each Pri is a data pointer – a
pointer to the block containing the record whose search field value is equal
to Ki.

• Within each node, K1 < K2 < …… < Kq-1.

• For all search key field values X in the sub-tree pointed at by Pi, we have
Ki-1 < X < Ki for 1 < i < q; X < Ki for i = 1; Ki-1 < X for i = q.

• Each node has at most p tree pointers and p –1 search key values (p is
the order of the tree and is the maximum limit).

• Each node, except the root and leaf nodes, has at least #(p/2)# tree
pointers and #(p/2)# - 1 search key values (i.e. must not be less than

43

half full). The root node has at least two tree pointers (one search key
value) unless it is the only node in the tree.

• A node with q tree pointers, q # p, has q – 1 search key field values (and
hence has q – 1 data pointers).

• All leaf nodes are at the same level. They have the same structure as
internal nodes except that all of their tree pointers Pi are null.

The figure below illustrates the general structure of a node in a B-tree of order
p:

The figure below shows a B-tree of order 3:

44

Notice that all search values K in the B-tree are unique because we assumed
that the tree is used as an access structure on a key field. If we use B-tree on
a non-key field, we must change the definition of the data pointers Pri to point
to a block (or a linked list of blocks) that contain pointers to the file records
themselves. This extra level of indirection is similar to Option 3 discussed before
for secondary indexes.

Performance issues

A B-tree starts with a single root node at level 0. Once the root node is full with
p – 1 search key values, an insertion will cause an overflow and the node has
to be split to create two additional nodes at level 1 (i.e. a new level is created).
Only the middle key value is kept in the root node, and the rest of the key
values are redistributed evenly between the two new nodes.

When a non-root node is full and a new entry is inserted into it, that node is
split to become two new nodes at the same level, and the middle key value is
moved to the parent node along with two tree pointers to the split nodes. If
such a move causes an overflow in the parent node, the parent node is also split
(in the same way). Such splitting can propagate all the way to the root node,
creating a new level every time the root is split. We will study the algorithms
in more details when we discuss B+ trees later on.

Deletion may cause an underflow problem, where a node becomes less than half
full. When this happens, the underflow node may obtain some extra values from

45

its adjacent node by redistribution, or may be merged with one of its adjacent
nodes if there are not enough values to redistribute. This can also propagate all
the way to the root. Hence, deletion can reduce the number of tree levels.

It has been shown by analysis and simulation that, after numerous random
insertions and deletions on a B-tree, the nodes are approximately 69% full when
the number of values in the tree stabilises. This is also true of B+ trees. If this
happens, node splitting and merging will occur rarely, so insertion and deletion
become quite efficient. If the number of values increases, the tree will also grow
without any serious problem.

The following two examples show us how to calculate the order p of a B-tree
stored on disk (Example 4), and how to calculate the number of blocks and
levels for the B-tree (Example 5).

Example 4

Suppose the search key field is V = 9 bytes long, the disk block size is B = 512
bytes, a data pointer is Pr = 7 bytes, and a block pointer is P = 6 bytes. Each
B-tree node can have at most p tree pointers, p – 1 search key field values, and
p – 1 data pointers (corresponding to the key field values). These must fit into
a single disk block if each B-tree node is to correspond to a disk block. Thus,
we must have

(p * P) + ((p – 1) * (Pr + V)) # B

That is (p * 6) + ((p – 1) * (7 + 9)) # 512

We have (22 * p) # 528

We can select p to be the largest value that satisfies the above inequality, which
gives p = 24.

In practice, the value of p will normally be smaller than 24 (e.g., p = 23). The
reason is that, in general, a B-tree node may contain additional information
needed by the algorithms that manipulate the tree, such as the number of entries
q in the node and possibly a pointer to the parent node. Thus, we should reduce
the block size by the amount of space needed for all such information before we
determine the value of p.

Example 5

Suppose that the search field of Example 4 is a non-ordering key field, and we
construct a B-tree on this field. Assume that each node of the tree is 69% full.
On average, therefore, each node will have p * 0.69 = 23 * 0.69 @ 16 pointers,
and hence 15 search key field values. The average fan-out fo = 16.

We can now start from the root and see how many values and pointers may
exist, on average, at each subsequent level (see the table below):

46

At each level, we calculate the number of entries by multiplying the total number
of pointers at the previous level by 15 – the average number of entries in each
node. Hence, for the given block size, pointer size, and search key field size
(as in Example 5), a two level B-tree can hold up to 3840 + 240 + 15 = 4095
entries; a three-level B-tree can hold up to 61440 + 3840 + 240 + 15 = 65,535
entries on average.

B+ trees

Most implementations of a dynamic multilevel index use a variation of the B-
tree data structure, called a B+ tree. In a B-tree, every value of the search field
appears once at some level in the tree, along with a corresponding data pointer.
In a B+ tree, data pointers are stored only at the leaf nodes of the tree; hence,
the structure of leaf nodes differs from that of internal nodes.

The leaf nodes have an entry for every value of the search field, along with a
corresponding data pointer to the block containing the record with that value
if the search field is a key field. For a non-key search field, the pointer points
to a block containing pointers to the data file records, creating an extra level of
indirection (as we have seen before).

The leaf nodes of a B+ tree are usually linked together to provide ordered
access on the search field to the records. These leaf nodes are similar to the first
level of a multilevel index. Internal nodes correspond to the other levels of the
multilevel index. Some search field values from the leaf nodes are duplicated in
the internal nodes to guide the search.

Definition of a B+ tree

The structure of the internal nodes of a B+-tree of order p is defined as follows:

• Each internal node is of the form: <P1, K1, P2, K2, ……, Pq-1, Kq-1, Pq>
where q <= p and each Pi is a tree pointer.

• Within each internal node, K1 < K2 < …… < Kq-1.

• For all search field values X in the sub-tree pointed at by Pi, we have

Ki-1 < X <= Ki for 1 < i < q;

47

X <= Ki for i = 1;

Ki-1 < X for i = q.

• Each internal node has at most p tree pointers and p –1 search key values.

• Each internal node, except the root, has at least #(p/2)# tree pointers
and #p/2)# - 1 search key values (i.e. must not be less than half full).
The root node has at least two tree pointers (one search key value) if it is
an internal node.

• An internal node with q tree pointers, q # p, has q – 1 search key field
values.

The structure of the leaf nodes of a B+ tree of order p is defined as follows:

• Each leaf node is of the form <<K1, Pr1>, <K2, Pr2>, ……, <Kq-1, Prq-
1>, Pnext> where q # p. Each Pri is a data pointer, and Pnext points to
the next leaf node of the B+ tree.

• Within each internal node, K1 < K2 < …… < Kq-1.

• Each Pri is a data pointer pointing to the record whose search field value is
Ki, or to a file block containing the record (or to a block of record pointers
that point to records whose search field value is Ki, if the search field is
not a key).

• Each leaf node has at least #(p/2)# values (entries).

• All leaf nodes are at the same level.

The following figure depicts the general structure of an internal node of a B+
tree of order p:

And the following figure depicts the general structure of a leaf node of a B+
tree of order p:

48

Performance issues

Because entries in the internal nodes just contain search values and tree pointers
without any data pointers, more entries can be accommodated into an internal
node of a B+ tree than for a similar B-tree. Thus, for the same block (node)
size, the order p can be larger for the B+ tree than for a B-tree (see Example
6). This can lead to fewer B+ tree levels, and therefore improve search time.

Because structures of internal nodes and leaf nodes are different, their orders can
be different. Generally, the order p is for the internal nodes, and leaf nodes can
have a different order denoted as pleaf, which is defined as being the maximum
number of data pointers in a leaf node.

Example 6

To calculate the order p of a B+tree, suppose that the search key field is V =
9 bytes long, the block size is B = 512 bytes, a record (data) pointer is Pr = 7
bytes, and a block pointer is P = 6 bytes, all as in Example 4. An internal node
of such a B+-tree can have up to p tree pointers and p – 1 search field values:
these must fit into a single block. Hence, we have

(p * P) + ((p – 1) * V) # B

That is (p * 6) + ((p – 1) * 9) # 512

We have (15 * p) # 521

We can select p to be the largest value that satisfies the above inequality, which
gives p = 34. This is larger than the value of 23 for the B-tree in Example 5,
resulting in a larger fan-out and more entries in each of the internal nodes.

The leaf nodes of the B+tree will have the same number of values and pointers,
except that the pointers are data pointers and one Pnext pointer (i.e., a block
pointer to another leaf node). Hence, the order pleaf for the leaf nodes can be
calculated similarly:

(pleaf * (Pr + V)) + P # B

That is (pleaf * (7 + 9)) + 6 # 512

49

We have (16 * pleaf) # 506

It follows that each leaf node can hold up to pleaf = 31 (key value, data pointer)
pairs.

As with B-tree, in practice, the value of p and pleaf will normally be smaller
than the above values. The reason is that, in general, we may need additional
information in each node to implement the insertion and deletion algorithms.
This kind of information can include the type of nodes (i.e., internal or leaf),
the number of current entries q in the node, and pointers to the parent and
sibling nodes (e.g., Pprevious). Thus, we should reduce the block size by the
amount of space needed for all such information before we determine the values
of p and pleaf.

The next example explains how we can calculate the number of entries in a
B+tree.

Example 7

Suppose that we want to build a B+tree on the field of Example 6. To calculate
the approximate number of entries of the B+-tree, we assume that each node
is 69% full. On average, each internal node will have 0.69 * p = 0.69 * 34 = 23
pointers and hence 22 values. Each leaf node, on average, will hold 0.69 * pleaf
= 0.69 * 31 = 21 data record pointers. Such a B+-tree will have the following
average number of entries at each level:

For the block size, pointer size, and search field size provided above, a three-level
B+tree holds up to 255,507 record pointers, on average. Compare this to the
65,535 entries for the corresponding B-tree in Example 6. It is apparent that a
B+tree is more efficient.

Search, insertion and deletion with B+ trees

To search for a record based on a specified search field value K:

50

• We always start from the root of the B+ tree. Compare K with the values
stored in the root until we find the first Ki where K <= Ki. Then follow
the tree pointer Pi to the next level. If no such Ki is found, then follow
the rightmost pointer Pq to the next level. (We assume that the root is
not the only node in the tree. Otherwise follow the search procedure for
a leaf node.)

• If the node at the next level is still an internal node, we repeat the above
procedure, until we reach the leaf level.

• Within a leaf node, we search for a stored value Ki that equals K. If found,
we follow its data pointer Pri to retrieve the data block. Otherwise, the
desired record is not in the file.

The following is an example of a B+ tree with p = 3 and pleaf = 2:

Refer to the tree above. Suppose we want to retrieve the record with value 6

51

in the search field. Having searched the root, we could not find a value Ki such
that 6 # Ki, because there is only one value 5 in the node. Thus, we follow
the rightmost pointer to the internal node at the next level. This node has two
values 7 and 8, but 7 is the first value that is bigger than 6. Hence, we follow
the pointer left to the value 7 to the leaf level. By searching the values in the
leaf node, we find the value 6. Then we will use the related data pointer to go
to the data file and retrieve the record.

Note that every distinct search value must exist at the leaf level, because all
data pointers are at the leaf level. However, only some of the search values
exist in internal nodes, to guide the search to reach the appropriate leaf node.
Also note that every value appearing in an internal node also appears as the
rightmost value in the sub-tree pointed at by the tree pointer to the left of the
value. In the above, for example, the value 5 in the root node (an internal node
as well) is also stored in the sub-tree pointed at by the left pointer. The value 5
is in the leaf node of the sub-tree and is the rightmost value. The same is true
for other values in the internal nodes, such as 3, 7 and 8.

Insertion and deletion of entries in a B+ tree can cause the same overflow and
underflow problems as for a B-tree, because of the restrictions (constraints)
imposed by the B+ tree definition. These problems are dealt with in a similar
way as in a B-tree, i.e. by splitting or merging nodes concerned.

Dealing with overflow

• When a leaf node overflows because of insertion of a new entry, it must
be split. The first m = #((pleaf + 1)/2)# entries in the original node are
kept there, and the rest are moved to a new leaf node (just created).

• The original pnext pointer is changed and points to the new leaf node,
and the same pointer new_pnext in the new node will have the original
value of pnext.

• The mth search value is duplicated in the parent node (an internal node),
and an extra pointer to the new node is created in the parent.

• If the above move of value causes overflow in the parent node because the
parent node is already full, then it must also split.

• The entries in the internal node (now overflowed) up to Pn – the nth
tree pointer after inserting the new value and pointer, where n = #((P +
1)/2)#

– are kept, while the nth search value is moved to the parent, not
duplicated.

• A new internal node will now hold the entries from Pn+1 to the end of
the entries in the overflowed node.

52

• This splitting can propagate all the way up to create a new root node and
hence a new level for the B+ tree.

Dealing with underflow

• When an entry is deleted, it is always removed from the leaf level. If it
happens to occur in an internal node (because it is the rightmost value
of a sub-tree), then it must also be removed from there. In this case, the
value to its left in the leaf node will replace it in the internal node, because
that node is now the rightmost entry in the sub-tree.

• If deletion causes underflow, we will try to find an adjacent leaf node and
redistribute the entries among the two nodes so that both can become at
least half full.

• If we cannot find such an adjacent node with enough entries, then we will
merge them. In this case, the number of leaf nodes is reduced.

• If a merge between two nodes is not possible because of insufficient number
of entries, we may merge three leaf nodes into two.

• In merge cases, underflow may propagate to internal nodes because one
fewer tree pointer and search value are needed. This can propagate to the
root and reduce the tree levels.

The algorithms for maintaining a B+ tree structure are necessarily complex,
and therefore some operational details are omitted in this chapter. However,
such algorithms are well established and tested, and their efficiency proved. In-
terested students are advised to read the relevant chapters in the recommended
textbooks for details.

B* tree: A variation of B-tree and B+ tree

Recall that the definitions of B-tree and B+ tree require each node to be at least
half full. Such a requirement can be changed to require each node to be at least
two-thirds full. In this case, the B-tree is called a B*tree. This can improve the
retrieval performance a little further without incurring too many overheads on
maintaining the tree.

Exercise 7

Consider the disk with block size B = 512 bytes. A block pointer is P = 8 bytes
long, and a record pointer is Pr = 9 bytes long. A file has r = 50,000 STUDENT
records of fixed-size R = 147 bytes. The key field is ID# whose length is V =
12 bytes. (This is the same disk file as in previous exercises. Some of the early
results should be utilised.) Suppose that the file is NOT sorted by the key
field ID# and we want to construct a B-tree access structure (index) on ID#.
Answer the following questions:

53

1. What is an appropriate order p of this B-tree?

2. How many levels are there in the B-tree if nodes are approximately 69%
full?

3. What is the total number of blocks needed by the B-tree if they are ap-
proximately 69% full?

4. How many block accesses are required to search for and retrieve a record
from the data file, given an ID#, using the B-tree?

Exercise 8

For the same disk file as in Exercise 7, suppose that the file is NOT sorted by
the key field ID# and we want to construct a B+tree access structure (index)
on ID#. Answer the following questions:

1. What are the appropriate order p (for internal nodes) and pleaf (for leaf
nodes) of this B+-tree?

2. How many leaf-level blocks are needed if blocks are approximately 69%
full?

3. How many levels are there if internal nodes are also 69% full?

4. How many block accesses are required to search for and retrieve a record
from the data file, given an ID#, using the B+tree?

Summary

B-trees/B+ trees/B* trees are data structures which can be used to implement
dynamic multilevel indexes very effectively. When we were discussing multilevel
indexes, we emphasised that the multilevel structure can be constructed for any
type of index, whether it is a primary, a clustering or a secondary index, as long
as the first-level index has distinct values for K(i) and fixed-length.

As a logical consequence of the above, the multilevel index structure does not
require the underlying data file to have any specific file organisation, i.e. it can
be a heap file, a sorted file or some other organisations.

Also recall that a heap file organisation is very efficient with regard to insertion
and deletion, but less efficient for retrieval. Such inefficiency for retrieval can be
overcome by building a multilevel index structure on top of it. A heap file with
a multilevel index is, therefore, a very effective combination that takes full ad-
vantage of different techniques while overcoming their respective shortcomings.
The figure below illustrates the combination:

54

Review question 8

1. Describe the general structure of a B-tree node. What is the order p of a
B-tree?

2. Describe the structure of both internal and leaf nodes of a B+ tree. What
is the order p of a B+ tree?

3. Why is a B+ tree usually preferred as an access structure to a data file
rather than a B-tree?

4. In a B+ tree structure, how many block accesses do we need before a
record is located? (Assuming the record is indeed in the data file and its
indexing field value is specified.)

55

5. What major problems may be caused by update operations on a B-tree/B+
tree structure and why?

56

Chapter 12. Database Security

Table of contents

• Objectives
• Introduction
• The scope of database security

– Overview
– Threats to the database
– Principles of database security

• Security models
– Access control
– Authentication and authorisation

∗ Authentication
∗ Authorisation

– Access philosophies and management
• Database security issues

– Access to key fields
– Access to surrogate information
– Problems with data extraction
– Access control in SQL
– Discretionary security in SQL
– Schema level
– Authentication

∗ Table level
– SQL system tables
– Mandatory security in SQL
– Data protection

• Computer misuse
• Security plan
• Authentication and authorisation schematic
• Authentication and authorisation
• Access control activities

– Overview
– The problem
– Activity 1 – Creating the database schema
– Activity 2 – Populating the database
– Activity 3 – Analysing the problem
– Activity 4 – Executing the security script (if you have a DBMS that

permits this)
– Activity 5 – Testing the access control (if you have a DBMS that

permits this)
– Activity 6 – Conclusion
– Activity 7 – Postscript

1

Objectives

At the end of this chapter you should be able to:

• Understand and explain the place of database security in the context of
security analysis and management.

• Understand, explain and apply the security concepts relevant to database
systems.

• Understand, identify and find solutions to security problems in database
systems.

• Understand the basic language of security mechanisms as applied to
database systems.

• Analyse access control requirements and perform fairly simple implemen-
tations using SQL.

• Appreciate the limitations of security subsystems.

Introduction

In parallel with this chapter, you should read Chapter 19 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

Security is a large subject and one that, because it touches every activity of
an information system, appears everywhere. In the main text you will start
with a thumbnail introduction to security, while the extension reading contains
references for you to pursue when you wish.

In earlier chapters in this module you have met concepts and techniques which
can be regarded as security measures. For example, the process of recovery,
whether from partial or total failure, should be considered as having a security
dimension. Nearly all the work on concurrency (see chapter 13) is directed at
another aspect of security. Again, a thumbnail introduction is given.

The main work you do in this chapter, however, is directed to database security
rather than security in general, and to the principles of security theory and
practice as they relate to database security. These are technical aspects of
security rather than the big picture.

The chapter is organised into two parts. The first part covers security princi-
ples and models itself in two parts moving from the softer principles (setting
the universe of discourse) through to some specific technical issues of database
security. The second part is about logical access control in SQL databases.

The major practical area you will cover is the area of access control. After a
discussion of the principles, you will quickly be getting into some detail of access

2

control in SQL databases. Extension reading, both textbooks and websites, is
given for you to pursue the detail further.

What is not covered in this chapter, but is covered elsewhere in the module, are
the subjects of database administration, transaction recovery and catastrophe
recovery. The first of these is directly related to management controls on opera-
tion and development. The second is directly related to database integrity and
consistency, thus being largely an internal matter. The third is easier to follow
as an extension of the first and second. But all three are security based.

The scope of database security

Overview

All systems have ASSETS and security is about protecting assets. The first
thing, then, is to know your assets and their value. In this chapter, concentrate
on database objects (tables, views, rows), access to them, and the overall system
that manages them. Note that not all data is sensitive, so not all requires great
effort at protection. All assets are under threat.

The second thing to know is what THREATs are putting your assets at risk.
These include things such as power failure and employee fraud. Note that
threats are partly hypothetical, always changing and always imperfectly known.
Security activity is directed at protecting the system from perceived threats.

If a threat is potential, you must allow for it to become an actuality. When
it becomes actual there is an IMPACT. Impact you can consider and plan for.
But in the worst case, there will be a LOSS. Security activity here is directed
at minimising the loss and recovering the database to minimise the loss as well
as further protecting from the same or similar threats.

3

An outlined development mechanism is:

1. Document assets (what they are, what their value is).

2. Identify treats (what they are, how likely they are, what the impact is if
they occur).

3. Associate threats with each asset.

4. Design mechanisms to protect each asset appropriate to its value and the
cost of its protection, to detect a security breach against each asset, to
minimise the losses incurred and to recover normal operation.

Threats to the database

You will build your security skills from two directions. One is from the appre-
ciation and awareness of changing threats, and the other from the technical
remedies to them. Threats include:

• Unauthorised modification: Changing data values for reasons of sabotage,
crime or ignorance which may be enabled by inadequate security mecha-
nisms, or sharing of passwords or password guessing, for example.

• Unauthorised disclosure: When information that should not have been
disclosed has been disclosed. A general issue of crucial importance, which
can be accidental or deliberate.

4

• Loss of availability: Sometimes called denial of service. When the database
is not available it incurs a loss (otherwise life is better without the sys-
tem!). So any threat that gives rise to time offline, even to check whether
something has occurred, is to be avoided.

The rest of this section is an overview of the categories of specific regulatory
threats to database systems.

• Commercial sensitivity: Most financial losses through fraud arise from
employees. Access controls provide both protection against criminal acts
and evidence of attempts (successful or otherwise) to carry out acts detri-
mental to the organisation, whether fraud, extraction of sensitive data or
loss of availability.

• Personal privacy and data protection: Internationally, personal data
is normally subject to legislative controls. Personal data is data about
an identifiable individual. Often the individual has to be alive but the
method of identification is not prescribed. So a postal code for a home
may in some cases identify an individual, if only one person is living at
an address with the postal code. Such data needs careful handling and
control.

For more information see Data Protection later in the chapter. The issues
are too extensive to be discussed here but the implications should be noted.
Personal data needs to be identified as such. Controls must exist on the
use of that data (which may restrict ad-hoc queries). Audit trails of all
access and disclosure of the information need to be retained as evidence.

• Computer misuse: There is also generally legislation on the misuse of
computers. Misuse includes the violation of access controls and attempts
to cause damage by changing the database state or introducing worms
and viruses to interfere with proper operation. These offences are often
extraditable. So an unauthorised access in Hong Kong using computers
in France to access databases in Germany which refer to databases in
America could lead to extradition to France or Germany or the USA.

• Audit requirements: These are operational constraints built around the
need to know who did what, who tried to do what, and where and when
everything happened. They involve the detection of events (including
CONNECT and GRANT transactions), providing evidence for detection,
assurance as well as either defence or prosecution. There are issues related
to computer-generated evidence not covered here.

In considerations of logical access to the database, it is easy to lose sight of
the fact that all system access imposes risks. If there is access to operating
system utilities, it becomes possible to access the disk storage directly and
copy or damage the whole database or its components. A full consideration
has to take all such access into account. Most analysts would be looking to
minimise communications (direct, network and telecommunications) and isolate

5

the system from unnecessary threats. It is also likely that encryption would be
used both on the data and the schema. Encryption is the process of converting
text and data into a form that can only be read by the recipient of that data or
text, who has to know how to convert it back to a clear message.

You will find it easier to consider security and auditing as issues separate from
the main database functions, however they are implemented. Visualise the
security server and audit servers as separate functional modules.

Principles of database security

To structure thoughts on security, you need a model of security. These come in
various forms that depend on roles, degree of detail and purpose. The major
categories are areas of interest (threats, impact and loss) as well as the actions
involved in dealing with them.

Security risks are to be seen in terms of the loss of assets. These assets include:

• Hardware

• Software

• Data

• Data quality

• Credibility

• Availability

• Business benefit

Here we are primarily concerned with threats to the data and data quality but,
of course, a threat to one asset has consequential impact on other assets. What is
always important is that you are very clear on just what asset needs protection.

So as a summary:

You need to accept that security can never be perfect. There always remains an
element of risk, so arrangements must be made to deal with the worst eventuality
- which means steps to minimise impact and recover effectively from loss or
damage to assets. Points to bear in mind:

6

1. Appropriate security - you do not want to spend more on security than
the asset is worth.

2. You do not want security measures to interfere unnecessarily with the
proper functioning of the system.

Security models

A security model establishes the external criteria for the examination of security
issues in general, and provides the context for database considerations, includ-
ing implementation and operation. Specific DBMSs have their own security
models which are highly important in systems design and operation. Refer to
the SeaView model for an example.

You will realise that security models explain the features available in the DBMS
which need to be used to develop and operate the actual security systems. They
embody concepts, implement policies and provide servers for such functions.
Any faults in the security model will translate either into insecure operation or
clumsy systems.

Access control

The purpose of access control must always be clear. Access control is expensive
in terms of analysis, design and operational costs. It is applied to known situa-
tions, to known standards, to achieve known purposes. Do not apply controls
without all the above knowledge. Control always has to be appropriate to the
situation. The main issues are introduced below.

Authentication and authorisation

We are all familiar as users with the log-in requirement of most systems. Access
to IT resources generally requires a log-in process that is trusted to be secure.
This topic is about access to database management systems, and is an overview
of the process from the DBA perspective. Most of what follows is directly
about Relational client-server systems. Other system models differ to a greater
or lesser extent, though the underlying principles remain true.

For a simple schematic, see Authorisation and Authentication Schematic.

Among the main principles for database systems are authentication and autho-
risation.

Authentication

7

The client has to establish the identity of the server and the server has to es-
tablish the identity of the client. This is done often by means of shared secrets
(either a password/user-id combination, or shared biographic and/or biomet-
ric data). It can also be achieved by a system of higher authority which has
previously established authentication. In client-server systems where data (not
necessarily the database) is distributed, the authentication may be acceptable
from a peer system. Note that authentication may be transmissible from system
to system.

The result, as far as the DBMS is concerned, is an authorisation-identifier. Au-
thentication does not give any privileges for particular tasks. It only establishes
that the DBMS trusts that the user is who he/she claimed to be and that the
user trusts that the DBMS is also the intended system.

Authentication is a prerequisite for authorisation.

Authorisation

Authorisation relates to the permissions granted to an authorised user to carry
out particular transactions, and hence to change the state of the database (write-
item transactions) and/or receive data from the database (read-item transac-
tions). The result of authorisation, which needs to be on a transactional basis,
is a vector: Authorisation (item, auth-id, operation). A vector is a sequence of
data values at a known location in the system.

How this is put into effect is down to the DBMS functionality. At a logical level,
the system structure needs an authorisation server, which needs to co-operate
with an auditing server. There is an issue of server-to-server security and a
problem with amplification as the authorisation is transmitted from system to
system. Amplification here means that the security issues become larger as a
larger number of DBMS servers are involved in the transaction.

Audit requirements are frequently implemented poorly. To be safe, you need
to log all accesses and log all authorisation details with transaction identifiers.
There is a need to audit regularly and maintain an audit trail, often for a long
period.

Access philosophies and management

Discretionary control is where specific privileges are assigned on the basis of
specific assets, which authorised users are allowed to use in a particular way.
The security DBMS has to construct an access matrix including objects like
relations, records, views and operations for each user - each entry separating
create, read, insert and update privileges. This matrix becomes very intricate
as authorisations will vary from object to object. The matrix can also become
very large, hence its implementation frequently requires the kinds of physical

8

implementation associated with sparse matrices. It may not be possible to store
the matrix in the computer’s main memory.

At its simplest, the matrix can be viewed as a two-dimensional table:

When you read a little more on this subject, you will find several other rights
that also need to be recorded, notably the owners’ rights and the grant right.

Mandatory control is authorisation by level or role. A typical mandatory scheme
is the four-level government classification of open, secret, most secret and top
secret. The related concept is to apply security controls not to individuals but
to roles - so the pay clerk has privileges because of the job role and not because
of personal factors.

The database implication is that each data item is assigned a classification for
read, create, update and delete (or a subset of these), with a similar classification
attached to each authorised user. An algorithm will allow access to objects on
the basis of less than or equal to the assigned level of clearance - so a user with
clearance level 3 to read items will also have access to items of level 0, 1 and 2.
In principle, a much simpler scheme.

The Bell-LaPadula model (2005) defines a mandatory scheme which is widely
quoted:

• A subject (whether user, account or program) is forbidden to read an
object (relation, tuple or view) unless the security classification of the
subject is greater or equal to that of the object.

• A subject is forbidden to write an object unless the security classification
of the subject is less than or equal to that of the object.

Note that a high level of clearance to read implies a low level of clearance to
write - otherwise information flows from high to low levels. This is, in highly
secure systems, not permitted.

Mandatory security schemes are relatively easy to understand and, therefore,
relatively easy to manage and audit. Discretionary security is difficult to control
and therefore mistakes and oversights are easy to make and difficult to detect.
You can translate this difficulty into costs.

There are perhaps two other key principles in security. One is disclosure, which
is often only on a need-to-know basis. This fits in better with discretionary

9

security than mandatory, as it implies neither any prior existing level nor the
need for specific assignment.

The other principle is to divide responsibilities. The DBA responsible for secu-
rity management is him/herself a security risk. Management approaches that
involve one person or a group of people that have connections in their work
represent a similar risk. This emphasises the importance of security auditing
and the importance of related procedure design.

Database security issues

This section reviews some of the issues that arise in determining the security
specification and implementation of a database system.

Access to key fields

Suppose you have a user role with access rights to table A and to table C but
not to table B. The problem is that the foreign key in C includes columns from
B. The following questions arise:

Do you have access to the foreign key in C?

If you do, you know at least that a tuple exists in B and you know some infor-
mation about B that is restricted from you.

10

Can you update the foreign key columns?

If so, it must cascade, generating an update to B for which no privileges have
been given.

These problems do not directly arise where the database is implemented by
internal pointers - as a user, you need have no knowledge of the relationships
between the data you are accessing. They arise because relationships are data
values. Often, knowing the foreign key will not be sensitive in itself. If it is,
then the definition of a view may solve the problem.

Access to surrogate information

It is not difficult to conceive of cases where the view of the data provided to a
user role extends to the external world.

An example should make the problem clear.

In a retail environment, there are frequent problems with pilferage. To deal with
these, private detectives work undercover. They are to all intents and purposes
employees of the business and assigned to normal business activities as other
members of staff. They get pay checks or slips at the same time as everyone
else, they appear in management information (such as the salary analysis) in the
same manner. They have a job title and participate in the system as someone
they are not. The store manager is unaware of the situation, as is everybody
else except the corporate security manager. When the store manager accesses
the database, the detective should look like a normal employee. Queries might
include:

“What leave is due to …?”

The security staff have different queries:

“Do we have someone in …?”

You can probably envisage all kinds of complications. The detective should
receive a pay slip with everyone else, but should not actually be paid (or perhaps
he/she should be paid something different from the normal pay for the job).

You may want to handle these situations on separate databases. As a solution
it may be appropriate, but the larger the problem the more scope there is
for confusion. One suggested solution is the polyinstantiation of tuples - one
individual is represented by more than one tuple. The data retrieved will depend
on the security classification of the user. Tuples will have the same apparent
primary key but different actual primary keys, and all applications will need to
be carefully integrated with the security system.

11

Problems with data extraction

Where data access is visualised directly, the problem can be seen clearly enough:
it is to ensure that authenticated users can access only data items which they
are authorised to use for the purpose required. When the focus shifts from the
data to the implications that can be drawn from that data, more problems arise.

Again, an example should make things clear.

You want to know the pay of the chief executive. You have access rights to the
table, except for the MONTHLY-PAY field in this tuple. So you issue an SQL
query SUM (MONTHLY-PAY) across the whole table. You then create a view
SELECT MONTHLY-PAY … and issue a SUM on this view. Should you get
the same answer in both cases?

If not, you can achieve your objective by subtracting the two sums. If you listed
the monthly pay for all, what would you expect to see - all the tuples except
the one restricted? Would you expect to be notified by asterisks that data was
missing which you were not allowed to see?

Another example.

You are trying to trace an individual but have limited information. You feed
your limited information into the statistical database (e.g. male, age over 40,
white, red car, lives in North London) and retrieve the tuples for all that meet
these categories. As you get more information, the number of tuples reduces
until only one is left. It is possible to deduce personal information from a
statistical database if you have a little information about the structure, even
if no conventional personal identifiers are available (i.e. no date of birth, social
security number or name).

Some solutions to this security problem are to prevent access to small numbers
of tuples and/or to produce inaccurate data (not very inaccurate but sufficiently
inaccurate to prevent inferences being drawn).

Access control in SQL

This section is about the implementation of security within SQL. The basics are
given in SQL-92 but, as you will realise, much security is DBMS- and hardware-
specific. Where necessary, any specifics are given in the SQL of Oracle. For
some ideas on Object database management systems (ODBMS) as distinct from
Relational, refer to the later chapter on Object databases.

Your first objective is to learn the specifics. The access requirements specifi-
cation will be implemented using these statements. Your second objective is
to extend your understanding of the problem through to the management and
audit functions of an operating system.

12

The basic statements come first, and the management functions are discussed
second. In the first part you will learn the SQL needed to manage a user; in the
second you will learn a little of the SQL to manage a system.

Discretionary security in SQL

This section introduces the SQL statements needed to implement access control.
You should aim at having sufficient knowledge of this area of SQL to translate
a simple specification into an SQL script. You should also be conscious of the
limitations implicit in this script which hardwires passwords into text.

The basics of SQL are inherently discretionary. Privileges to use a database
resource are assigned and removed individually.

The first issue is who is allowed to do what with the security subsystem. You
need to have a high level of privilege to be able to apply security measures.
Unfortunately, such roles are not within the SQL standard and vary from DBMS
to DBMS. A role is defined as a collection of privileges.

As an example, the supplied roles in Oracle include (among others):

• SYSOPER: Start and stop the DBMS.

• DBA: Authority to create users and to manage the database and existing
users.

• SYSDBA: All the DBA’s authority plus the authority to create, start,
stop and recover.

The role of the DBA has been covered in other chapters. The point here is that
you realise there are a large number of predefined roles with different privileges
and they need to be controlled. It is important to be certain that the SQL
defaults do not act in ways you do not anticipate.

Schema level

The first security-related task is to create the schema. In the example below,
the authorisation is established with the schema. The authorisation is optional
and will default to the current user if it is not specified.

Only the owner of the schema is allowed to manipulate it. Below is an example
where a user is given the right to create tables. The creator of the table retains
privileges for the tables so created. Similarly, synonyms are only valid for the
creator of that synonym.

CREATE SCHEMA student_database AUTHORISATION U1;

13

The U1 refers to the authorisation identifier of the user concerned, who has to
have the right to create database objects of this type – in this case, the schema
for a new database.

Provided the authorisation is correct, then the right to access the database using
the schema can be granted to others. So to allow the creation of a table:

GRANT CREATETAB TO U1 ;

The topic of schema modifications will not be taken up here.

Authentication

Using the client/server model (see chapter 15), it is necessary first to connect to
the database management system, effectively establishing both authentication
and the complex layers of communication between the local (client DBMS) and
the server.

GRANT CONNECT TO student_database AS U1,U2,U3 IDENTIFIED BY
P1,P2,P3;

U1,U2,U3 are user names, P1,P2,P3 are passwords and student_database is the
database name.

GRANT CONNECT TO student_database AS U4/P4 ;

Connect rights give no permission for any table within the database. U4/P4 are
the identifiers known to this database security services.

Note

Users, roles and privilege levels can be confusing. The following are the key
distinctions:

• A user is a real person (with a real password and user account).

• A role, or a user-role, is a named collection of privileges that can be easily
assigned to a given or new user. A privilege is a permission to perform
some act on a database object.

• A privilege level refers to the extent of those privileges, usually in connec-
tion with a database-defined role such as database administrator.

Table level

The authority level establishes some basic rights. The SYSDBA account has full
rights and can change everything. Rights to access tables have to be GRANTed
separately by the DBA or SYSADM.

The following example assigns a read privilege to a named table (note only a
read privilege). The privilege extends to creating a read-only view on the table:

14

GRANT SELECT ON TABLE1 TO U1;

And that which may be given can be removed. REVOKE is used generally to
remove any specific privilege.

REVOKE SELECT ON TABLE1 FROM U1;

The main part of this aspect of security, though, is providing access to the data.
In a Relational database we have only one data structure to consider, so if we
can control access to one table we can control access to all. And as tables are
two dimensional, if we can control access to rows and columns, we can deal with
any request for data – including schema data. We still have to know what is
allowed and what is not but, given the details, the implementation is not in
itself a problem.

Remember that a VIEW is created by an SQL SELECT, and that a view is
only a virtual table. Although not part of the base tables, it is processed and
appears to be maintained by the DBMS as if it were.

To provide privileges at the level of the row, the column or by values, it is
necessary to grant rights to a view. This means a certain amount of effort but
gives a considerable range of control. First create the view:

‘the first statement creates the view’

CREATE VIEW VIEW1

AS SELECT A1, A2, A3

FROM TABLE1

WHERE A1 < 20000;

‘and the privilege is now assigned’

GRANT SELECT ON VIEW1 TO U1

WITH GRANT OPTION;

The optional “with grant option” allows the user to assign privileges to other
users. This might seem like a security weakness and is a loss of DBA control.
On the other hand, the need for temporary privileges can be very frequent and
it may be better that a user assign temporary privileges to cover for an office
absence, than divulge a confidential password and user-id with a much higher
level of privilege.

The rights to change data are granted separately:

GRANT INSERT ON TABLE1 TO U2, U3;

GRANT DELETE ON TABLE1 TO U2, U3;

GRANT UPDATE ON TABLE1(salary) TO U5;

GRANT INSERT, DELETE ON TABLE1 TO U2, U3;

15

Notice in the update, that the attributes that can be modified are specified
by column name. The final form is a means of combining privileges in one
expression.

To provide general access:

GRANT ALL TO PUBLIC;

SQL system tables

The DBMS will maintain tables to record all security information. An SQL
database is created and managed by the use of system tables. These comprise a
relational database using the same structure and access mechanism as the main
database. Examples below show the kind of attributes in some of the tables
involving access control. The key declarations have been removed.

The examples are from Oracle database.

16

17

Mandatory security in SQL

The topic was introduced above. First, classify the subjects (users and their
agents) and the database objects concerned. Classify the means by which each
has to be assigned a number indicating the security level, as it will be enforced
by the applied rules (e.g. the Bell-LaPadula model (2005)).

The classification has to apply by table, by tuple, by attribute and by attribute
value as appropriate to the requirement. Separate classifications may be needed
to deal with create (INSERT), read (SELECT), UPDATE and DELETE permis-
sions - though this will depend on the rules to be applied. The rules themselves
may relate these options as they do in the model quoted.

Additional controls may be needed to deal with statistical security - these might
restrict the number of tuples that can be retrieved, or add inaccuracies to the
retrieved data, or provide controls on allowed query sequences (to identify and
restrict users unnecessarily performing extractive analysis). Design consider-
ations need to decide whether sensitive tuples should be maintained on the
database and, if so, how.

So this converts mandatory security to the design of a security database (all the
above information has to be stored in tables) with the associated transaction
design, to implement the access rules and to control access to the security tables
themselves. Mandatory security has to be built from the discretionary SQL
tools.

Review question 1

• Distinguish discretionary from mandatory security.

• Describe the log-in process step by step.

• Explain the nature and use of surrogate information.

• Explain the implementation of access control in a distributed database.

Review question 2

What are the threats in the case below? Explain the nature of the threats.
Write these down (one paragraph) before you read the notes. If you feel you
need more information explain what you need to know?

Case

A senior manager is recorded as being in his office late one night. Subsequently at
the time he was in his office the audit trail records several unsuccessful attempts
to access database objects using a password of a member of clerical staff to
objects to which the manager had no rights of access.

Notes pages

18

Data protection

Treat the following principles as abstract. Every company that has implemented
data protection has followed these guides but, as usual, ‘the devil is in the detail’.
If you can be sure your database system complies with these you have done well.
(And are you happy with storing personal images?)

• The information to be contained in personal data shall be obtained and
personal data shall be processed fairly and lawfully.

• Personal data shall be held only for one or more specified and lawful
purposes.

• Personal data held for any purpose or purposes shall not be used or dis-
closed in any manner incompatible with that purpose or those purposes.

• Personal data held for any purpose or purposes shall be adequately rele-
vant and not excessive in relation to that purpose or those purposes.

• Personal data shall be accurate and, where necessary, kept up-to-date.

• Personal data held for any purpose or purposes shall not be kept for longer
than is necessary for that purpose or purposes.

• An individual shall be entitled - at reasonable intervals and without undue
delay or expense -

1. to be informed by any data user if he/she holds personal data of which
the individual is the subject;

2. to access any such data held by a data user; and

3. where appropriate, to have such data corrected or erased.

• Appropriate security measures shall be taken against unauthorised access
to, or alteration, disclosure or destruction of, personal data and against
loss or destruction of personal data.

Computer misuse

Hacking offences

These are:

• Simple unauthorised access – merely accessing data to which you are not
entitled. The law is not concerned with the systems control per se.

• Unauthorised access (with intent to commit an offence) – so you don’t
actually need to have succeeded, but rather just to have intended, to do
something to the database.

19

• Unauthorised modification – no one can even attempt access without mak-
ing some changes, but the purpose is to penalise outcomes.

Clearly systems must record all accesses and attempted accesses, whether remote
or local. Failure to do so may be seen as negligence, conspiracy or condoning
on the part of system managers and designers.

Offences of introducing viruses are often covered in misuse legislation but are
not included here. Yet viruses that attack DBMSs are of course possible.

Security plan

• Identify the user community.

• Gather the database information.

• Determine the types of user account (i.e. associate database objects and
user roles).

• Undertake a threat analysis.

• Establish DBA authorities and procedures.

• Establish policies for managing (creating, deleting, auditing) user
accounts.

• Determine the user tracking policy.

• Establish the user identification method.

• Define security incidents and reporting procedure.

• Assess the sensitivity of specific data objects.

• Establish standards and enforcement procedures (as well as back-up and
recovery plans, of course).

20

Authentication and authorisation schematic

Authentication and authorisation

Generally speaking, when you log into a system, you want to be satisfied that you
have logged into the right system and the system equally wants to be satisfied
that you are who you claim to be. Think about this with an Internet Banking
System as an example. Could a line be intercepted and the person on the
other side pretend to be the bank while you disclosed passwords and account
numbers? Could someone access the bank and empty your accounts? The part
of the process that deals with this area is the authentication server.

There are only two ways to establish authentication: by means of shared secrets
– things known only to you and the system - or by appealing to another system
that has gone through the same process and is trusted. It is the second point
that enables distributed transactions, at least without multiple log-ins. Shared
secrets include passwords and personal information as reported to and stored

21

by the system. In each case, a dialogue appropriate to the situation has to be
developed, monitored and managed. In the latter case, notice the need for secure
communication between different system components, as secret information or
its surrogate has to be transmitted between systems.

The result of authentication is a vector that contains an authentication identi-
fier, usually with other information including date and time. Note that authen-
tication is quite separate from access to database resources. You need to have
obtained an authentication identifier before you start accessing the database.
See the extension reading for some further insight on authentication.

In an SQL database system, the authentication process is initiated by the CON-
NECT statement. After successful execution of CONNECT, the resources of
the database become potentially available.

Authorisation is permission given by the DBMS to use defined database re-
sources and is based on the authentication identifier and a record of the per-
missions the owner of that identifier has. The identifier is recorded with the
objects the user is allowed to access and the actions that can be performed on
those objects. These are recorded either as a separate security database or as
part of the normal system tables – accessible only to those with DBA privileges
and higher.

Each SQL object has an owner. The owner has privileges on the objects owned.
No other user can have any privileges (or even know the object exists) unless
the owner supplies the necessary permission. In normal development, the DBA
or system administrator will be the owner of the major assets. The scheme is
basically discretionary. You need to look at security in SQL more as a toolkit
than a solution.

Access control in SQL is implemented by transactions using the GRANT state-
ment. These associate privileges with users and assets. Assets include data
items (tables, views) and the privileges are the responsibility of the asset owner.

Access control activities

Overview

The exercise here is a simple implementation from a problem statement. You
will produce the schema for a simple database (three tables), populate it with
data, and then establish the access controls, test them and review the effect.
Suggestions are then made for you to investigate some of the system tables.

The problem

You have received the following account of the access security requirements for
an SQL database system.

22

The database has three tables: CUSTOMER (keyed on name and street num-
ber); ORDER (keyed on date-of-receipt and the foreign key from CUSTOMER),
and ORDER-ITEM (keyed on item-name and the foreign key from ORDER).

The system is to process sales orders. Entry and access to documents and the
progressing of orders is handled by the sales office. There are currently seven
staff in this office. Tracey, the supervisor, needs to be able to see and change
everything. Bill, Sheila and Govind do most of the routine work, but especially
they cannot create new customers.

There are a few other things. Make sure that large orders, say above £1000,
cannot be handled by anyone except Tracey and Govind. Also ensure that
a temporary member of staff can process orders but cannot see the customer
details.

1. Produce an analysis and the necessary SQL statements to handle the
problems.

2. Implement the database, populate it with test data and apply your security
statements.

3. Test your access control mechanism thoroughly.

4. If, when you see the sample solution, either your analysis or testing are
faulty, you need to find out why.

5. Indicate any additional SQL security measures that could be taken.

6. Comment on the strengths and weaknesses of the measures you have taken.

The following activities will help you through solving the problem, step by step.

Activity 1 – Creating the database schema

Using the data definition statements from SQL, produce a script to create three
tables (table 1 is related to many rows of table 2 which is related to many rows
of table 3).

You may already have a database schema which can be used for this purpose,
but in any case you must ensure that the primary and foreign keys are correctly
declared.

Activity 2 – Populating the database

This is a security exercise so the data itself need not be to normal test data
standards. Make sure that the data is easily recognisable – use meaningful
values and remember that foreign key fields should be present.

23

Activity 3 – Analysing the problem

Treat the names given as user-roles (otherwise the problem becomes too obscure
for a first attempt). Develop a matrix of user against database resource. For
this exercise, the database resources in question are the base tables and views
(virtual tables).

Your matrix will make it clear where access is to be permitted and to whom.
These requirements translate directly to an SQL script of GRANT statements.
Produce this script on paper and check it manually.

Activity 4 – Executing the security script (if you have a DBMS that
permits this)

If you don’t have an executing environment, then get a friend to critique your
work so far.

Activity 5 – Testing the access control (if you have a DBMS that
permits this)

Formulate SELECT statements from the problem specification and issue SE-
LECT statements to check that they have been correctly implemented. If you
find problems, correct them at the point they occurred.

Activity 6 – Conclusion

Indicate any additional SQL security measures that could be taken, and com-
ment on the strengths and weaknesses of the measures you have taken.

Activity 7 – Postscript

Well, how well did you do?

Remember Tracey?

After your work, she thought she should have a raise. She asked and was refused
and then returned to her desk. To answer these questions, refer to your database
design and security script.

1. Tracey then tried to delete the CUSTOMER table. Did she succeed?

2. I hope not, but if so, why? Did you not inadvertently give her SYSADM
privileges?

3. She then tried to delete some customers. Did she succeed? Did the deletes
cascade?

24

4. She tried to insert a line in all orders over £1000 for 500 coffee machines.
Did she succeed?

5. And how was the problem detected?

6. She tried to change her password? Did she succeed?

7. How much privilege can any one individual ever be given?

25

Chapter 13. Concurrency Control

Table of contents

• Objectives
• Introduction
• Context
• Concurrent access to data

– Concept of transaction
– Transaction states and additional operations
– Interleaved concurrency

∗ Interleaved vs simultaneous concurrency
∗ Genuine vs appearance of concurrency

– Read and write operations
• Need for concurrency control

– The lost update problem
– Uncommitted dependency (or dirty read / temporary update)
– Inconsistent analysis
– Other problems

• Need for recovery
– Transaction problems
– Desirable properties of transactions (ACID)

∗ Atomicity
∗ Consistency
∗ Isolation
∗ Durability or permanency

• Serialisability
– Schedules of transactions
– Serial schedules
– Non-serial schedules
– Serialisable schedule

• Locking techniques for concurrency control
– Types of locks

∗ Binary locks
∗ Shared and exclusive locks

– Use of the locking scheme
– Guaranteeing serialisability by two-phase locking (2PL)

∗ Basic 2PL
∗ Conservative 2PL
∗ Strict 2PL

• Dealing with deadlock and livelock
– Deadlock detection with wait-for graph
– Ordering data items deadlock prevention protocol
– Wait-die or wound-wait deadlock prevention protocol
– Livelock

• Discussion topics

1

– Discussion topic 1
– Discussion topic 2
– Discussion topic 3

• Additional content and exercises
– Additional content

∗ Concurrency control based on timestamp ordering
∗ Multiversion concurrency control techniques
∗ Multiversion techniques based on timestamp ordering
∗ Multiversion two-phase locking
∗ Granularity of data items

– Additional exercises
∗ Extension exercise 1
∗ Extension exercise 2
∗ Extension exercise 3
∗ Extension exercise 4

Objectives

At the end of this chapter you should be able to:

• Describe the nature of transactions and the reasons for designing database
systems around transactions.

• Explain the causes of transaction failure.

• Analyse the problems of data management in a concurrent environment.

• Critically compare the relative strengths of different concurrency control
approaches.

Introduction

In parallel with this chapter, you should read Chapter 20 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

The purpose of this chapter is to introduce the fundamental technique of con-
currency control, which provides database systems with the ability to handle
many users accessing data simultaneously. In addition, this chapter helps you
understand the functionality of database management systems, with special ref-
erence to online transaction processing (OLTP). The chapter also describes the
problems that arise out of the fact that users wish to query and update stored
data at the same time, and the approaches developed to address these problems,
together with their respective strengths and weaknesses in a range of practical
situations.

2

There are a number of concepts that are technical and unfamiliar. You will be
expected to be able to handle these concepts but not to have any knowledge
of the detailed algorithms involved. This chapter fits closely with the one on
backup and recovery, so you may want to revisit this chapter later in the course
to review the concepts. It will become clear from the information on concurrency
control that there are a number of circumstances where recovery procedures may
need to be invoked to salvage previous or currently executing transactions. The
material covered here will be further extended in the chapter on distributed
database systems, where we shall see how effective concurrency control can be
implemented across a computer network.

Context

Many criteria can be used to classify DBMSs, one of which is the number of
users supported by the system. Single-user systems support only one user at a
time and are mostly used with personal computers. Multi-user systems, which
include the majority of DBMSs, support many users concurrently.

In this chapter, we will discuss the concurrency control problem, which occurs
when multiple transactions submitted by various users interfere with one another
in a way that produces incorrect results. We will start the chapter by introducing
some basic concepts of transaction processing. Why concurrency control and
recovery are necessary in a database system is then discussed. The concept of
an atomic transaction and additional concepts related to transaction processing
in database systems are introduced. The concepts of atomicity, consistency,
isolation and durability – the so-called ACID properties that are considered
desirable in transactions - are presented.

The concept of schedules of executing transactions and characterising the recov-
erability of schedules is introduced, with a detailed discussion of the concept of
serialisability of concurrent transaction executions, which can be used to define
correct execution sequences of concurrent transactions.

We will also discuss recovery from transaction failures. A number of concur-
rency control techniques that are used to ensure noninterference or isolation
of concurrently executing transactions are discussed. Most of these techniques
ensure serialisability of schedules, using protocols or sets of rules that guarantee
serialisability. One important set of protocols employs the technique of locking
data items, to prevent multiple transactions from accessing the items concur-
rently. Another set of concurrency control protocols use transaction timestamps.
A timestamp is a unique identifier for each transaction generated by the system.
Concurrency control protocols that use locking and timestamp ordering to en-
sure serialisability are both discussed in this chapter.

An overview of recovery techniques will be presented in a separate chapter.

3

Concurrent access to data

Concept of transaction

The first concept that we introduce to you in this chapter is a transaction. A
transaction is the execution of a program that accesses or changes the contents
of a database. It is a logical unit of work (LUW) on the database that is either
completed in its entirety (COMMIT) or not done at all. In the latter case, the
transaction has to clean up its own mess, known as ROLLBACK. A transaction
could be an entire program, a portion of a program or a single command.

The concept of a transaction is inherently about organising functions to manage
data. A transaction may be distributed (available on different physical systems
or organised into different logical subsystems) and/or use data concurrently with
multiple users for different purposes.

Online transaction processing (OLTP) systems support a large number of con-
current transactions without imposing excessive delays.

Transaction states and additional operations

For recovery purposes, a system always keeps track of when a transaction starts,
terminates, and commits or aborts. Hence, the recovery manager keeps track of
the following transaction states and operations:

• BEGIN_TRANSTRACTION: This marks the beginning of transac-
tion execution.

• READ or WRITE: These specify read or write operations on the
database items that are executed as part of a transaction.

• END_TRANSTRACTION: This specifies that read and write opera-
tions have ended and marks the end limit of transaction execution. How-
ever, at this point it may be necessary to check whether the changes in-
troduced by the transaction can be permanently applied to the database
(committed) or whether the transaction has to be aborted because it vio-
lates concurrency control, or for some other reason (rollback).

• COMMIT_TRANSTRACTION: This signals a successful end of the
transaction so that any changes (updates) executed by the transaction can
be safely committed to the database and will not be undone.

• ROLLBACK (or ABORT): This signals the transaction has ended
unsuccessfully, so that any changes or effects that the transaction may
have applied to the database must be undone.

In addition to the preceding operations, some recovery techniques require addi-
tional operations that include the following:

4

• UNDO: Similar to rollback, except that it applies to a single operation
rather than to a whole transaction.

• REDO: This specifies that certain transaction operations must be redone
to ensure that all the operations of a committed transaction have been
applied successfully to the database.

A state transaction diagram is shown below:

It shows clearly how a transaction moves through its execution states. In the
diagram, circles depict a particular state; for example, the state where a transac-
tion has become active. Lines with arrows between circles indicate transitions
or changes between states; for example, read and write, which correspond to
computer processing of the transaction.

A transaction goes into an active state immediately after it starts execution,
where it can issue read and write operations. When the transaction ends, it
moves to the partially committed state. At this point, some concurrency control
techniques require that certain checks be made to ensure that the transaction
did not interfere with other executing transactions. In addition, some recovery
protocols are needed to ensure that a system failure will not result in inability
to record the changes of the transaction permanently. Once both checks are
successful, the transaction is said to have reached its commit point and enters
the committed state. Once a transaction enters the committed state, it has
concluded its execution successfully.

However, a transaction can go to the failed state if one of the checks fails or
if it aborted during its active state. The transaction may then have to be
rolled back to undo the effect of its write operations on the database. The
terminated state corresponds to the transaction leaving the system. Failed or
aborted transactions may be restarted later, either automatically or after being
resubmitted, as brand new transactions.

5

Interleaved concurrency

Many computer systems, including DBMSs, are used simultaneously by more
than one user. This means the computer runs multiple transactions (programs)
at the same time. For example, an airline reservations system is used by hun-
dreds of travel agents and reservation clerks concurrently. Systems in banks,
insurance agencies, stock exchanges and the like are also operated by many
users who submit transactions concurrently to the system. If, as is often the
case, there is only one CPU, then only one program can be processed at a time.
To avoid excessive delays, concurrent systems execute some commands from
one program (transaction), then suspended that program and execute some
commands from the next program, and so on. A program is resumed at the
point where it was suspended when it gets its turn to use the CPU again. This
is known as interleaving.

The figure below shows two programs A and B executing concurrently in an
interleaved fashion. Interleaving keeps the CPU busy when an executing pro-
gram requires an input or output (I/O) operation, such as reading a block of
data from disk. The CPU is switched to execute another program rather than
remaining idle during I/O time.

Interleaved vs simultaneous concurrency

If the computer system has multiple hardware processors (CPUs), simultaneous
processing of multiple programs is possible, leading to simultaneous rather than

6

interleaved concurrency, as illustrated by program C and D in the figure below.
Most of the theory concerning concurrency control in databases is developed in
terms of interleaved concurrency, although it may be adapted to simultaneous
concurrency.

Genuine vs appearance of concurrency

Concurrency is the ability of the database management system to process more
than one transaction at a time. You should distinguish genuine concurrency
from the appearance of concurrency. The database management system may
queue transactions and process them in sequence. To the users it will appear
to be concurrent but for the database management system it is nothing of the
kind. This is discussed under serialisation below.

Read and write operations

We deal with transactions at the level of data items and disk blocks for the
purpose of discussing concurrency control and recovery techniques. At this
level, the database access operations that a transaction can include are:

7

• read_item(X): Reads a database item named X into a program variable
also named X.

• write_item(X): Writes the value of program variable X into the database
item named X.

Executing a read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy the disk block into a buffer in main memory if that disk is not already
in some main memory buffer.

3. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy the disk block into a buffer in main memory if that disk is not already
in some main memory buffer.

3. Copy item X from the program variable named X into its correct location
in the buffer.

4. Store the updated block from the buffer back to disk (either immediately
or at some later point in time).

Step 4 is the one that actually updates the database on disk. In some cases the
buffer is not immediately stored to disk, in case additional changes are to be
made to the buffer. Usually, the decision about when to store back a modified
disk block that is in a main memory buffer is handled by the recovery manager
or the operating system.

A transaction will include read and write operations to access the database.
The figure below shows examples of two very simple transactions. Concurrency
control and recovery mechanisms are mainly concerned with the database access
commands in a transaction.

8

The above two transactions submitted by any two different users may be exe-
cuted concurrently and may access and update the same database items (e.g. X).
If this concurrent execution is uncontrolled, it may lead to problems such as an
inconsistent database. Some of the problems that may occur when concurrent
transactions execute in an uncontrolled manner are discussed in the next section.

Activity 1 - Looking up glossary entries

In the Concurrent Access to Data section of this chapter, the following phrases
have glossary entries:

• transaction

• interleaving

• COMMIT

• ROLLBACK

1. In your own words, write a short definition for each of these terms.

2. Look up and make notes of the definition of each term in the module
glossary.

3. Identify (and correct) any important conceptual differences between your
definition and the glossary entry.

Review question 1

9

1. Explain what is meant by a transaction. Discuss the meaning of transac-
tion states and operations.

2. In your own words, write the key feature(s) that would distinguish an
interleaved concurrency from a simultaneous concurrency.

3. Use an example to illustrate your point(s) given in 2.

4. Discuss the actions taken by the read_item and write_item operations on
a database.

Need for concurrency control

Concurrency is the ability of the DBMS to process more than one transaction
at a time. This section briefly overviews several problems that can occur when
concurrent transactions execute in an uncontrolled manner. Concrete examples
are given to illustrate the problems in details. The related activities and learning
tasks that follow give you a chance to evaluate the extent of your understanding
of the problems. An important learning objective for this section of the chapter
is to understand the different types of problems of concurrent executions in
OLTP, and appreciate the need for concurrency control.

We illustrate some of the problems by referring to a simple airline reservation
database in which each record is stored for each airline flight. Each record
includes the number of reserved seats on that flight as a named data item,
among other information. Recall the two transactions T1 and T2 introduced
previously:

10

Transaction T1 cancels N reservations from one flight, whose number of reserved
seats is stored in the database item named X, and reserves the same number of
seats on another flight, whose number of reserved seats is stored in the database
item named Y. A simpler transaction T2 just reserves M seats on the first flight
referenced in transaction T1. To simplify the example, the additional portions
of the transactions are not shown, such as checking whether a flight has enough
seats available before reserving additional seats.

When an airline reservation database program is written, it has the flight num-
bers, their dates and the number of seats available for booking as parameters;
hence, the same program can be used to execute many transactions, each with
different flights and number of seats to be booked. For concurrency control
purposes, a transaction is a particular execution of a program on a specific date,
flight and number of seats. The transactions T1 and T2 are specific executions
of the programs that refer to the specific flights whose numbers of seats are
stored in data item X and Y in the database. Now let’s discuss the types of
problems we may encounter with these two transactions.

The lost update problem

The lost update problem occurs when two transactions that access the same
database items have their operations interleaved in a way that makes the value
of some database item incorrect. That is, interleaved use of the same data item
would cause some problems when an update operation from one transaction
overwrites another update from a second transaction.

An example will explain the problem clearly. Suppose the two transactions T1
and T2 introduced previously are submitted at approximately the same time.
It is possible when two travel agency staff help customers to book their flights
at more or less the same time from a different or the same office. Suppose that
their operations are interleaved by the operating system as shown in the figure
below:

11

The above interleaved operation will lead to an incorrect value for data item X,
because at time step 3, T2 reads in the original value of X which is before T1
changes it in the database, and hence the updated value resulting from T1 is
lost. For example, if X = 80, originally there were 80 reservations on the flight,
N = 5, T1 cancels 5 seats on the flight corresponding to X and reserves them
on the flight corresponding to Y, and M = 4, T2 reserves 4 seats on X.

The final result should be X = 80 – 5 + 4 = 79; but in the concurrent operations
of the figure above, it is X = 84 because the update that cancelled 5 seats in T1
was lost.

The detailed value updating in the flight reservation database in the above
example is shown below:

Uncommitted dependency (or dirty read / temporary update)

Uncommitted dependency occurs when a transaction is allowed to retrieve or
(worse) update a record that has been updated by another transaction, but
which has not yet been committed by that other transaction. Because it has not
yet been committed, there is always a possibility that it will never be committed
but rather rolled back, in which case, the first transaction will have used some
data that is now incorrect - a dirty read for the first transaction.

The figure below shows an example where T1 updates item X and then fails
before completion, so the system must change X back to its original value. Be-
fore it can do so, however, transaction T2 reads the ‘temporary’ value of X,
which will not be recorded permanently in the database because of the failure
of T1. The value of item X that is read by T2 is called dirty data, because it
has been created by a transaction that has not been completed and committed
yet; hence this problem is also known as the dirty read problem. Since the dirty
data read in by T2 is only a temporary value of X, the problem is sometimes
called temporary update too.

12

The rollback of transaction T1 may be due to a system crash, and transaction
T2 may already have terminated by that time, in which case the crash would
not cause a rollback to be issued for T2. The following situation is even more
unacceptable:

In the above example, not only does transaction T2 becomes dependent on an
uncommitted change at time step 6, but it also loses an update at time step 7,
because the rollback in T1 causes data item X to be restored to its value before
time step 1.

Inconsistent analysis

Inconsistent analysis occurs when a transaction reads several values, but a sec-
ond transaction updates some of these values during the execution of the first.
This problem is significant, for example, if one transaction is calculating an
aggregate summary function on a number of records while other transactions
are updating some of these records. The aggregate function may calculate some
values before they are updated and others after they are updated. This causes
an inconsistency.

13

For example, suppose that a transaction T3 is calculating the total number of
reservations on all the flights; meanwhile, transaction T1 is executing. If the
interleaving of operations shown below occurs, the result of T3 will be off by
amount N, because T3 reads the value of X after N seats have been subtracted
from it, but reads the value of Y before those N seats have been added to it.

Other problems

Another problem that may occur is the unrepeatable read, where a transaction
T1 reads an item twice, and the item is changed by another transaction T2
between reads. Hence, T1 receives different values for its two reads of the same
item.

Phantom record could occur when a transaction inserts a record into the
database, which then becomes available to other transactions before comple-
tion. If the transaction that performs the insert operation fails, it appears that
a record in the database disappears later.

Exercise 1

Typical problems in multi-user environment when concurrency access
to data is allowed

Some problems may occur in multi-user environment when concurrency access
to database is allowed. These problems may cause data stored in the multi-user
DBMS to be damaged or destroyed. Four interleaved transaction schedules are
given below. Identify what type of problems they have.

14

15

Exercise 2

Inconsistent analysis problem

Interleaved calculation of aggregates may have some aggregates on early data
and some on late data if other transactions are able to update the data. This
will cause incorrect summary. Consider the situation below, in which a number
of account records have the following values:

To transfer 10 from ACC3 to ACC1 while concurrently calculating the total
funds in the three accounts, the following sequence of events may occur. Show
the value of each data item in the last column, and discuss the reason for an
incorrect summary value.

Review question 2

1. What is meant by interleaved concurrent execution of database transac-
tions in a multi-user system? Discuss why concurrency control is needed,
and give informal examples.

16

Need for recovery

Whenever a transaction is submitted to a DBMS for execution, the system is
responsible for making sure that either:

1. all the operations in the transaction are completed successfully and the
effect is recorded permanently in the database; or

2. the transaction has no effect whatsoever on the database or on any other
transactions.

The DBMS must not permit some operations of a transaction T to be applied
to the database while other operations of T are not. This may happen if a
transaction fails after executing some of its operations but before executing all
of them.

Transaction problems

The practical aspects of transactions are about keeping control. There are a
variety of causes of transaction failure. These may include:

1. Concurrency control enforcement: Concurrency control method may abort
the transaction, to be restarted later, because it violates serialisability
(the need for transactions to be executed in an equivalent way as would
have resulted if they had been executed sequentially), or because several
transactions are in a state of deadlock.

2. Local error detected by the transaction: During transaction executions,
certain conditions may occur that necessitate cancellation of the trans-
action (e.g. an account with insufficient funds may cause a withdrawal
transaction from that account to be cancelled). This may be done by a
programmed ABORT in the transaction itself.

3. A transaction or system error: Some operation in the transaction may
cause it to fail, such as integer overflow, division by zero, erroneous pa-
rameter values or logical programming errors.

4. User interruption of the transaction during its execution, e.g. by issuing a
control-C in a VAX/ VMS or UNIX environment.

5. System software errors that result in abnormal termination or destruction
of the database management system.

6. Crashes due to hardware malfunction, resulting in loss of internal (main
and cache) memory (otherwise known as system crashes).

7. Disk malfunctions such as read or write malfunction, or a disk read/write
head crash. This may happen during a read or write operation of the
transaction.

17

8. Natural physical disasters and catastrophes such as fires, earthquakes or
power surges; sabotages, intentional contamination with computer viruses,
or destruction of data or facilities by operators or users.

Failures of types 1 to 6 are more common than those of types 7 or 8. Whenever
a failure of type 1 through 6 occurs, the system must keep sufficient information
to recover from the failure. Disk failure or other catastrophic failures of 7 or 8
do not happen frequently; if they do occur, it is a major task to recover from
these types of failure.

Desirable properties of transactions (ACID)

The acronym ACID indicates the properties of any well-formed transaction. Any
transaction that violates these principles will cause failures of concurrency. A
brief description of each property is given first, followed by detailed discussions.

1. Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all. A transaction does not
partly happen.

2. Consistency: The database state is consistent at the end of a transaction.

3. Isolation: A transaction should not make its updates visible to other
transactions until it is committed; this property, when enforced strictly,
solves the temporary update problem and makes cascading rollbacks (see
‘Atomicity’ below) of transactions unnecessary.

4. Durability: When a transaction has made a change to the database
state and the change is committed, this change is permanent and should
be available to all other transactions.

Atomicity

Atomicity is built on the idea that you cannot split an atom. If a transaction
starts, it must finish – or not happen at all. This means if it happens, it happens
completely; and if it fails to complete, there is no effect on the database state.

There are a number of implications. One is that transactions should not be
nested, or at least cannot be nested easily. A nested transaction is where one
transaction is allowed to initiate another transaction (and so on). If one of
the nested transactions fails, the impact on other transactions leads to what is
known as a cascading rollback.

Transactions need to be identified. The database management system can assign
a serial number of timestamp to each transaction. This identifier is required so
each activity can be logged. When a transaction fails for any reason, the log is
used to roll back and recover the correct state of the database on a transaction
basis.

18

Rolling back and committing transactions

There are two ways a transaction can terminate. If it executes to completion,
then the transaction is said to be committed and the database is brought to
a new consistent state. Committing a transaction signals a successful end-of-
transaction. It tells the transaction manager that a logical unit of work has
been successfully completed, the database is (or should be) in a consistent state
again, and all of the updates made by that unit of work (transaction) can now be
made permanent. This point is known as a synchronisation point. It represents
the boundary between two consecutive transactions and corresponds to the end
of a logical unit of work.

The other way a transaction may terminate is that the transaction is aborted
and the incomplete transaction is rolled back and restored to the consistent state
it was in before the transaction started. A rollback signals an unsuccessful end of
a transaction. It tells the transaction manager that something has gone wrong,
the database might be in an inconsistent state and all of the updates made by
the logical unit of work so far must be undone. A committed transaction cannot
be aborted and rolled back.

Atomicity is maintained by commitment and rollback. The major SQL oper-
ations that are under explicit user control that establish such synchronisation
points are COMMIT and ROLLBACK. Otherwise (default situation), an entire
program is regarded as one transaction.

Consistency

The database must start and finish in a consistent state. You should note that
in contrast, during a transaction, there will be times where the database is
inconsistent. Some part of the data will have been changed while other data
has yet to be.

A correct execution of the transaction must take the database from one con-
sistent state to another, i.e. if the database was in a consistent state at the
beginning of transaction, it must be in a consistent state at the end of that
transaction.

The consistency property is generally considered to be the responsibility of the
programmers who write the database programs or the DBMS module that en-
forces integrity constraints. It is also partly the responsibility of the database
management system to ensure that none of the specified constraints are violated.
The implications of this are the importance of specifying the constraints and
domains within the schema, and the validation of transactions as an essential
part of the transactions.

Isolation

19

A transaction should not make its update accessible to other transactions until
it has terminated. This property gives the transaction a measure of relative
independence and, when enforced strictly, solves the temporary update problem.
In general, various levels of isolation are permitted. A transaction is said to
have degree 0 isolation if it does not overwrite the dirty reads of higher-degree
transactions. A degree 1 isolation transaction has no lost updates, and degree
2 isolation has no lost update and no dirty reads. Finally, degree 3 isolation
(also known as true isolation) has, in addition to degree 2 properties, repeatable
reads.

Isolation refers to the way in which transactions are prevented from interfering
with each other. You might think that one transaction should never be interfered
with by any other transactions. This is nearly like insisting on full serialisation of
transactions with little or no concurrency. The issues are those of performance.

Durability or permanency

Once a transaction changes the database and the changes are committed, these
changes must never be lost because of subsequent failure.

At the end of a transaction, one of two things will happen. Either the transaction
has completed successfully or it has not. In the first case, for a transaction
containing write_item operations, the state of the database has changed, and
in any case, the system log has a record of the activities. Or, the transaction has
failed in some way, in which case the database state has not changed, though
it may have been necessary to use the system log to roll back and recover from
any changes attempted by the transaction.

Review question 3

1. Discuss different types of possible transaction failures, with some exam-
ples.

2. Transactions cannot be nested inside one another. Why? Support your
answer with an example.

Serialisability

This is a criterion that most concurrency control methods enforce. Informally,
if the effect of running transactions in an interleaved fashion is equivalent to
running the same transactions in a serial order, they are considered serialisable.
We have used the word ‘schedule’ without a definition before in this chapter. In
this section, we will first define the concept of transaction schedule, and then we
characterise the types of schedules that facilitate recovery when failures occur.

20

Schedules of transactions

When transactions are executed concurrently in an interleaved fashion, the order
of execution of operations from the various transactions forms what is known
as a transaction schedule (or history). A schedule S of n transactions T1, T2,
… Tn is an ordering of operations of the transactions subject to the constraint
that, for each transaction Ti that participates in S, the operations of Ti in S
must appear in the same order in which they occur in Ti. Note, however, that
operations from other transactions Tj can be interleaved with the operations of
Ti in S.

Suppose that two users – airline reservation clerks – submit to the DBMS trans-
actions T1 and T2 introduced previously at approximately the same time. If
no interleaving is permitted, there are only two possible ways of ordering the
operations of the two transactions for execution:

1. Schedule A: Execute all the operations of transaction T1 in sequence fol-
lowed by all the operations of transaction T2 in sequence.

2. Schedule B: Execute all the operations of transaction T2 in sequence fol-
lowed by all the operations of transaction T1 in sequence.

These alternatives are shown below:

If interleaving of operations is allowed, there will be many possible orders in
which the system can execute the individual operations of the transactions. Two
possible schedules are shown below:

21

An important aspect of concurrency control, called serialisability theory, at-
tempts to determine which schedules are ‘correct’ and which are not, and to
develop techniques that allow only correct schedules. The next section defines
serial and non-serial schedules, presents some of the serialisability theory, and
discusses how it may be used in practice.

Serial schedules

Schedules A and B are called serial schedules because the operations of each
transaction are executed consecutively, without any interleaved operations from
the other transaction. In a serial schedule, entire transactions are performed in
serial order: T1 and then T2 or T2 and then T1 in the diagram below. Schedules
C and D are called non-serial because each sequence interleaves operations from
the two transactions.

Formally, a schedule S is serial if, for every transaction T participating in the
schedule, all the operations of T are executed consecutively in the schedule;
otherwise, the schedule is called non-serial. One reasonable assumption we can
make, if we consider the transactions to be independent, is that every serial
schedule is considered correct. This is so because we assume that every trans-
action is correct if executed on its own (by the consistency property introduced
previously in this chapter) and that transactions do not depend on one another.
Hence, it does not matter which transaction is executed first. As long as every
transaction is executed from beginning to end without any interference from the
operations of other transactions, we get a correct end result on the database.
The problem with serial schedules is that they limit concurrency or interleaving
of operations. In a serial schedule, if a transaction waits for an I/O operation
to complete, we cannot switch the CPU processor to another transaction, thus
wasting valuable CPU processing time and making serial schedules generally
unacceptable.

To illustrate our discussion, consider the schedules in the diagram below, and

22

assume that the initial values of database items are X = 90, Y = 90, and that
N = 3 and M = 2. After executing transaction T1 and T2, we would expect
the database values to be X = 89 and Y = 93, according to the meaning of the
transactions. Sure enough, executing either of the serial schedules A or B gives
the correct results. This is shown below:

Non-serial schedules

Schedules involving interleaved operations are non-serial schedules. Now con-
sider the two non-serial schedules C and D. Schedule C gives the result X = 92
and Y = 93, in which the X value is erroneous, whereas schedule D gives the
correct results. This is illustrated below:

23

Schedule C gives an erroneous result because of the lost update problem. Trans-
action T2 reads the value of X before it is changed by transaction T1, so only
the effect of T2 on X is reflected in the database. The effect of T1 on X is lost,
overwritten by T2, leading to the incorrect result for item X.

However, some non-serial schedules do give the expected result, such as schedule
D in the diagram above. We would like to determine which of the non-serial
schedules always give a correct result and which may give erroneous results. The
concept used to characterise schedules in this manner is that of serialisability of
a schedule.

Serialisable schedule

A schedule S of n transactions is a serialisable schedule if it is equivalent to some
serial schedule of the same n transactions. Notice that for n transactions, there
are n possible serial schedules, and many more possible non-serial schedules.
We can form two disjoint groups of the non-serial schedules: those that are
equivalent to one (or more) of the serial schedules, and hence are serialisable;
and those that are not equivalent to any serial schedule, and hence are not
serialisable.

Saying that a non-serial schedule S is serialisable is equivalent to saying that
it is correct, because it is equivalent to a serial schedule, which is considered
correct. For example, schedule D is a serialisable schedule, and it is a correct
schedule, because schedule D gives the same results as schedules A and B, which
are serial schedules. It is essential to guarantee serialisability in order to ensure

24

database correctness.

Now the question is: when are two schedules considered ‘equivalent’? There
are several ways to define equivalence of schedules. The simplest, but least
satisfactory, definition of schedule equivalence involves comparing the effects
of the schedules on the database. Intuitively, two schedules are called result
equivalent if they produce the same final state of the database. However, two
schedules may accidentally provide the same final state. For example, in the
figure below, schedules S1 and S2 will produce the same database state if they
execute on a database with an initial value of X = 100; but for other initial
values of X, the schedules are not result equivalent. Hence result equivalent is
not always the safe way to define schedules equivalence.

Here are two schedules that are equivalent for the initial value of X = 100, but
are not equivalent in general:

A serialisable schedule gives us the benefits of concurrent execution without
giving up any correctness. In practice, however, it is quite difficult to test for
the serialisability of a schedule. The interleaving of operations from concurrent
operations is typically determined by the operating system scheduler. Factors
such as system load, time of transaction submission, and priorities of transac-
tions contribute to the ordering of operations in a schedule by the operating
system. Hence, it is practically impossible to determine how the operations of a
schedule will be interleaved beforehand to ensure serialisability. The approach
taken in most practical systems is to determine methods that ensure serialisabil-
ity without having to test the schedules themselves for serialisability after they
are executed. One such method uses the theory of serialisability to determine
protocols or sets of rules that, if followed by every individual transaction or if
enforced by a DBMS concurrency control subsystem, will ensure serialisability
of all schedules in which the transactions participate. Hence, in this approach
we never have to concern ourselves with the schedule. In the next section of this
chapter, we will discuss a number of such different concurrency control protocols
that guarantee serialisability.

Exercise 3

Serial, non-serial and serialisable schedules

Given the following two transactions, and assuming that initially x = 3, and y

25

= 2,

1. create all possible serial schedules and examine the values of x and y;

2. create a non-serial interleaved schedule and examine the values of x and
y. Is this a serialisable schedule?

Review question 4

1. As a summary of schedules of transactions and serialisability of schedules,
fill in the blanks in the following paragraphs:

A schedule S of n transactions T1, T2, … Tn is an ordering of the operations
of the transactions. The operations in S are exactly those operations in
______ including either a ______ or ______ operation as the last
operation for each transaction in the schedule. For any pair of operations
from the same transaction Ti, their order of appearance in S is as their
order of appearance in Ti.

In serial schedules, all operations of each transaction are executed
______ , without any operations from the other transactions. Every
serial schedule is considered ______ .

A schedule S of n transactions is a fertilisable schedule if it is equivalent
to some ______ of the same n transactions.

Saying that a non-serial schedule is serialisable is equivalent to saying that
it is ______ , because it is equivalent to ______ .

2. Compare binary locks with exclusive/shared locks. Why is the latter type
of locks preferable?

26

Locking techniques for concurrency control

One of the main techniques used to control concurrency execution of transac-
tions (that is, to provide serialisable execution of transactions) is based on the
concept of locking data items. A lock is a variable associate with a data item in
the database and describes the status of that data item with respect to possible
operations that can be applied to the item. Generally speaking, there is one
lock for each data item in the database. The overall purpose of locking is to
obtain maximum concurrency and minimum delay in processing transactions.

In the next a few sections, we will discuss the nature and types of locks, present
several two-phase locking protocols that use locking to guarantee serialisability
of transaction schedules, and, finally, we will discuss two problems associated
with the use of locks – namely deadlock and livelock – and show how these
problems are handled.

Types of locks

The idea of locking is simple: when a transaction needs an assurance that some
object, typically a database record that it is accessing in some way, will not
change in some unpredictable manner while the transaction is not running on
the CPU, it acquires a lock on that object. The lock prevents other transactions
from accessing the object. Thus the first transaction can be sure that the object
in question will remain in a stable state as long as the transaction desires.

There are several types of locks that can be used in concurrency control. Binary
locks are the simplest, but are somewhat restrictive in their use.

Binary locks

A binary lock can have two states or values: locked and unlocked (or 1 and 0, for
simplicity). A distinct lock is associated with each database item X. If the value
of the lock on X is 1, item X is locked and cannot be accessed by a database
operation that requests the item. If the value of the lock on X is 0, item X is
unlocked, and it can be accessed when requested. We refer to the value of the
lock associated with item X as LOCK(X).

Two operations, lock and unlock, must be included in the transactions when
binary locking is used. A transaction requests access to an item X by issuing a
lock(X) operation. If LOCK(X) = 1, the transaction is forced to wait; otherwise,
the transaction sets LOCK(X) := 1 (locks the item) and allows access. When
the transaction is through using the item, it issues an unlock(X) operation,
which sets LOCK(X) := 0 (unlocks the item) so that X may be accessed by
other transactions. Hence, a binary lock enforces mutual exclusion on the data
item. The DBMS has a lock manager subsystem to keep track of and control
access to locks.

27

When the binary locking scheme is used, every transaction must obey the fol-
lowing rules:

1. A transaction T must issue the operation lock(X) before any read_item(X)
or write_item(X) operations are performed in T.

2. A transaction T must issue the operation unlock(X) after all read_item(X)
and write_item(X) operations are completed in T.

3. A transaction T will not issue a lock(X) operation if it already holds the
lock on item X.

4. A transaction T will not issue an unlock(X) operation unless it already
holds the lock on item X.

These rules can be enforced by a module of the DBMS. Between the lock(X)
and unlock(X) operations in a transaction T, T is said to hold the lock on item
X. At most, one transaction can hold the lock on a particular item. No two
transactions can access the same item concurrently.

Shared and exclusive locks

The binary locking scheme described above is too restrictive in general, because
at most one transaction can take hold on a given item. We should allow sev-
eral transactions to access the same item X if they all access X for reading
purposes only. However, if a transaction is to write an item X, it must have
exclusive access to X. For this purpose, we can use a different type of lock
called multiple-mode lock. In this scheme, there are three locking operations:
read_lock(X), write_lock(X) and unlock(X). That is, a lock associated with an
item X, LOCK(X), now has three possible states: ‘read-locked’, ‘write-locked’ or
‘unlocked’. A read-locked item is also called share-locked, because other transac-
tions are allowed to read access that item, whereas a write-locked item is called
exclusive-locked, because a single transaction exclusively holds the lock on the
item.

If a DBMS wishes to read an item, then a shared (S) lock is placed on that
item. If a transaction has a shared lock on a database item, it can read the
item but not update it. If a DBMS wishes to write (update) an item, then an
exclusive (X) lock is placed on that item. If a transaction has an exclusive lock
on an item, it can both read and update it. To prevent interference from other
transactions, only one transaction can hold an exclusive lock on an item at any
given time.

If a transaction A holds a shared lock on item X, then a request from another
transaction B for an exclusive lock on X will cause B to go into a wait state
(and B will wait until A’s lock is released). A request from transaction B for a
shared lock on X will be granted (that is, B will now also hold a shared lock on
X).

28

If transaction A holds an exclusive lock on record X, then a request from trans-
action B for a lock of either type on X will cause B to go into a wait state (and
B will wait until A’s lock is released).

This can be summarised by means of the compatibility matrix below, that shows
which type of lock requests can be granted simultaneously:

For example, when transaction A holds an exclusive (X) lock on data item X,
the request from transaction B for an exclusive lock on X will not be granted.
If transaction A holds a shared (S) lock on data item X, the request from
transaction B for a shared lock will be granted (two transactions can read access
the same item simultaneously) but not for an exclusive lock.

Transaction requests for record locks are normally implicit (at least in most
modern systems). In addition, a user can specify explicit locks. When a trans-
action successfully retrieves a record, it automatically acquires an S lock on
that record. When a transaction successfully updates a record, it automatically
acquires an X lock on that record. If a transaction already holds an S lock on
a record, then the update operation will promote the S lock to X level as long
as T is the only transaction with an S lock on X at the time.

Exclusive and shared locks are normally held until the next synchronisation
point (review the concept of synchronisation point under ‘Atomicity’). However,
a transaction can explicitly release locks that it holds prior to termination using
the unlock command.

Use of the locking scheme

Using binary locks or multiple-mode locks in transactions as described earlier
does not guarantee serialisability of schedules in which the transactions partici-
pate. For example, two simple transactions T1 and T2 are shown below:

29

Assume, initially, that X = 20 and Y = 30; the result of serial schedule T1
followed by T2 is X = 50 and Y = 80; and the result of serial schedule T2
followed by T1 is X = 70 and Y = 50. The figure below shows an example
where, although the multiple-mode locks are used, a non-serialisable schedule
may still result:

30

The reason this non-serialisable schedule occurs is that the items Y in T1 and
X in T2 were unlocked too early. To guarantee serialisability, we must follow
an additional protocol concerning the positioning of locking and unlocking op-
erations in every transaction. The best known protocol, two-phase locking, is
described below.

Guaranteeing serialisability by two-phase locking (2PL)

Basic 2PL

A transaction is said to follow the two-phase locking protocol (basic 2PL pro-
tocol) if all locking operations (read_lock, write_lock) precede the first unlock
operation in the transaction. Such a transaction can be divided into two phases:
an expanding (or growing) phase, during which new locks on items can be ac-
quired but none can be released; and a shrinking phase, during which existing
locks can be released but no new locks can be acquired.

Transactions T1 and T2 shown in the last section do not follow the 2PL protocol.

31

This is because the write_lock(X) operation follows the unlock(Y) operation in
T1, and similarly the write_lock(Y) operation follows the unlock(X) operation
in T2. If we enforce 2PL, the transactions can be rewritten as T1’ and T2’, as
shown below:

Now the schedule involving interleaved operations shown in the figure above is
not permitted. This is because T1’ will issue its write_lock(X) before it unlocks
Y; consequently, when T2’ issues its read_lock(X), it is forced to wait until T1’
issues its unlock(X) in the schedule.

It can be proved that, if every transaction in a schedule follows the basic 2PL,
the schedule is guaranteed to be serialisable, removing the need to test for
serialisability of schedules any more. The locking mechanism, by enforcing 2PL
rules, also enforces serialisability.

Another problem that may be introduced by 2PL protocol is deadlock. The
formal definition of deadlock will be discussed below. Here, an example is used
to give you an intuitive idea about the deadlock situation. The two transactions
that follow the 2PL protocol can be interleaved as shown here:

32

At time step 5, it is not possible for T1’ to acquire an exclusive lock on X as
there is already a shared lock on X held by T2’. Therefore, T1’ has to wait.
Transaction T2’ at time step 6 tries to get an exclusive lock on Y, but it is
unable to as T1’ has a shared lock on Y already. T2’ is put in waiting too.
Therefore, both transactions wait fruitlessly for the other to release a lock. This
situation is known as a deadly embrace or deadlock. The above schedule would
terminate in a deadlock.

Conservative 2PL

A variation of the basic 2PL is conservative 2PL also known as static 2PL, which
is a way of avoiding deadlock. The conservative 2PL requires a transaction to
lock all the data items it needs in advance. If at least one of the required
data items cannot be obtained then none of the items are locked. Rather, the
transaction waits and then tries again to lock all the items it needs. Although
conservative 2PL is a deadlock-free protocol, this solution further limits concur-
rency.

Strict 2PL

In practice, the most popular variation of 2PL is strict 2PL, which guarantees
a strict schedule. (Strict schedules are those in which transactions can neither
read nor write an item X until the last transaction that wrote X has committed
or aborted). In strict 2PL, a transaction T does not release any of its locks until
after it commits or aborts. Hence, no other transaction can read or write an
item that is written by T unless T has committed, leading to a strict schedule
for recoverability. Notice the difference between conservative and strict 2PL; the

33

former must lock all items before it starts, whereas the latter does not unlock
any of its items until after it terminates (by committing or aborting). Strict
2PL is not deadlock-free unless it is combined with conservative 2PL.

In summary, all type 2PL protocols guarantee serialisability (correctness) of a
schedule but limit concurrency. The use of locks can also cause two additional
problems: deadlock and livelock. Conservative 2PL is deadlock-free.

Exercise 4

Multiple-mode locking scheme and serialisability of schedules

1. For the example schedule shown again here below, complete the two pos-
sible serial schedules, and show the values of items X and Y in the two
transactions and in the database at each time step.

2. Discuss why the schedule below is a non-serialisable schedule. What went
wrong with the multiple-mode locking scheme used in the example sched-
ule?

34

Dealing with deadlock and livelock

Deadlock occurs when each of two transactions is waiting for the other to re-
lease the lock on an item. A simple example was shown above, where the two
transactions T1’ and T2’ are deadlocked in a partial schedule; T1’ is waiting for
T2’ to release item X, while T2’ is waiting for T1’ to release item Y. Meanwhile,
neither can proceed to unlock the item that the other is waiting for, and other
transactions can access neither item X nor item Y. Deadlock is also possible
when more than two transactions are involved.

Deadlock detection with wait-for graph

A simple way to detect a state of deadlock is to construct a wait-for graph. One
node is created in the graph for each transaction that is currently executing
in the schedule. Whenever a transaction Ti is waiting to lock an item X that

35

is currently locked by a transaction Tj, it creates a directed edge (Ti # Tj).
When Tj releases the lock(s) on the items that Ti was waiting for, the directed
edge is dropped from the waiting-for graph. We have a state of deadlock if and
only if the wait-for graph has a cycle. Recall this partial schedule introduced
previously:

The wait-for graph for the above partial schedule is shown below:

One problem with using the wait-for graph for deadlock detection is the matter
of determining when the system should check for deadlock. Criteria such as
the number of concurrently executing transactions or the period of time several
transactions have been waiting to lock items may be used to determine that the
system should check for deadlock.

36

When we have a state of deadlock, some of the transactions causing the deadlock
must be aborted. Choosing which transaction to abort is known as victim
selection. The algorithm for victim selection should generally avoid selecting
transactions that have been running for a long time and that have performed
many updates, and should try instead to select transactions that have not made
many changes or that are involved in more than one deadlock cycle in the wait-
for graph. A problem known as cyclic restart may occur, where a transaction
is aborted and restarted only to be involved in another deadlock. The victim
selection algorithm can use higher priorities for transactions that have been
aborted multiple times, so that they are not selected as victims repeatedly.

Exercise 5

Wait-for graph

Given the graph below, identify the deadlock situations.

Ordering data items deadlock prevention protocol

One way to prevent deadlock is to use a deadlock prevention protocol. One such
deadlock prevention protocol is used in conservative 2PL. It requires that every
transaction lock all the items it needs in advance; if any of the items cannot
be obtained, none of the items are locked. Rather, the transaction waits and
then tries again to lock all the items it needs. This solution obviously limits
concurrency. A second protocol, which also limits concurrency, though to a
lesser extent, involves ordering all the data items in the database and making
sure that a transaction that needs several items will lock them according to that
order (e.g. ascending order). For example, data items may be ordered as having
rank 1, 2, 3, and so on.

A transaction T requiring data items A (with a rank of i) and B (with a rank
of j, and j>i), must first request a lock for the data item with the lowest rank,

37

namely A. When it succeeds in getting the lock for A, only then can it request
a lock for data item B.

All transactions must follow such a protocol, even though within the body of the
transaction the data items are not required in the same order as the ranking of
the data items for lock requests. For this particular protocol to work, all locks
to be applied must be binary locks (i.e. the only locks that can be applied are
write locks).

Wait-die or wound-wait deadlock prevention protocol

A number of deadlock prevention schemes have been proposed that make a de-
cision on whether a transaction involved in a possible deadlock situation should
be blocked and made to wait, should be aborted, or should preempt and abort
another transaction. These protocols use the concept of transaction timestamp
TS(T), which is a unique identifier assigned to each transaction. The times-
tamps are ordered based on the order in which transactions are started; hence,
if transaction T1 starts before transaction T2, then TS(T1) < TS(T2). No-
tice that the older transaction has a smaller timestamp value. This can be
easily understood and remembered in the following way. For an older transac-
tion T which is ‘born’ earlier, its birthday (i.e. TS(T) = 10am) is smaller than
a younger transaction T’, which is ‘born’ at 11am (i.e. TS(T’) = 11am, and
TS(T) < TS(T’)).

Two schemes that use transaction timestamp to prevent deadlock are wait-die
and wound-wait. Suppose that transaction Ti tries to lock an item X, but is
not able to because X is locked by some other transaction Tj with a conflicting
lock. The rules followed by these schemes are as follows:

• wait-die: if TS(Ti) < TS(Tj) (Ti is older than Tj) then Ti is allowed
to wait, otherwise abort Ti (Ti dies) and restart it later with the same
timestamp.

• wound-wait: if TS(Ti) < TS(Tj) (Ti is older than Tj) then abort Tj (Ti
wound Tj) and restart it later with the same timestamp, otherwise Ti is
allowed to wait.

In wait-die, an older transaction is allowed to wait on a younger transaction,
whereas a younger transaction requesting an item held by an older transaction
is aborted and restarted. The wound-die approach does the opposite: a younger
transaction is allowed to wait on an older one, whereas an older transaction
requesting an item held by a younger transaction preempts the younger trans-
action by aborting it. Both schemes end up aborting the younger of the two
transactions that may be involved in a deadlock, and it can be shown that these
two techniques are deadlock-free. The two schemes can be summarised in the
following two tables. The one below is for the wait-die protocol:

38

And this one below is for the wound-die protocol:

The problem with these two schemes is that they cause some transactions to be
aborted and restarted even though those transactions may never actually cause
a deadlock. Another problem can occur with wait-die, where the transaction Ti
may be aborted and restarted several times in a row because an older transaction
Tj continues to hold the data item that Ti needs.

Exercise 6

Deadlock prevention protocols

A DBMS attempts to run the following schedule. Show:

1. How conservative 2PL would prevent deadlock.

2. How ordering all data items would prevent deadlock.

3. How the wait-for scheme would prevent deadlock.

4. How the wound-wait scheme would prevent deadlock.

39

Livelock

Another problem that may occur when we use locking is livelock. A transaction
is in a state of livelock if it cannot proceed for an indefinite period while other
transactions in the system continue normally. This may occur if the waiting
scheme for locked items is unfair, giving priority to some transactions over others.
The standard solution for livelock is to have a fair waiting scheme. One such
scheme uses a first-come-first-serve queue; transactions are enabled to lock an
item in the order in which they originally requested to lock the item. Another

40

scheme allows some transactions to have priority over others but increases the
priority of a transaction the longer it waits, until it eventually gets the highest
priority and proceeds.

Review question 5

1. Complete the following table to describe which type of lock requests can
be granted to the particular transaction.

2. What is two-phase locking protocol? How does it guarantee serialisability?

3. Are the following statements true or false?

• If a transaction has a shared (read) lock on a database item, it can read
the item but not update it.

• If a transaction has an exclusive (write) lock on a database item, it can
update it but not read it.

• If a transaction has an exclusive (write) lock on a database item, it can
both read and update it.

• If transaction A holds a shared (read) lock on a record R, another trans-
action B can issue a write lock on R.

• Basic 2PL, conservative 2PL and strict 2PL can all guarantee serialisability
of a schedule as well as prevent deadlock.

• Strict 2PL guarantees strict schedules and is deadlock-free.

• Conservative 2PL is deadlock-free but limits the amount of concurrency.

• The wait-die and wound-wait schemes of deadlock prevention all end up
aborting the younger of the two transactions that may be involved in a
deadlock. They are both deadlock-free.

4. Complete the following tables of wait-die and wound-wait protocols for
deadlock prevention.

41

5. What is timestamp? Discuss how it is used in deadlock prevention proto-
cols.

Discussion topics

Discussion topic 1

There are many new concepts in this chapter. If you want to discuss them with
your colleagues or make comments about the concepts, use the online facilities.

Discussion topic 2

Compare the following pairs of concepts/techniques:

1. Interleaved vs simultaneous concurrency

2. Serial vs serialisable schedule

3. Shared vs exclusive lock

4. Basic vs conservative 2PL

5. Wait-for vs wound-wait deadlock prevention protocol

6. Deadlock vs livelock

Discussion topic 3

Analyse the relationships among the following terminology:

Problems of concurrency access to database (lost update, uncommitted depen-
dency); serialisable schedule; basic 2PL; deadlock; conservative 2PL; wait-die
and wound-wait

42

Additional content and exercises

Additional content

Concurrency control based on timestamp ordering

The idea of this scheme is to order the transactions based on their timestamps.
(Recall the concept of timestamp.) A schedule in which the transactions partici-
pate is then serialisable, and the equivalent serial schedule has the transactions
in order of their timestamp value. This is called timestamp ordering (TO). No-
tice the difference between this scheme and the two-phase locking. In two-phase
locking, a schedule is serialisable by being equivalent to some serial schedule
allowed by the locking protocols; in timestamp ordering, however, the schedule
is equivalent to the particular serial order that corresponds to the order of the
transaction timestamps. The algorithm must ensure that, for each item accessed
by more than one transaction in the schedule, the order in which the item is
accessed does not violate the serialisability of the schedule. To do this, the basic
TO algorithm associates with each database item X two timestamp (TS) values:

• read_TS(X): The read timestamp of item X; this is the largest timestamp
among all the timestamps of transactions that have successfully read item
X.

• write_TS(X): The write timestamp of item X; this is the largest of all the
timestamps of transactions that have successfully written item X.

Whenever some transaction T tries to issue a read_item(X) or write_item(X)
operation, the basic TO algorithm compares the timestamps of T with the
read and write timestamp of X to ensure that timestamp order of execution
of the transactions is not violated. If the timestamp order is violated by the
operation, then transaction T will violate the equivalent serial schedule, so T
is aborted. Then T is resubmitted to the system as a new transaction with
a new timestamp. If T is aborted and rolled back, any transaction T’ that
may have used a value written by T must also be rolled back, and so on. This
effect is known as cascading rollback and is one of the problems associated with
the basic TO, since the schedule produced is not recoverable. The concurrency
control algorithm must check whether the timestamp ordering of transactions
is violated in the following two cases:

1. Transaction T issues a write_item(X) operation:

• If read_TS(X)>TS(T) or if write_TS(X)>TS(T), then abort and roll
back T and reject the operation. This should be done because some trans-
action with a timestamp greater than TS(T) – and hence after T in the
timestamp ordering – has already read or written the value of item X
before T had a chance to write X, thus violating the timestamp ordering.

• If the condition above does not occur, then execute the write_item(X)
operation of T and set write_TS(X) to TS(T).

43

2. Transaction T issues read_item(X) operation:

• If write_TS(X)>TS(T), then abort and roll back T and reject the oper-
ation. This should be done because some transaction with a timestamp
greater than TS(T) – and hence after T in the timestamp ordering – has
already written the value of item X before T had a chance to read X.

• If write_TS(X) <=TS(T), then execute the read_item(X) operation of T
and set read_TS(T) to the larger of TS(T) and the current read_TS(X).

Multiversion concurrency control techniques

Multiversion concurrency control techniques keep the old values of a data item
when the item is updated. Several versions (values) of an item are maintained.
When a transaction requires access to an item, an appropriate version is chosen
to maintain the serialisability of the concurrently executing schedule, if possible.
The idea is that some read operations that would be rejected in other tech-
niques can still be accepted, by reading an older version of the item to maintain
serialisability.

An obvious drawback of multiversion techniques is that more storage is needed
to maintain multiple versions of the database items. However, older versions
may have to be maintained anyway – for example, for recovery purpose. In ad-
dition, some database applications require older versions to be kept to maintain
a history of the evolution of data item values. The extreme case is a temporal
database, which keeps track of all changes and the items at which they occurred.
In such cases, there is no additional penalty for multiversion techniques, since
older versions are already maintained.

Multiversion techniques based on timestamp ordering

In this technique, several versions X1, X2, … Xk of each data item X are kept
by the system. For each version, the value of version Xi and the following two
timestamps are kept:

1. read_TS(Xi): The read timestamp of Xi; this is the largest of all the
timestamps of transactions that have successfully read version Xi.

2. write_TS(Xi): The write timestamp of Xi; this is the timestamp of the
transaction that wrote the value of version Xi.

Whenever a transaction T is allowed to execute a write_item(X) operation, a
new version of item X, Xk+1, is created, with both the write_TS(Xk+1) and
the read_TS(Xk+1) set to TS(T). Correspondingly, when a transaction T is
allowed to read the value of version Xi, the value of read_TS(Xi) is set to the
largest of read_TS(Xi) and TS(T).

To ensure serialisability, we use the following two rules to control the reading
and writing of data items:

44

1. If transaction T issues a write_item(X) operation, and version i of X has
the highest write_TS(Xi) of all versions of X which is also less than or
equal to TS(T), and TS(T) < read_TS(Xi), then abort and roll back
transaction T; otherwise, create a new version Xj of X with read_TS(Xj)
= write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, and version i of X has
the highest write_TS(Xi) of all versions of X which is also less than
or equal to TS(T), then return the value of Xi to transaction T, and
set the value of read_TS(Xj) to the largest of TS(T) and the current
read_TS(Xj).

Multiversion two-phase locking

In this scheme, there are three locking modes for an item: read, write and certify.
Hence, the state of an item X can be one of ‘read locked’, ‘write locked’, ‘certify
locked’ and ‘unlocked’. The idea behind the multiversion two-phase locking is to
allow other transactions T’ to read an item X while a single transaction T holds
a write lock X. (Compare with standard locking scheme.) This is accomplished
by allowing two versions for each item X; one version must always have been
written by some committed transaction. The second version X’ is created when
a transaction T acquires a write lock on the item. Other transactions can
continue to read the committed version X while T holds the write lock. Now
transaction T can change the value of X’ as needed, without affecting the value
of the committed version X. However, once T is ready to commit, it must obtain
a certify lock on all items that it currently holds write locks on before it can
commit. The certify lock is not compatible with read locks, so the transaction
may have to delay its commit until all its write lock items are released by any
reading transactions. At this point, the committed version X of the data item
is set to the value of version X’, version X’ is discarded, and the certify locks
are then released. The lock compatibility table for this scheme is shown below:

In this multiversion two-phase locking scheme, reads can proceed concurrently
with a write operation – an arrangement not permitted under the standard two-
phase locking schemes. The cost is that a transaction may have to delay its
commit until it obtains exclusive certify locks on all items it has updated. It
can be shown that this scheme avoids cascading aborts, since transactions are

45

only allowed to read the version X that was written by committed transaction.
However, deadlock may occur.

Granularity of data items

All concurrency control techniques assumed that the database was formed of a
number of items. A database item could be chosen to be one of the following:

• A database record.

• A field value of a database record.

• A disk block.

• A whole file.

• The whole database.

Several trade-offs must be considered in choosing the data item size. We shall
discuss data item size in the context of locking, although similar arguments can
be made for other concurrency control techniques.

First, the larger the data item size is, the lower the degree of concurrency
permitted. For example, if the data item is a disk block, a transaction T that
needs to lock a record A must lock the whole disk block X that contains A.
This is because a lock is associated with the whole data item X. Now, if another
transaction S wants to lock a different record B that happens to reside in the
same block X in a conflicting disk mode, it is forced to wait until the first
transaction releases the lock on block X. If the data item size was a single
record, transaction S could proceed as it would be locking a different data item
(record B).

On the other hand, the smaller the data item size is, the more items will exist
in the database. Because every item is associated with a lock, the system will
have a larger number of locks to be handled by the lock manger. More lock and
unlock operations will be performed, causing a higher overhead. In addition,
more storage space will be required for the lock table. For timestamps, storage
is required for the read_TS and write_TS for each data item, and the overhead
of handling a large number of items is similar to that in the case of locking.

The size of data items is often called the data item granularity. Fine granularity
refers to small item size, whereas coarse granularity refers to large item size.
Given the above trade-offs, the obvious question to ask is: What is the best
item size? The answer is that it depends on the types of transactions involved.
If a typical transaction accesses a small number of records, it is advantageous to
have the data item granularity be one record. On the other hand, if a transaction
typically accesses many records of the same file, it may be better to have block
or file granularity so that the transaction will consider all those records as one
(or a few) data items.

46

Most concurrency control techniques have a uniform data item size. However,
some techniques have been proposed that permit variable item sizes. In these
techniques, the data item size may be changed to the granularity that best suits
the transactions that are currently executing on the system.

Additional exercises

There are four suggested extension exercises for this chapter.

Extension exercise 1

Interleaved concurrency

T1, T2 and T3 are defined to perform the following operations: T1: Add one
to A. T2: Double A. T3: Display A on the screen and then set A to one.

1. Supposed the above three transactions are allowed to execute concurrently.
If A has an initial value zero, how many correct results are there? Enu-
merate them.

2. Suppose the internal structure of T1, T2, and T3 is as indicated below:

If the transactions execute without any locking, how many possible interleaved
executions are there?

Extension exercise 2

Deadlock

The following list represents the sequence of events in an interleaved execution
of a set of transaction T1 to T12. A, B, … H are data items in the database.
Assume that FETCH R acquires an S lock on R, and UPDATE R promotes that
lock to X level. Assume also all locks are held until the next synchronisation
point. Are there any deadlocks at time tn?

47

48

Extension exercise 3

Multiversion two-phase locking

What is a certify lock? Discuss multiversion two-phase locking for concurrency
control.

Extension exercise 4

Granularity of data items

How does the granularity of data items affect the performance of concurrency
control? What factors affect selection of granularity size for data items?

49

Chapter 14. Backup and Recovery

Table of contents

• Objectives
• Relationship to other chapters
• Context
• Introduction
• A typical recovery problem
• Transaction logging

– System log
– Committing transactions and force-writing
– Checkpoints
– Undoing
– Redoing
– Activity 1 - Looking up glossary entries

• Recovery outline
– Recovery from catastrophic failures
– Recovery from non-catastrophic failures
– Transaction rollback

• Recovery techniques based on deferred update
– Deferred update
– Deferred update in a single-user environment
– Deferred update in a multi-user environment
– Transaction actions that do not affect the database

• Recovery techniques based on immediate update
– Immediate update
– Immediate update in a single-user environment
– Immediate update in a multi-user environment

• Recovery in multidatabase transactions
• Additional content and exercise

– Shadow paging
– Page management
– Shadow paging scheme in a single-user environment
– Extension exercise 1: Shadow paging

Objectives

At the end of this chapter you should be able to:

• Describe a range of causes of database failure, and explain mechanisms
available to deal with these.

• Understand a range of options available for the design of database backup
procedures.

1

• Analyse the problems of data management in a concurrent environment.

• Be able to discuss the software mechanisms you would expect to be pro-
vided for recovery in a large, multi-user database environment.

Relationship to other chapters

The design of suitable backup and recovery procedures will usually be carried out
by the database administrator (DBA) or DBA group, probably in conjunction
with representatives of management and application developers. The way in
which the databases in use provide for the concurrent processing of transactions,
covered in the chapter Concurrency Control, will have an impact on the design
of the backup and recovery procedures required.

Context

In the previous chapter, Concurrency Control, we discussed the different causes
of failure such as transaction errors and system crashes. In this chapter we will
introduce some of the techniques that can be used to recover from transaction
failures.

We will first introduce some concepts that are used by recovery processes such
as the system log, checkpoints and commit points. We then outline the recovery
procedures. The process of rolling back (undoing) the effect of a transaction
will be discussed in detail.

We will present recovery techniques based on deferred update, also known as
the NO-UNDO/REDO technique, and immediate update, which is known as
UNDO/REDO. We also discuss the technique known as shadowing or shadow
paging, which can be categorised as a NO-UNDO/NO-REDO algorithm. Recov-
ery in multidatabase transactions is briefly discussed in the chapter. Techniques
for recovery from catastrophic failure are also discussed briefly.

Introduction

In parallel with this chapter, you should read Chapter 22 of Ramez Elmasri
and Shamkant B. Navathe, ” FUNDAMENTALS OF Database Systems“, (7th
edn.).

Database systems, like any other computer system, are subject to failures. De-
spite this, any organisation that depends upon a database must have that
database available when it is required. Therefore, any DBMS intended for a
serious business or organisational user must have adequate facilities for fast
recovery after failure. In particular, whenever a transaction is submitted to a
DBMS for execution, the system must ensure that either all the operations in the

2

transaction are completed successfully and their effect is recorded permanently
in the database, or the transaction has no effect whatsoever on the database or
on any other transactions.

The understanding of the methods available for recovering from such failures
are therefore essential to any serious study of database. This chapter describes
the methods available for recovering from a range of problems that can oc-
cur throughout the life of a database system. These mechanisms include auto-
matic protection mechanisms built into the database software itself, and non-
automatic actions available to people responsible for the running of the database
system, both for the backing up of data and recovery for a variety of failure sit-
uations.

Recovery techniques are intertwined with the concurrency control mechanisms:
certain recovery techniques are best used with specific concurrency control
methods. Assume for the most part that we are dealing with large multi-user
databases. Small systems typically provide little or no support for recovery; in
these systems, recovery is regarded as a user problem.

A typical recovery problem

Data updates made by a DBMS are not automatically written to disk at each
synchronisation point. Therefore there may be some delay between the commit
and the actual disk writing (i.e. regarding the changes as permanent and wor-
thy of being made to disk). If there is a system failure during this delay, the
system must still be able to ensure that these updates reach the disk copy of the
database. Conversely, data changes that may ultimately prove to be incorrect,
made for example by a transaction that is later rolled back, can sometimes be
written to disk. Ensuring that only the results of complete transactions are
committed to disk is an important task, which if inadequately controlled by the
DBMS may lead to problems, such as the generation of an inconsistent database.
This particular problem can be clearly seen in the following example.

Suppose we want to enter a transaction into a customer order. The following
actions must be taken:

START

1. Change the customer record with the new order data

2. Change the salesperson record with the new order data

3. Insert a new order record into the database

STOP

And the initial values are shown in the figure below:

3

If only operations 1 and 2 are successfully performed, this results in the values
shown in the figure below:

This database state is clearly unacceptable as it does not accurately reflect
reality; for example, a customer may receive an invoice for items never sent, or
a salesman may make commission on items never received. It is better to treat
the whole procedure (i.e. from START to STOP) as a complete transaction
and not commit any changes to the database until STOP has been successfully
reached.

4

Transaction logging

System log

The recovery manager overcomes many of the potential problems of transaction
failure by a variety of techniques. Many of these are heavily dependent upon the
existence of a special file known as a system log, or simply a log (also sometimes
called a journal or audit trail). It contains information about the start and end
of each transaction and any updates which occur in the transaction. The log
keeps track of all transaction operations that affect the values of database items.
This information may be needed to recover from transaction failure. The log is
kept on disk (apart from the most recent log block that is in the process of being
generated, this is stored in the main memory buffers). Thus, the majority of the
log is not affected by failures, except for a disk failure or catastrophic failure.
In addition, the log is periodically backed up to archival storage (e.g. tape) to
guard against such catastrophic failures. The types of entries that are written
to the log are described below. In these entries, T refers to a unique transaction
identifier that is generated automatically by the system and used to uniquely
label each transaction.

• start_transaction(T): This log entry records that transaction T starts
the execution.

• read_item(T, X): This log entry records that transaction T reads the
value of database item X.

• write_item(T, X, old_value, new_value): This log entry records
that transaction T changes the value of the database item X from
old_value to new_value. The old value is sometimes known as a before
image of X, and the new value is known as an after image of X.

• commit(T): This log entry records that transaction T has completed
all accesses to the database successfully and its effect can be committed
(recorded permanently) to the database.

• abort(T): This records that transaction T has been aborted.

• checkpoint: This is an additional entry to the log. The purpose of this
entry will be described in a later section.

Some protocols do not require that read operations be written to the system
log, in which case, the overhead of recording operations in the log is reduced,
since fewer operations – only write – are recorded in the log. In addition, some
protocols require simpler write entries that do not include new_value.

Because the log contains a record of every write operation that changes the value
of some database item, it is possible to undo the effect of these write operations
of a transaction T by tracing backward through the log and resetting all items
changed by a write operation of T to their old_values. We can also redo the

5

effect of the write operations of a transaction T by tracing forward through the
log and setting all items changed by a write operation of T to their new_values.
Redoing the operations of a transaction may be required if all its updates are
recorded in the log but a failure occurs before we can be sure that all the
new_values have been written permanently in the actual database.

Committing transactions and force-writing

A transaction T reaches its commit point when all its operations that access the
database have been executed successfully; that is, the transaction has reached
the point at which it will not abort (terminate without completing). Beyond
the commit point, the transaction is said to be committed, and its effect is
assumed to be permanently recorded in the database. Commitment always
involves writing a commit entry to the log and writing the log to disk. At the
time of a system crash, we search back in the log for all transactions T that
have written a start_transaction(T) entry into the log but have not written a
commit(T) entry yet; these transactions may have to be rolled back to undo
their effect on the database during the recovery process. Transactions that have
written their commit(T) entry in the log must also have recorded all their write
operations in the log - otherwise they would not be committed - so their effect
on the database can be redone from the log entries.

Notice that the log file must be kept on disk. At the time of a system crash,
only the log entries that have been written back to disk are considered in the
recovery process, because the contents of main memory may be lost. Hence,
before a transaction reaches its commit point, any portion of the log that has
not been written to the disk yet must now be written to the disk. This process
is called force-writing of the log file, before committing a transaction. A commit
does not necessarily involve writing the data items to disk; this depends on the
recovery mechanism in use.

A commit is not necessarily required to initiate writing of the log file to disk.
The log may sometimes be written back automatically when the log buffer is
full. This happens irregularly, as usually one block of the log file is kept in main
memory until it is filled with log entries and then written back to disk, rather
than writing it to disk every time a log entry is added. This saves the overhead
of multiple disk writes of the same information.

Checkpoints

In the event of failure, most recovery managers initiate procedures that involve
redoing or undoing operations contained within the log. Clearly, not all oper-
ations need to be redone or undone, as many transactions recorded on the log
will have been successfully completed and the changes written permanently to
disk. The problem for the recovery manager is to determine which operations

6

need to be considered and which can safely be ignored. This problem is usually
overcome by writing another kind of entry in the log: the checkpoint entry.

The checkpoint is written into the log periodically and always involves the writ-
ing out to the database on disk the effect of all write operations of committed
transactions. Hence, all transactions that have their commit(T) entries in the
log before a checkpoint entry will not require their write operations to be redone
in case of a system crash. The recovery manager of a DBMS must decide at
what intervals to take a checkpoint; the intervals are usually decided on the
basis of the time elapsed, or the number of committed transactions since the
last checkpoint. Performing a checkpoint consists of the following operations:

• Suspending executions of transactions temporarily;

• Writing (force-writing) all modified database buffers of committed trans-
actions out to disk;

• Writing a checkpoint record to the log; and

• Writing (force-writing) all log records in main memory out to disk.

A checkpoint record usually contains additional information, including a list
of transactions active at the time of the checkpoint. Many recovery methods
(including the deferred and immediate update methods) need this information
when a transaction is rolled back, as all transactions active at the time of the
checkpoint and any subsequent ones may need to be redone.

In addition to the log, further security of data is provided by generating backup
copies of the database, held in a separate location to guard against destruction
in the event of fire, flood, disk crash, etc.

Undoing

If a transaction crash does occur, then the recovery manager may undo trans-
actions (that is, reverse the operations of a transaction on the database). This
involves examining a transaction for the log entry write_item(T, x, old_value,
new_value) and setting the value of item x in the database to old-value. Undo-
ing a number of write_item operations from one or more transactions from the
log must proceed in the reverse order from the order in which the operations
were written in the log.

Redoing

Redoing transactions is achieved by examining a transaction’s log entry and for
every write_item(T, x, old_value, new_value) entry, the value of item x in the
database is set to new_value. Redoing a number of transactions from the log
must proceed in the same order in which the operations were written in the log.

7

The redo operation is required to be idempotent; that is, executing it over and
over is equivalent to executing it just once. In fact, the whole recovery process
should be idempotent. This is so because, if the system were to fail during
the recovery process, the next recovery attempt might redo certain write_item
operations that had already been redone during the previous recovery process.
The result of recovery from a crash during recovery should be the same as the
result of recovering when there is no crash during recovery. Of course, repeating
operations, as long as they are done in the correct way, should never leave the
database in an inconsistent state, although as we have seen the repetitions may
be unnecessary.

It is only necessary to redo the last update of x from the log during recovery,
because the other updates would be overwritten by this last redo. The redo
algorithm can be made more efficient by starting from the end of the log and
working backwards towards the last checkpoint. Whenever an item is redone, it
is added to a list of redone items. Before redo is applied to an item, the list is
checked; if the item appears on the list, it is not redone, since its last value has
already been recovered.

Activity 1 - Looking up glossary entries

In the Transaction Logging section of this chapter, the following terms have
glossary entries:

• system log

• commit point

• checkpoint

• force-writing

1. In your own words, write a short definition for each of these terms.

2. Look up and make notes of the definition of each term in the module
glossary.

3. Identify (and correct) any important conceptual differences between your
definition and the glossary entry.

Review question 1

1. Unfortunately, transactions fail frequently, and they do so due to a variety
of causes. Review the chapter on Concurrency Control, and discuss the
different causes of the transaction failures.

2. What is meant by a system log? Discuss how a system log is needed in
the recovery process.

3. Discuss the actions involved in writing a checkpoint entry.

8

4. Discuss how undo and redo operations are used in the recovery process.

Recovery outline

Recovery from transaction failures usually means that the database is restored
to some state from the past, so that a correct state – close to the time of
failure – can be reconstructed from that past state. To do this, the system
must keep information about changes to data items during transaction execution
outside the database. This information is typically kept in the system log. It
is important to note that a transaction may fail at any point, e.g. when data is
being written to a buffer or when a log is being written to disk. All recovery
mechanisms must be able to cope with the unpredictable nature of transaction
failure. Significantly, the recovery phase itself may fail; therefore, the recovery
mechanism must also be capable of recovering from failure during recovery.

A typical strategy for recovery may be summarised based on the type of failures.

Recovery from catastrophic failures

The main technique used to handle catastrophic failures including disk crash is
that of database backup. The whole database and the log are periodically copied
onto a cheap storage medium such as magnetic tapes. In case of a catastrophic
system failure, the latest backup copy can be reloaded from the tape to the disk,
and the system can be restarted.

To avoid losing all the effects of transactions that have been executed since the
last backup, it is customary to back up the system log by periodically copying
it to magnetic tape. The system log is usually substantially smaller than the
database itself and hence can be backed up more frequently. When the system
log is backed up, users do not lose all transactions they have performed since
the last database backup. All committed transactions recorded in the portion
of the system log that has been backed up can have their effect on the database
reconstructed. A new system log is started after each database backup operation.
Hence, to recover from disk failure, the database is first recreated on disk from
its latest backup copy on tape. Following that, the effects of all the committed
transactions whose operations have been entered in the backed-up copy of the
system log are reconstructed.

Recovery from non-catastrophic failures

When the database is not physically damaged but has become inconsistent due
to non-catastrophic failure, the strategy is to reverse the changes that caused
the inconsistency by undoing some operations. It may also be necessary to redo
some operations that could have been lost during the recovery process, or for

9

some other reason, in order to restore a consistent state of the database. In
this case, a complete archival copy of the database is not required; rather, it
is sufficient that the entries kept in the system log are consulted during the
recovery.

There are two major techniques for recovery from non-catastrophic transaction
failures: deferred updates and immediate updates. The deferred update tech-
niques do not actually update the database until after a transaction reaches its
commit point; then the updates are recorded in the database. Before commit,
all transaction updates are recorded in the local transaction workspace. During
commit, the updates are first recorded persistently in the log and then written
to the database. If a transaction fails before reaching its commit point, it will
not have changed the database in any way, so UNDO is not needed. It may
be necessary to REDO the effect of the operations of a committed transaction
from the log, because their effect may not yet have been written in the database.
Hence, deferred update is also known as the NO-UNDO/REDO algorithm.

In the immediate update techniques, the database may be updated by some
operations of a transaction before the transaction reaches its commit point.
However, these operations are typically recorded in the log on disk by force-
writing before they are applied to the database, making recovery still possible.
If a transaction fails after recording some changes in the database but before
reaching its commit point, the effect of its operations on the database must be
undone; that is, the transaction must be rolled back. In the general case of
immediate update, both undo and redo are required during recovery, so it is
known as the UNDO/REDO algorithm.

Transaction rollback

If a transaction fails for whatever reason after updating the database, it may
be necessary to roll back or UNDO the transaction. Any data item values that
have been changed by the transaction must be returned to their previous values.
The log entries are used to recover the old values of data items that must be
rolled back.

If a transaction T is rolled back, any transaction S that has, in the interim,
read the value of some data item X written by T must also be rolled back.
Similarly, once S is rolled back, any transaction R that has read the value of
some item Y written by S must also be rolled back; and so on. This phenomenon
is called cascading rollback. Cascading rollback, understandably, can be quite
time-consuming. That is why most recovery mechanisms are designed such that
cascading rollback is never required.

The table below shows an example where cascading rollback is required. The
read and write operations of three individual transactions are shown below:

10

The diagram below graphically shows the operations of different transactions
along the time axis:

The figure below shows the system log at the point of a system crash for a
particular execution schedule of these transactions. The values of A, B, C and
D, which are used by the transactions, are shown to the right of the system
log entries. At the point of system crash, transaction T3 has not reached its
conclusion and must be rolled back. The write operations of T3, marked by a
single *, are the operations that are undone during transaction rollback.

11

We must now check for cascading rollback. In the diagram above, which shows

12

transactions along the time axis, we see that transaction T2 reads the value B
which was written by T3; this can also be determined by examining the log.
Because T3 is rolled back, T2 must also be rolled back. The write operations of
T2, marked by ** in the log, are the ones that are undone. Note that only write
operations need to be undone during transaction rollback; read operations are
recorded in the log only to determine whether cascading rollback of additional
transactions is necessary. If rollback of transactions is never required by the
recovery method, we can keep more limited information in the system log. There
is also no need to record any read_item operations in the log, because these are
needed only for determining cascading rollback.

Review question 2

1. What is catastrophic failure? Discuss how databases can recover from
catastrophic failures.

2. What is meant by transaction rollback? Why is it necessary to check for
cascading rollback?

3. Compare deferred update with immediate update techniques by filling in
the following blanks.

The deferred update techniques do not actually update the database until a
transaction reaches its commit point; then the updates are recorded in the
database. Before commit, all transaction updates are recorded in the lo-
cal transaction workspace. During commit, the updates are first recorded
persistently in the _______ and then written to the _______. If a
transaction fails before reaching its commit point, it will not have changed
the database in any way, so is not needed. It may be necessary to
_______ the effect of the operations of a committed transaction in the
log, because their effect may not yet have been written in the database.
Hence, deferred update is also known as the ________ algorithm. In
the immediate update techniques, the database may be updated by some
operations of a transaction _______ the transaction reaches its commit
point. However, these operations are typically recorded in the log on disk
before they are applied to the database, making recovery still possible. If
a transaction fails after recording some changes in the database but be-
fore reaching its commit point, the effect of its operations on the database
must be _______; that is, the transaction must be _______. In the
general case of immediate update, both _______ and _______ are
required during recovery, so it is known as the _______ algorithm.

13

Recovery techniques based on deferred update

Deferred update

The idea behind deferred update is to defer or postpone any actual updates
to the database itself until the transaction completes its execution successfully
and reaches its commit point. During transaction execution, the updates are
recorded only in the log and in the transaction workspace. After the transaction
reaches its commit point and the log is force-written to disk, the updates are
recorded in the database itself. If a transaction fails before reaching its commit
point, there is no need to undo any operations, because the transaction has not
affected the database in any way.

The steps involved in the deferred update protocol are as follows:

1. When a transaction starts, write an entry start_transaction(T) to the log.

2. When any operation is performed that will change values in the database,
write a log entry write_item(T, x, old_value, new_value).

3. When a transaction is about to commit, write a log record of the form
commit(T); write all log records to disk.

4. Commit the transaction, using the log to write the updates to the database;
the writing of data to disk need not occur immediately.

5. If the transaction aborts, ignore the log records and do not write the
changes to disk.

The database is never updated until after the transaction commits, and there
is never a need to UNDO any operations. Hence this technique is known as
the NO-UNDO/REDO algorithm. The REDO is needed in case the system
fails after the transaction commits but before all its changes are recorded in the
database. In this case, the transaction operations are redone from the log entries.
The protocol and how different entries are affected can be best summarised as
shown:

14

Deferred update in a single-user environment

We first discuss recovery based on deferred update in single-user systems, where
no concurrency control is needed, so that we can understand the recovery process
independently of any concurrency control method. In such an environment, the
recovery algorithm can be rather simple. It works as follows.

Use two lists to maintain the transactions: the committed transactions list,
which contains all the committed transactions since the last checkpoint, and
the active transactions list (at most one transaction falls in this category, be-
cause the system is a single-user one). Apply the REDO operation to all the
write_item operations of the committed transactions from the log in the order
in which they were written to the log. Restart the active transactions.

The REDO procedure is defined as follows:

Redoing a write_item operation consists of examining its log entry
write_item(T, x, old_value, new_value) and setting the value of item x
in the database to new_value. The REDO operation is required to be
idempotent, as discussed before.

Notice that the transaction in the active list will have no effect on the database
because of the deferred update protocol, and is ignored completely by the re-
covery process. It is implicitly rolled back, because none of its operations were
reflected in the database. However, the transaction must now be restarted,
either automatically by the recovery process or manually by the user.

The method’s main benefit is that any transaction operation need never be
undone, as a transaction does not record its changes in the database until it
reaches its commit point.

The protocol is summarised in the diagram below:

The diagram below shows an example of recovery in a single-user environment,
where the first failure occurs during execution of transaction T2. The recovery
process will redo the write_item(T1, D, 20) entry in the log by resetting the
value of item D to 20 (its new value). The write(T2, …) entries in the log
are ignored by the recovery process because T2 is not committed. If a second
failure occurs during recovery from the first failure, the same recovery process
is repeated from start to finish, with identical results.

15

Deferred update in a multi-user environment

For a multi-user system with concurrency control, the recovery process may be
more complex, depending on the protocols used for concurrency control. In
many cases, the concurrency control and recovery processes are interrelated. In
general, the greater the degree of concurrency we wish to achieve, the more
difficult the task of recovery becomes.

Consider a system in which concurrency control uses two-phase locking (basic
2PL) and prevents deadlock by pre-assigning all locks to items needed by a
transaction before the transaction starts execution. To combine the deferred
update methods for recovery with this concurrency control technique, we can
keep all the locks on items in effect until the transaction reaches its commit
point. After that, the locks can be released. This ensures strict and serialisable
schedules. Assuming that checkpoint entries are included in the log, a possible

16

recovery algorithm for this case is given below.

Use two lists of transactions maintained by the system: the committed trans-
actions list which contains all committed transactions since the last checkpoint,
and the active transactions list. REDO all the write operations of the commit-
ted transactions from the log, in the order in which they were written into the
log. The transactions in the active list that are active and did not commit are
effectively cancelled and must be resubmitted.

The REDO procedure is the same as defined earlier in the deferred update in
the single-user environment.

The diagram below shows an example schedule of executing transactions. When
the checkpoint was taken at time t1, transaction T1 had committed, whereas
transaction T3 and T4 had not. Before the system crash at time t2, T3 and
T2 were committed but not T4 and T5. According to the deferred update
method, there is no need to redo the write operations of transaction T1 or any
transactions committed before the last checkpoint time t1. Write operations of
T2 and T3 must be redone, however, because both transactions reached their
commit points after the last checkpoint. Recall that the log is force-written
before committing a transaction. Transaction T4 and T5 are ignored: they are
effectively cancelled and rolled back because none of their write operations were
recorded in the database under the deferred update protocol.

Transaction actions that do not affect the database

In general, a transaction will have actions that do not affect the database, such
as generating and printing messages or reports from information retrieved from
the database. If a transaction fails before completion, we may not want the user
to get these reports, since the transaction has failed to complete. Hence, such

17

reports should be generated only after the transaction reaches its commit point.
A common method of dealing with such actions is to issue the commands that
generate the reports but keep them as batch jobs. The batch jobs are executed
only after the transaction reaches its commit point. If the transaction does not
reach its commit point because of a failure, the batch jobs are cancelled.

Exercise 1: Deferred update protocol

Given the operations of the four concurrent transactions in (1) below and the
system log at the point of system crash in (2), discuss how each transaction
recovers from the failure using deferred update technique.

1. The read and write operations of four transactions:

2. System log at the point of crash:

18

Exercise 2: Recovery management using deferred update with incre-
mental log

Below, a schedule is given for five transactions A, B, C, D and E.

Assume the initial values for the variables are a=1, b=2, c=3, d=4 and e=5.

Using an incremental log with deferred updates, for each operation in each of
the transactions, show:

1. The log entries.

2. Whether the log is written to disk.

3. Whether the output buffer is updated.

4. Whether the DBMS on disk is updated.

5. The values of the variables on the disk.

Discuss how each transaction recovers from the failure.

19

Review question 3

1. Use your own words to describe the deferred update method for recovery
management in a multi-user environment. Complete the following table
to show how the deferred update protocol affects the log on disk, database
buffer and database on disk.

20

2. How can recovery handle transaction operations that do not affect the
database, such as the printing of reports by the transaction?

Recovery techniques based on immediate update

Immediate update

In the immediate update techniques, the database may be updated by the oper-
ations of a transaction immediately, before the transaction reaches its commit
point. However, these operations are typically recorded in the log on disk by
force-writing before they are applied to the database, so that recovery is possi-
ble.

When immediate update is allowed, provisions must be made for undoing the
effect of update operations on the database, because a transaction can fail after
it has applied some updates to the database itself. Hence recovery schemes based
on immediate update must include the capability to roll back a transaction by
undoing the effect of its write operations.

1. When a transaction starts, write an entry start_transaction(T) to the log;

2. When any operation is performed that will change values in the database,
write a log entry write_item(T, x, old_value, new_value);

3. Write the log to disk;

4. Once the log record is written, write the update to the database buffers;

5. When convenient, write the database buffers to the disk;

6. When a transaction is about to commit, write a log record of the form
commit(T);

7. Write the log to disk.

The protocol and how different entries are affected can be best summarised
below:

In general, we can distinguish two main categories of immediate update algo-
rithms. If the recovery technique ensures that all updates of a transaction

21

are recorded in the database on disk before the transaction commits, there is
never a need to redo any operations of committed transactions. Such an al-
gorithm is called UNDO/NO-REDO. On the other hand, if the transaction is
allowed to commit before all its changes are written to the database, we have
the UNDO/REDO method, the most general recovery algorithm. This is also
the most complex technique. Recovery activities are summarised below:

Immediate update in a single-user environment

We first consider a single-user system so that we can examine the recovery
process separately from concurrency control. If a failure occurs in a single-user
system, the executing transaction at the time of failure may have recorded some
changes in the database. The effect of all such operations must be undone as
part of the recovery process. Hence, the recovery algorithm needs an UNDO
procedure, described subsequently, to undo the effect of certain write operations
that have been applied to the database following examination of their system
log entry. The recovery algorithm also uses the redo procedure defined earlier.
Recovery takes place in the following way.

Use two lists of transaction maintained by the system: the committed transac-
tions since the last checkpoint, and the active transactions (at most one trans-
action will fall in this category, because the system is single user). Undo all
the write operations of the active transaction from the log, using the UNDO
procedure described hereafter. Redo all the write operations of the committed
transactions from the log, in the order in which they were written in the log,
using the REDO procedure.

The UNDO procedure is defined as follows:

Undoing a write operation consists of examining its log entry write_item(T, x,
old_value, new_value) and setting the value of x in the database to old_value.
Undoing a number of such write operations from one or more transactions from
the log must proceed in the reverse order from the order in which the operations
were written in the log.

22

Immediate update in a multi-user environment

When concurrency execution is permitted, the recovery process again depends
on the protocols used for concurrency control. The procedure below outlines a
recovery technique for concurrent transactions with immediate update. Assume
that the log includes checkpoints and that the concurrency control protocol
produces strict schedules – as, for example, the strict 2PL protocol does. Recall
that a strict schedule does not allow a transaction to read or write an item unless
the transaction that last wrote the item has committed. However, deadlocks can
occur in strict 2PL, thus requiring UNDO of transactions.

Use two lists of transaction maintained by the system: the committed trans-
actions since the last checkpoint, and the active transactions. Undo all the
write operations of the active (uncommitted) transaction from the log, using
the UNDO procedure. The operations should be undone in the reverse of the
order in which they were written into the log. Redo all the write operations
of the committed transactions from the log, in the order in which they were
written in the log, using the REDO procedure.

Exercise 3: Immediate update protocol

Given the same transactions and system log in exercise 1, discuss how each
transaction recovers from the failure using immediate update technique.

Exercise 4: Recovery management using immediate update with in-
cremental log

The same schedule and initial values of the variables in exercise 2 are given;
use the immediate update protocol for recovery to show how each transaction
recovers from the failure.

Review question 4

1. Use your own words to describe the immediate update method for recovery
management in a multi-user environment. Complete the following table to
show how the immediate update protocol affects the log on disk, database
buffer and database on disk.

2. In general, we can distinguish two main categories of immediate update
algorithms. If the recovery technique ensures that all updates of a transac-

23

tion are recorded in the database on disk before the transaction commits,
there is never a need to redo any operations of committed transactions.
Such an algorithm is called UNDO/NO-REDO. On the other hand, if the
transaction is allowed to commit before all its changes are written to the
database, we have the UNDO/REDO method.

Recovery in multidatabase transactions

So far, we have implicitly assumed that a transaction accesses a single database.
In some cases a single transaction, called a multidatabase transaction, may
require access to multiple database. These databases may even be stored on dif-
ferent types of DBMSs; for example, some DBMSs may be Relational, whereas
others are hierarchical or network DBMSs. In such a case, each DBMS involved
in the multidatabase transaction will have its own recovery technique and trans-
action manager separate from those of the other DBMSs. This situation is
somewhat similar to the case of a distributed database management system,
where parts of the database reside at different sites that are connected by a
communication network.

To maintain the atomicity of multidatabase transaction, it is necessary to have
a two-level recovery mechanism. A global recovery manager, or coordinator,
is needed in addition to the local recovery managers. The coordinator usually
follows a protocol called the two-phase commit protocol, whose two phases can
be stated as follows.

PHASE 1: When all participating databases signal the coordinator that the
part of the multidatabase transaction involving them has concluded, the coor-
dinator sends a message “prepare for commit” to each participant to get ready
for committing the transaction. Each participating database receiving that mes-
sage will force-write all log records to disk and then send a “ready to commit”
or “OK” signal to the coordinator. If the force-writing to disk fails or the local
transaction cannot commit for some reason, the participating database sends a
“cannot commit” or “not OK” signal to the coordinator. If the coordinator does
not receive a reply from a database within a certain time interval, it assumes a
“not OK” response.

PHASE 2: If all participating databases reply “OK”, the transaction is suc-
cessful, and the coordinator sends a “commit” signal for the transaction to the
participating databases. Because all the local effects of the transaction have
been recorded in the logs of the participating databases, recovery from failure
is now possible. Each participating database completes transaction commit
by writing a commit(T) entry for the transaction in the log and permanently
updating the database if needed. On the other hand, if one or more of the
participating databases have a “not OK” response to the coordinator, the trans-
action has failed, and the coordinator sends a message to “roll back” or UNDO
the local effect of the transaction to each participating database. This is done

24

by undoing the transaction operations, using the log.

The net effect of the two-phase commit protocol is that either all participating
databases commit the effect of the transaction or none of them do. In case any
of the participants – or the coordinator – fails, it is always possible to recover
to a state where either the transaction is committed or it is rolled back. A
failure during or before phase 1 usually requires the transaction to be rolled
back, whereas a failure during phase 2 means that a successful transaction can
recover and commit.

Review question 5

Describe the two-phase commit protocol for multidatabase transactions.

Additional content and exercise

Shadow paging

In the shadow page scheme, the database is not directly modified but a copy,
stored on permanent storage (e.g. disk), is made of the portion of the database
to be modified and all modifications are made to this copy. Meanwhile, the
old version of the database remains intact. Once the transaction commits, the
modified copy replaces the original in an atomic manner, i.e. the replacement
is carried out in its entirety or not at all. If a system crashes at this point, the
old version is still available for recovery.

Page management

Before we discuss this scheme, a review of the paging scheme as used in the
operating system for virtual memory management is appropriate. The memory
that is accessed by a process (a program in execution is a process) is called
virtual memory. Virtual memory is divided into pages that are all of a certain
size (commonly 4096 bytes or 4K). The virtual or logical pages are mapped onto
physical memory blocks (i.e. disk physical records) of the same size as the pages.
The mapping is achieved by consulting a page table (or directory). The page
table lists each logical page identifier and the address of the physical blocks
that actually stores the logical page. The advantage of this scheme is that the
consecutive logical pages need not be mapped onto consecutive physical blocks.

Shadow paging scheme considers the database to be made up of a number of
fixed-size disk pages (or disk blocks) – say, n – for recovery purposes. A page
table (or directory) with n entries is constructed, where the ith page table entry
points to the ith database page on disk. The page table is kept in main memory
if it is not too large, and all references – reads or writes – to database pages on
disk go through the page table.

25

Shadow paging scheme in a single-user environment

In the shadow page scheme, two page tables are used. The original page table
(shadow page table) and the current page table. Initially, both page tables point
to the same blocks of physical storage. The current page table is the only route
through which a transaction can gain access to the data stored on disk. That
is, a transaction always uses the current page table to retrieve the appropriate
database blocks.

During transaction execution, the shadow page table is never modified. When
a write operation is performed, a new copy of the modified database page is
created, but the old copy of that page is not overwritten. Instead, the new page
is written elsewhere – on some previously unused disk block. The current page
table entry is modified to point to the new disk block, whereas the shadow page
table is not modified and continues to point to the old unmodified disk block.
The diagram above illustrates the concepts of a shadow page table and a current
page table. For pages updated by the transaction, two versions are kept. The
old version is referenced by the shadow page table and the new version by the
current page table.

To recover from a failure during transaction execution, it is sufficient to free the
modified database pages and to discard the current page table. The state of
the database before transaction execution is available through the shadow page
table, and that state is recovered by reinstating the shadow page table so that
it becomes the current page table once more. The database thus is returned to
its state prior to the transaction that was executing when the crash occurred,

26

and any modified pages are discarded. Committing a transaction corresponds
to discarding the previous shadow page table and freeing old page tables that it
references. Since recovery involves neither undoing nor redoing data items, this
technique is called the NO-UNDO/NO-REDO recovery technique.

The advantage of shadow paging is that it makes undoing the effect of the exe-
cuting transaction very simple. There is no need to undo or redo any transaction
operations. In a multi-user environment with concurrent transactions, logs and
checkpoints must be incorporated into the shadow paging technique. One dis-
advantage of shadow paging is that the updated database pages change location
on disk. This makes it difficult to keep related database pages close together on
disk without complex storage management strategies. Furthermore, if the page
table (directory) is large, the overhead of writing shadow page tables to disk
as transactions commit is significant. A further complication is how to handle
garbage collection when a transaction commits. The old pages referenced by
the shadow page that has been updated must be released and added to a list of
free pages for future use. These pages are no longer needed after the transaction
commits, and the current page table replaces the shadow page table to become
the valid page table.

Extension exercise 1: Shadow paging

What is a current page table and a shadow page table? Discuss the advantages
and disadvantages of the shadow paging recovery scheme.

27

Chapter 15. Distributed Database Systems

Table of contents

• Objectives
• Introduction
• Context
• Client-server databases

– The 2-tier model
∗ The client
∗ The server
∗ Query processing in 2-tier client-server systems
∗ Advantages of the client-server approach
∗ Disadvantages of the client-server approach

– Variants of the 2-tier model
∗ Business (application) logic
∗ Business logic implemented as stored procedures

– The 3-tier architecture
• Distributed database systems

– Background to distributed systems
– Motivation for distributed database systems

• Fragmentation independence
• Replication independence
• Update strategies for replicated and non-replicated data

– Eager (synchronous) replication
∗ Eager replication and distributed reliability protocols
∗ The two-phase commit (2PC) protocol
∗ Read-once / write-all protocol

– Lazy or asynchronous replication
∗ Lazy group replication
∗ Lazy master replication

• Reference architecture of a distributed DBMS
• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Understand what is meant by client-server database systems, and describe
variations of the client-server approach.

• Describe the essential characteristics of distributed database systems.

• Distinguish between client-server databases and distributed databases.

• Describe mechanisms to support distributed transaction processing.

1

• Compare strategies for performing updates in distributed database sys-
tems.

• Describe the reference architecture of distributed DBMSs.

Introduction

In parallel with this chapter, you should read Chapter 22 and Chapter 23 of
Thomas Connolly and Carolyn Begg, “Database Systems A Practical Approach
to Design, Implementation, and Management”, (5th edn.).

Distributed databases have become an integral part of business computing in
the past years. The ability to maintain the integrity of data and provide accu-
rate and timely processing of database queries and updates across multiple sites
has been an important factor in enabling businesses to utilise data in a range
of different locations, sometimes on a global scale. Standardisation of query
languages, and of the Relational and Object models, has assisted the integra-
tion of different database systems to form networks of integrated data services.
The difficulties of ensuring the integrity of data, that updates are timely, and
that users receive a uniform rate of response no matter where on the network
they are situated, remain, in many circumstances, major challenges to database
vendors and users. In this chapter we shall introduce the topic of distributed
database systems. We shall examine a range of approaches to distributing data
across networks, and examine a range of strategies for ensuring the integrity
and timeliness of the data concerned. We shall look at mechanisms for enabling
transactions to be performed across different machines, and the various update
strategies that can be applied when data is distributed across different sites.

Context

Many of the issues considered in other chapters of this module require a de-
gree of further consideration when translated into a distributed context. When
it becomes a requirement to distribute data across a network, the processes
of transaction processing, concurrency control, recovery, security and integrity
control and update propagation become significantly more involved. In this
chapter we shall introduce a number of extensions to mechanisms which we
have previously considered for non-distributed systems.

Client-server databases

For years, serious business databases were monolithic systems running only on
one large machine, accessed by dumb terminals. In the late 1980s, databases
evolved so that an application, called a ‘client’, on one machine could run against
a database, called a ‘server’, on another machine. At first, this client-server

2

database architecture was only used on mini and mainframe computers. Be-
tween 1987 and 1988, vendors like Oracle Corp and Gupta first moved the
client function and then the database server down to microcomputers and local
area networks (LANs).

Today, the client-server concept has evolved to cover a range of approaches
to distributing the processing of an application in a variety of ways between
different machines.

An example of the client-server approach is the SQLserver system, from Mi-
crosoft. The SQLserver system is run on a server machine, which is usually
a fairly powerful PC. A client program is run, usually on a separate machine,
and makes requests for data to SQLserver via a local area network (LAN). The
application program would typically be written in a language such as Visual
Basic or Java. This approach allows multiple client machines on the network
to request the same records from the database on the server. SQLserver will
ensure that only one user at a time modifies any specific record.

The 2-tier model

Client-server architecture involves multiple computers connected in a network.
Some of the computers (clients) process application programs and some com-
puters (servers) perform database processing.

This approach is known as the 2-tier model of client-server computing, as it is
made up of the two types of component, clients and servers. It is also possible
that a machine that acts as a server to some clients, may itself act as a client
to another server. This arrangement also falls under the 2-tier model, as it still
only comprises the two types of machine within the network.

The client

This is the front-end of the client-server system. It handles all aspects of the
user interface — it is the front-end because the client presents the system to the
user. It can also be used to provide PC-based application development tools
used to enter, display, query and manipulate data on the central server, and to
build applications. The client operating system is usually Windows, MACOS,
Linux or Unix.

The server

Servers perform functions such as database storage, integrity checking and data
dictionary maintenance, and provide concurrent access control. Moreover, they
also perform recovery and optimise query processing. The server controls ac-
cess to the data by enforcing locking rules to ensure data integrity during trans-
actions. The server can be a PC, mini or mainframe computer, and usually

3

employs a multi-tasking operating system such as Ubuntu Server and Windows
Server OS.

Query processing in 2-tier client-server systems

Typically, in a client-server environment, the user will interact with the client
machine through a series of menus, forms and other interface components. Sup-
posing the user completes a form to issue a query against a customer database.
This query may be transformed into an SQL SELECT statement by code run-
ning on the client machine. The client will then transmit the SQL query over
the network to the server. The server receives the command, verifies the syn-
tax, checks the existence and availability of the referenced objects, verifies that
the user has SELECT privileges, and finally executes the query. The resulting
data is formatted and sent to the application, along with return codes (used to
identify whether the query was successful, or if not, which error occurred). On
receipt of the data, the client might carry out further formatting - for example,
creating a graph of the data - before displaying it to the user.

The following diagram illustrates how a user interacts with a client system,
which transmits queries to the database server. The server processes the queries
and returns the results of the query, or a code indicating failure of the query for
some reason.

4

Advantages of the client-server approach

• Centralized storage: Users do not have to retain copies of corporate data
on their own PCs, which would become quickly out of date. They can
be assured that they are always working with the current data, which is
stored on the server machine.

• Improved performance: Processing can be carried out on the machine
most appropriate to the task. Data-intensive processes can be carried
out on the server, whereas data-entry validation and presentation logic
can be executed on the client machine. This reduces unnecessary network
traffic and improves overall performance. It also gives the possibility of
optimising the hardware on each machine to the particular tasks required
of that machine.

• Scalability: If the number of users of an application grows, extra client

5

machines can be added (up to a limit determined by the capacity of the
network or server) without significant changes to the server.

Disadvantages of the client-server approach

• Complexity: Operating database systems over a LAN or wide area net-
work (WAN) brings extra complexities of developing and maintaining the
network. The interfaces between the programs running on the client and
server machines must be well understood. This usually becomes increas-
ingly complex when the applications and/or DBMS software come from
different vendors.

• Security: A major consideration, as preventative measures must be in
place to protect against data theft or corruption on the client and server
machines, and during transmission over the network.

Review question 1

• Explain what is meant by the 2-tier model of client-server computing.

• Why is it sometimes said that client-server computing improves the scal-
ability of applications?

• What additional security issues are involved in the use of a client-server sys-
tem, compared with a traditional mainframe database accessed via dumb
terminals?

Variants of the 2-tier model

Business (application) logic

The relative workload on the client and server machines is greatly affected by
the way in which the application code is distributed. The more application logic
that is placed on client machines, the more of the work these machines will have
to do. Furthermore, more data will need to be transmitted from servers to client
machines because the servers do not contain the application logic that might
have been used to eliminate some of the data prior to transmission. We can
avoid this by transferring some of the application logic to the server. This helps
to reduce the load on both the clients and the network. This is known as the
split logic model of client-server computing. We can take this a stage further,
and leave the client with only the logic needed to handle the presentation of
data to users, placing all of the functional logic on servers; this is known as the
remote presentation model.

Business logic implemented as stored procedures

The main mechanism for placing business logic on a server is known as ‘stored
procedures’. Stored procedures are collections of code that usually include SQL

6

for accessing the database. Stored procedures are invoked from client programs,
and use parameters to pass data between the procedure and invoking program.
If we choose to place all the business logic in stored procedures on the server, we
reduce network traffic, as intermediate SQL results do not have to be returned
to client machines. Stored procedures are compiled, in contrast with uncompiled
SQL sent from the client. A further performance gain is that stored procedures
are usually cached, therefore subsequent calls to them do not require additional
disk access.

2-tier client-server architectures in which a significant amount of application
logic resides on client machines suffer from the following further disadvantages:

• Upgrades and bug fixes must be made on every client machine. This
problem is compounded by the fact that the client machines may vary in
type and configuration.

• The procedural languages used commonly to implement stored procedures
are not portable between machines. Therefore, if we have servers of dif-
ferent types, for example Oracle and Microsoft, the stored procedures will
have to be coded differently on the different server machines. In addition,
the programming environments for these languages do not provide com-
prehensive language support as is found in normal programming languages
such as C++ or Java, and the testing/debugging facilities are limited.

Though the use of stored procedures improves performance (by reducing the
load on the clients and network), taking this too far will limit the number of
users that can be accommodated by the server — i.e. there will reach a point
at which the server becomes a bottleneck because it is overloaded with the
processing of application transactions.

The 3-tier architecture

The 3-tier architecture introduces an applications server, which is a computer
that fits in the middle between the clients and server. With this configuration,
the client machines are freed up to focus on the validation of data entered by
users, and the formatting and presentation of results. The server is also freed to
concentrate on data-intensive operations, i.e. the retrieval and update of data,
query optimisation, processing of declarative integrity constraints and database
triggers, etc. The new middle tier is dedicated to the efficient execution of the
application/business logic.

The application server can perform transaction management and, if required,
ensure distributed database integrity. It centralises the application logic for
easier administration and change.

The 3-tier model of client-server computing is best suited to larger installations.
This is true because smaller installations simply do not have the volume of
transactions to warrant an intermediate machine dedicated to application logic.

7

The following diagram illustrates how a user interacts with a client system,
which deals with the validation of user input and the presentation of query
results. The client system communicates with a middle tier system, the ap-
plications server, which formulates queries from the validated input data and
sends queries to the database server. The database server processes the queries
and sends to the applications server the results of the query, or a code indicat-
ing failure of the query for some reason. The application server then processes
these results (or code) and sends data to the client system to be formatted and
presented to the user.

Activity 1 – Investigating stored procedures

Read the documentation of the DBMS of your choice and investigate stored
procedures as implemented in the environment. A visit to the software’s website

8

maybe also be useful. Identify the types of situations in which stored procedures
are used, and by looking at a number of examples of stored procedures, develop
an overall understanding for the structure of procedures and how they are called
from a PL/SQL program.

Distributed database systems

Background to distributed systems

A distributed database system consists of several machines, the database itself
being stored on these machines, which communicate with one another usually via
high-speed networks or telephone lines. It is not uncommon for these different
machines to vary in both technical specification and function, depending upon
their importance and position in the system as a whole. Note that the generally
understood description of a distributed database system given here is rather
different from the client-server systems we examined earlier in the chapter. In
client-server systems, the data is not itself distributed; it is stored on a server
machine, and accessed remotely from client machines. In a distributed database
system, on the other hand, the data is itself distributed among a number of
different machines. Decisions therefore need to be made about the way in which
the data is to be distributed and also about how updates are to be propagated
over multiple sites.

The distribution of data by an organisation throughout its various sites and
departments, allows data to be stored where it was generated, or indeed is most
used, while still being easily accessible from elsewhere. The general structure of
a distributed system is shown below:

9

In effect, each separate site in the example is really a database system site in
its own right, each location having its own databases, as well as its own DBMS
and transaction management software. It is commonly assumed when discus-
sion arises concerning distributed database systems, that the many databases
involved are widely spread from each other in geographical terms. Importantly,
it should be made clear that geographical distances will have little or no effect
upon the overall operation of the distributed system; the same technical prob-
lems arise whether the databases are simply logically separated or if separated
by a great distance.

Motivation for distributed database systems

So why have distributed databases become so desirable? There are a number
of reasons that promote the use of a distributed database system; these can
include such factors as:

• The sharing of data

• Local autonomy

• Data availability

• Improving performance

• Improving system reliability

Furthermore, it is likely that the organisation that has chosen to implement the
system will itself be distributed. By this, we mean that there are almost always
several departments and divisions within the company structure. An illustrative
example is useful here in clarifying the benefits that can be gained by the use
of distributed database systems.

Scenario banking system

Imagine a banking system that operates over a number of separate sites; for the
sake of this example, let us consider two offices, one in Manchester and another
in Birmingham. Account data for Manchester accounts is stored in Manchester,
while Birmingham’s account data is stored in Birmingham. We can now see
that two major benefits are afforded by the use of this system: efficiency of
processing is increased due to the data being stored where it is most frequently
accessed, while an increase in the accessibility of account data is also gained.

The use of distributed database systems is not without its drawbacks, however.
The main disadvantage is the added complexity that is involved in ensuring
that proper co-ordination between the various sites is possible. This increase in
complexity can take a variety of forms:

10

• Greater potential for bugs: With a number of databases operating
concurrently, ensuring that algorithms for the operation of the system are
correct becomes an area of great difficulty. The potential is there for the
existence of extremely subtle bugs.

• Increased processing overhead: The additional computation required
in order to achieve inter-site co-ordination is a considerable overhead not
present in centralised systems.

Date (1999) gives the ‘fundamental principle’ behind a truly distributed
database:

*“to the user; a distributed system should look exactly like a NONdistributed
system.”“*

In order to accomplish this fundamental principle, twelve subsidiary rules have
been established. These twelve objectives are listed below:

1. Local autonomy

2. No reliance on a central site

3. Continuous operation

4. Location independence

5. Fragmentation independence

6. Replication independence

7. Distributed query processing

8. Distributed transaction management

9. Hardware independence

10. Operating system independence

11. Network independence

12. DBMS independence

These twelve objectives are not all independent of one another. Furthermore,
they are not necessarily exhaustive and, moreover, they are not all equally sig-
nificant.

Probably the major issue to be handled in distributed database systems is the
way in which updates are propagated throughout the system. Two key concepts
play a major role in this process:

• Data fragmentation: The splitting up of parts of the overall database
across different sites.

• Data replication: The process of maintaining updates to data across
different sites.

11

Fragmentation independence

A system can support data fragmentation if a given stored relation can be
divided up into pieces, or ‘fragments’, for physical storage purposes. Fragmen-
tation is desirable for performance reasons: data can be stored at the location
where it is most frequently used, so that most operations are purely local and
network traffic is reduced.

A fragment can be any arbitrary sub-relation that is derivable from the original
relation via restriction (horizontal fragmentation – subset of columns) and pro-
jection (vertical fragmentation – subset of tuples) operations. Fragmentation in-
dependence (also known as fragmentation transparency), therefore, allows users
to behave, at least from a logical standpoint, as if the data were not fragmented
at all. This implies that users will be presented with a view of the data in which
the fragments are logically combined together by suitable joins and unions. It
is the responsibility of the system optimiser to determine which fragment needs
to be physically accessed in order to satisfy any given user request.

Replication independence

A system supports data replication if a given stored relation - or, more generally,
a given fragment - can be represented by many distinct copies or replicas, stored
at many distinct sites.

Replication is desirable for at least two reasons. First, it can mean better
performance (applications can operate on local copies instead of having to com-
municate with remote sites); second, it can also mean better availability (a given
replicated object - fragment or whole relation - remains available for processing
so long as at least one copy remains available, at least for retrieval purposes).

What problems are associated with data replication and fragmenta-
tion?

Both data replication and fragmentation have their related problems in imple-
mentation. However, distributed non-replicated data only has problems when
the relations are fragmented.

The problem of supporting operations, such as updating, on fragmented rela-
tions has certain points in common with the problem of supporting operations
on join and union views. It follows too that updating a given tuple might cause
that tuple to migrate from one fragment to another, if the updated tuple no
longer satisfies the relation predicate for the fragment it previously belonged to
(Date, 1999).

Replication also has its associated problems. The major disadvantage of replica-
tion is that, when a given replicated object is updated, all copies of that object
must be updated — the update propagation problem. Therefore, in addition to
transaction, system and media failures that can occur in a centralised DBMS,

12

a distributed database system (DDBMS) must also deal with communication
failures. Communication failures can result in a site that holds a copy of the
object being unavailable at the time of the update.

Furthermore, the existence of both system and communication failures poses
complications because it is not always possible to differentiate between the two
(Ozsu and Valduriez, 1996).

Update strategies for replicated and non-replicated data

There are many update strategies for replicated and fragmented data. This
section will explore these strategies and will illustrate them with examples from
two of the major vendors.

Eager (synchronous) replication

Gray et al (1996) states that eager replication keeps all replicas exactly syn-
chronised at all nodes (sites) by updating all the replicas as part of one atomic
transaction. Eager replication gives serialisable execution, therefore there are
no concurrency anomalies. But eager replication reduces update performance
and increases transaction times, because extra updates and messages are added
to the transaction. Eager replication typically uses a locking scheme to detect
and regulate concurrent execution.

With eager replication, reads at connected nodes give current data. Reads at
disconnected nodes may give stale (out-of-date) data. Simple eager replication
systems prohibit updates if any node is disconnected. For high availability, eager
replication systems allow updates among members of the quorum or cluster.
When a node joins the quorum, the quorum sends the node all replica updates
since the node was disconnected.

Eager replication and distributed reliability protocols

Distributed reliability protocols (DRPs) are implementation examples of eager
replication. DRPs are synchronous in nature (ORACLE, 1993), and often use
remote procedure calls (RPCs).

DRPs enforce atomicity (the all-or-nothing property) of transactions by imple-
menting atomic commitment protocols such as the two-phase commit (2PC)
(Gray, 1979). Although a 2PC is required in any environment in which a single
transaction can interact with several autonomous resource managers, it is par-
ticularly important in a distributed system (Ozsu and Valduriez, 1996). 2PC
extends the effects of local atomic commit actions to distributed transactions,
by insisting that all sites involved in the execution of a distributed transaction

13

agree to commit the transaction before its effects are made permanent. There-
fore, 2PC is an example of one copy equivalence, which asserts that the values of
all physical copies of a logical data item should be identical when the transaction
that updates it terminates.

The inverse of termination is recovery. Distributed recovery protocols deal with
the problem of recovering the database at a failed site to a consistent state when
that site recovers from failure (Ozsu and Valduriez, 1996). The 2PC protocol
also incorporates recovery into its remit.

Exercise 1

What is meant by the terms ‘atomic commitment protocol’ and ‘one copy equiv-
alence’?

The two-phase commit (2PC) protocol

The 2PC protocol works in the following way (adapted from Date, 1999): COM-
MIT or ROLLBACK is handled by a system component called the Co-ordinator,
whose task it is to guarantee that all resource managers commit or rollback the
updates they are responsible for in unison - and furthermore, to provide that
guarantee even if the system fails in the middle of the process.

Assume that the transaction has completed its database processing successfully,
so that the system-wide operation it issues is COMMIT, not ROLLBACK. On
receiving the COMMIT request, the Co-ordinator goes through the following
two-phase process:

1. First, the Co-ordinator instructs all resource managers to get ready either
to commit or rollback the current transaction. In practice, this means that
each participant in the process must force-write all log entries for local
resources used by the transaction out to its own physical log. Assuming
the force-write is successful, the resource manager now replies ‘OK’ to the
Co-ordinator, otherwise it replies ‘Not OK’.

2. When the Co-ordinator has received replies from all participants, it force-
writes an entry to its own physical log, recording its decision regarding
the transaction. If all replies were ‘OK’, that decision is COMMIT; if any
replies were ‘Not OK’, the decision is ROLLBACK. Either way, the Co-
ordinator then informs each participant of its decision, or each participant
must then COMMIT or ROLLBACK the transaction locally, as instructed.

If the system or network fails at some point during the overall process, the
restart procedure will look for the decision record in the Co-ordinator’s log. If it
finds it, then the 2PC process can pick up where it left off. If it does not find it,
then it assumes that the decision was ROLLBACK, and again the process can
complete appropriately. However, in a distributed system, a failure on the part
of the Co-ordinator might keep some participants waiting for the Co-ordinator’s

14

decision. Therefore, as long as the participant is waiting, any updates made by
the transaction via that participant are kept locked.

Review question 2

• Explain the role of an application server in a 3-tier client-server network.

• Distinguish between the terms ‘fragmentation’ and ‘replication’ in a dis-
tributed database environment.

• Describe the main advantage and disadvantage of eager replication.

• During the processing of the two-phase commit protocol, what does the
Co-ordinator do if it is informed by a local resource manager process that
it was unable to force-write all log entries for the local resources used by
the transaction out to its own physical log?

Read-once / write-all protocol

A further replica-control protocol that enforces one-copy serialisability is known
as read-once / write-all (ROWA) protocol. ROWA protocol is simple, but it
requires that all copies of a logical data item be updated before the transaction
can terminate.

Failure of one site may block a transaction, reducing database availability.

A number of alternative algorithms have been proposed that reduce the require-
ment that all copies of a logical data item be updated before the transaction
can terminate. They relax ROWA by mapping each write to only a subset of
the physical copies. One well-known approach is quorum-based voting, where
copies are assigned votes, and read and write operations have to collect votes
and achieve a quorum to read/write data.

Three-phase commit is a non-blocking protocol which prevents the 2PC blocking
problem from occurring by removing the uncertainty for participants after their
votes have been placed. This is done through the inclusion of a pre-commit
phase that relays information to participants, advising them that a commit will
occur in the near future.

Lazy or asynchronous replication

Eager replication update strategies, as identified above, are synchronous, in the
sense that they require the atomic updating of some number of copies. Lazy
group replication and lazy master replication both operate asynchronously.

If the users of distributed database systems are willing to pay the price of some
inconsistency in exchange for the freedom to do asynchronous updates, they will
insist that:

1. the degree of inconsistency be bounded precisely, and that

15

2. the system guarantees convergence to standard notions of ‘correctness’.

Without such properties, the system in effect becomes partitioned as the replicas
diverge more and more from one another (Davidson et al, 1985).

Lazy group replication

Lazy group replication allows any node to update any local data. When the
transaction commits, a transaction is sent to every other node to apply the root
transaction’s updates to the replicas at the destination node. It is possible for
two nodes to update the same object and race each other to install their updates
at other nodes. The replication mechanism must detect this and reconcile the
two transactions so that their updates are not lost (Gray et al, 1996).

Timestamps are commonly used to detect and reconcile lazy-group transactional
updates. Each object carries the timestamp of its most recent update. Each
replica update carries the new value and is tagged with the old object times-
tamp. Each node detects incoming replica updates that would overwrite earlier
committed updates. The node tests if the local replica’s timestamp and the
update’s old timestamp are equal. If so, the update is safe. The local replica’s
timestamp advances to the new transaction’s timestamp and the object value is
updated. If the current timestamp of the local replica does not match the old
timestamp seen by the root transaction, then the update may be ‘dangerous’. In
such cases, the node rejects the incoming transaction and submits it for recon-
ciliation. The reconciliation process is then responsible for applying all waiting
update transactions in their correct time sequence.

Transactions that would wait in an eager replication system face reconciliation in
a lazy group replication system. Waits are much more frequent than deadlocks
because it takes two waits to make a deadlock.

Lazy master replication

Another alternative to eager replication is lazy master replication. Gray et al
(1996) states that this replication method assigns an owner to each object. The
owner stores the object’s correct value. Updates are first done by the owner
and then propagated to other replicas. When a transaction wants to update
an object, it sends a remote procedure call (RPC) to the node owning the
object. To achieve serialisability, a read action should send read-lock RPCs
to the masters of any objects it reads. Therefore, the node originating the
transaction broadcasts the replica updates to all the slave replicas after the
master transaction commits. The originating node sends one slave transaction
to each slave node. Slave updates are timestamped to assure that all the replicas
converge to the same final state. If the record timestamp is newer than a replica
update timestamp, the update is ‘stale’ and can be ignored. Alternatively, each
master node sends replica updates to slaves in sequential commit order.

16

Review question 3

When an asynchronous update strategy is being used, if two copies of a data
item are stored at different sites, what mechanism can be used to combine the
effect of two separate updates being applied to these different copies?

Reference architecture of a distributed DBMS

In chapter 1 we looked at the ANSI_SPARC three-level architecture of a DBMS.
The architecture reference shows how different schemas of the DBMS can be
organised. This architecture cannot be applied directly to distributed environ-
ments because of the diversity and complexity of distributed DBMSs. The
diagram below shows how the schemas of a distributed database system can be
organised. The diagram is adopted from Hirendra Sisodiya (2011).

Reference architecture for distributed database

17

1. Global schema

The global schema contains two parts, a global external schema and a
global conceptual schema. The global schema gives access to the entire
system. It provides applications with access to the entire distributed
database system, and logical description of the whole database as if it
was not distributed.

2. Fragmentation schema

The fragmentation schema gives the description of how the data is parti-
tioned.

3. Allocation schema

Gives a description of where the partitions are located.

4. Local mapping

The local mapping contains the local conceptual and local internal schema.
The local conceptual schema provides the description of the local data.
The local internal schema gives the description of how the data is physi-
cally stored on the disk.

Review question 4

List the characteristics of applications that can benefit most from:

• synchronous replication

• asynchronous replication

Discussion topics

1. We have covered the client-server and true distributed database ap-
proaches in this chapter. Client-server systems distribute the processing,
whereas distributed systems distribute both the processing and the data.
Discuss the proposition that most commercial applications are adequately
supported by a clientserver approach, and do not require the additional
features of a truly distributed database system.

2. Discuss the proposition that, in those situations where a distributed
database solution is required, most applications are adequately provided
for by a lazy or asynchronous replication strategy, and do not require the
sophistication of an eager or synchronous replication system. Discuss the
implications for end users of synchronous and asynchronous updating.

18

Chapter 16. Object-Oriented Database Systems

Table of contents

• Objectives
• Introduction
• Motivation
• What is Object database technology?

– Capturing semantics
• Object-oriented concepts

– Combining structure and behaviour
– Messages
– Methods
– Defining objects - Class definitions
– Inheritance
– Encapsulation

• Implementing an application of Object databases
– Implementing Object databases
– Applications for OO databases
– Problems with the OO model
– The future of OO databases

• The Object-Relational model
– DB2 Relational Extenders
– IBM Informix DataBlades
– Object-Relational features in Oracle 11

∗ Abstract data types
∗ Object tables
∗ Nested tables
∗ Varying arrays
∗ Support for large objects

• Summary
• Discussion topic
• Further work

– Polymorphism

Objectives

At the end of this chapter you should be able to:

• Describe the essential characteristics of Object databases.

• Critically assess the strengths and weaknesses of Object databases with
respect to Relational systems.

• Describe why Object databases appear to be such a good fit for a number
of major growth areas in computing, such as Web-based and multimedia

1

information systems.

• Describe the strategy being adopted by major database supplier Oracle
to address the apparent threat of Object database systems, and critically
compare this approach with a pure Object technology approach.

Introduction

In parallel with this chapter, you should read Chapter 25 and Chapter 26 of
Thomas Connolly and Carolyn Begg, “Database Systems A Practical Approach
to Design, Implementation, and Management”, (5th edn.).

The Object data model provides a richer set of semantics than the Relational
model. Most of the major database vendors are extending the Relational model
to include some of the mechanisms available in Object databases. These ex-
tended Relational databases are often called Object-Relational. In this sense
the Object data model can be seen as an enriching of the Relational model, giv-
ing a wider range of modelling capabilities. The topics of design, concurrency
control, performance tuning and distribution are just as relevant for Object
databases as for Relational systems.

Relational database systems have been the mainstay of commercial systems since
the 80s. Around about the same time, however, developments in programming
languages were giving rise to a new approach to system development. These
developments lead to the widespread use of Object technology, and in particular,
Object-oriented programming languages such as C++ and Java. Many people
expected a similar growth in the commercial use of Object database systems, but
these have been relatively slow to be adopted in industry and commerce. In this
chapter we will explore the reasons why Object databases have not so far had
a major impact in the commercial arena, and examine whether the continuing
growth of the World Wide Web and multimedia information systems could lead
to a major expansion in the use of Object database technology.

Motivation

The Relational database model has many advantages that make it ideally suited
to numerous business applications. Its ability to efficiently handle simple data
types, its powerful and highly optimisable standard query language, and its
good protection of data from programming errors make it an effective model.
However, a number of limitations exist with the model, which have become in-
creasingly clear as more developers and users of database systems seek to extend
the application of DBMS technology beyond traditional transaction processing
applications, such as order processing, financial applications, stock control, etc.

Among the applications that have proved difficult to support within Relational
environments are those involving the storage and manipulation of design data.

2

Design data is often complex and variable in length, may be highly interre-
lated, and its actual structure, as well as its values, may evolve rapidly over
time, though previous versions may be required to be maintained. This is quite
different to the typically fixed-length, slowly evolving data structures which
characterise transaction processing applications.

The query languages used to manipulate Relational databases are computation-
ally incomplete; that is, they cannot be used to perform any arbitrary calculation
that might be needed. The SQL language standard, and its derivative languages,
are essentially limited to Relational Algebra-based operations, providing very
little in the way of computational power to handle numerically complex appli-
cations.

Further to the problems that have been associated with Relational databases
since their inception, a significant problem that has come to light relatively
recently is the need to be able to store and manipulate ever more complicated
data types, such as video, sound, complex documents, etc. This is putting an
increasing strain on the model and restricting the kinds of business solutions
that can be provided. One reason for this increase in data complexity is the
explosion in popularity of the Internet and Web, where it is necessary to store
large quantities of unstructured text, multimedia, images and spatial data.

Other examples of applications that have proved difficult to implement in Rela-
tional systems include:

• Geographical information systems

• Applications for processing large and inter-related documents

• Databases to support CASE tools

• Image processing applications

What is Object database technology?

Capturing semantics

Although the Relational model enforces referential integrity, as we saw in the
chapter on integrity constraints and database triggers, it has no mechanism for
distinguishing and enforcing the different kinds of relationship which may exist
between entities. Examples of these relationships include:

• Existence-dependency: Where one entity can only exist in relation to
another. An example of such a relationship is that of an order-line entity
instance, which only makes sense within the context of its corresponding
parent order entity.

• Associations: When entities of different types are associated with one
another; for example, when a car entity is associated with a particular

3

person through an ‘owns’ relationship.

• Categorisations: When a number of different entity types are classified
into a particular overall grouping; for example, lecturers, administrators,
deans, professors and administrators are all categorised as university em-
ployees.

Such distinctions between relationship types can be made in a conceptual entity-
relationship model, but not explicitly when mapped to the Relational model. If
such distinctions are made, it is possible to define the semantics of operations
to create, update and delete instances of relationships differently for each case.

Semantic data models are data models that attempt to capture more of the
semantics of the application domain, and are frequently defined as extensions
to the Relational model. Such models enable the representation of different
types of entity, and the description of different types of relationship between
entity types, such as those described above.

Semantic models therefore aim to support a higher level of ‘understanding’ of
the data within the system; however, these models do not increase support
for the manipulation of data. The extended data structuring mechanisms are
accompanied by the same general set of operators (create entity, delete entity
and update entity). We would be able to constrain the data structures more
naturally if we recognised that the data structures that have been defined are
accessed and updated through a fixed set of data-type specific operators. On
creating a new entity it is often necessary to carry out a number of checks on
other entities before allowing the new entity to be created. It may be necessary
to invoke other operations as a consequence of the new entity’s creation. These
checks and operations are entity-type specific.

The next stage in semantic data modelling, is the integration of operator def-
inition with the data structuring facilities, such that operator definitions are
entity-type specific. The Object-oriented paradigm is one possible way to at-
tempt this integration, by providing a mechanism for progressing from a purely
structural model of data towards a more behavioural model, combining facilities
for both the representation and manipulation of data within the same model.

Review questions 1

• Describe some of the shortcomings in the Relational approach to database
systems, which have lead people to look for alternative database technolo-
gies for some applications.

• Identify a further example of each of the three types of relationship men-
tioned in the text: existence dependency, association and categorisation.

4

Object-oriented concepts

Combining structure and behaviour

A basic difference between traditional databases and Object databases, is the
way in which the passive and active elements of the underlying system are im-
plemented. Traditional databases are seen as passive, storing data which is
retrieved by an application, manipulated and then updated on the database.
This is in contrast to the active, Object-oriented approach where the manipula-
tion occurs within the database itself. It is also possible to use Object-oriented
(OO) databases passively; however, this means that they are not necessarily
being used to their full potential.

The inclusion of the behaviour, or processing, related to an object, along with
the definition of the structure of the object, stored within the database itself,
is what distinguishes the Object-oriented approach from semantic data models,
which purely try to improve the level of meaning supported by the data model
of the database system. The way in which active behaviour is supported within
Object databases, is via the message/method feature.

Messages

If object A in the database wants object B to do something, it sends B a message.
The success or failure of the requested operation may be conveyed back from
object B to object A, via a further message. In general, each object has a set
of messages that it can receive and a set of replies it can send. An object does
not need to know anything about the other objects it interacts with, other than
what messages can be sent to them, and what replies it can receive from them.
The internal workings are thus encapsulated into the definition for each object.

Methods

Methods are procedures, internal to each object, which alter an object’s private
state. State here means the values of the data items of the object in question.

Examples of methods

Some examples of commonly found methods are as follows:

• Constructors: These are used whenever a new instance of an object is cre-
ated. They initialise the data items contained within the object instance.
It is possible for objects to have a number of different constructors, if it
is required that they should sometimes be created with different starting
values for their data items.

5

• Destructors: These methods are used when an instance of an object
is deleted. They ensure that any resources that are held by the object
instance, such as storage space, are released.

• Transformers: These methods are used to change an object’s internal
state. There may be a number of transformer methods used to bring about
changes to the data items of an object instance.

The Object-oriented approach, therefore, provides the ability to deal with ob-
jects and operations on those objects, that are more closely related to the real
world. This has the effect of raising the level of abstraction from that used in
Relational constructs, such as tables, theoretically making the data model easier
to understand and use.

Defining objects - Class definitions

In the Object-oriented approach, everything can, in some way, be described
as an object. The term usually applies to a person, place or thing that a
computer application may need to deal with. In traditional database terms, an
object can be likened to an entity in an E-R diagram, but instead of the entity
merely containing attributes, it can also contain methods, sometimes known as
operations. These methods are fragments of program code, which are used to
carry out operations relevant to the object in question. For example, a Customer
object, as well as having the traditional data items we might expect to see in a
Customer table, may include operations such as CREATE A NEWCUSTOMER
INSTANCE (constructor), REMOVE A CUSTOMER INSTANCE (destructor),
CHANGE CUSTOMER DETAILS (transformer), etc.

The attributes and methods for groups or classes of objects of the same type are
described in a class definition. Each particular object is known as an instance
of that class. The class definition is like a template, therefore, which defines
the set of data items and methods available to all instances of that class of
object. Some Object database systems also permit the definition of database
constraints within class definitions, a feature which might be considered to be
a specific case of method definition.

Example of class definition

Consider the object type ‘book’ as might exist in a library database. Information
to be held on a book include its title, date of publication, publisher and author.
Typical operations on a book might be:

• Take a book out on loan.

• Reserve a book for taking out on loan when available.

• A Boolean function which returns true if the book is currently on loan and
false otherwise. The above operations will be implemented as methods of
class ‘book’.

6

The class book may be defined by the following structure:

class book
properties

title : string;

date_of_Publication : date;

published_by : publisher;

written_by : author;

operations

create () -> book;

loan (book, borrower, date_due);

reserve (book, borrower, date_reserved);

on_loan (book) -> boolean;

end book;

A method can receive additional information, called parameters, to perform its
task. In the above class, loan method expects a book, borrower and date due
for it to perform the loan operation. Parameters are put in the parenthesis of
a method. When a method performs its task, it can return data back to the
caller method.

An important point to note here is that data abstraction as provided by the class
mechanism allows one to define properties of entities in terms of other entities.
Thus we see from the above example that the properties published_by and writ-
ten_by are defined in terms of the classes ‘publisher’ and ‘author’ respectively.
Outline class definitions for author and publisher could be as follows:

class author
properties

surname : string;

initials : string;

nationality : country;

year_of_birth : integer;

year_of_death : integer;

operations

create () -> author;

end author.

7

class publisher
properties

name : string;

location : city;

operations

create () -> publisher;

end publisher.

Inheritance

When defining a new class, it can either be designed from scratch, or it can
extend or modify other classes - this is known as inheritance. For example, the
class ‘manager’ could inherit all the characteristics of the class ‘employee’, but
also be extended to encompass features specific to managers. This is a very pow-
erful feature, as it allows the reuse and easy extension of existing data definitions
and methods (note that inheritance is not just restricted to data; it can apply
equally to the methods of a class). Some systems only permit the inheritance
of the data items (sometimes called the state or properties) of a class definition,
while others allow inheritance of both state and behaviour (the methods of a
class). Inheritance is a powerful mechanism, as it provides a natural way for
applications or systems to evolve. For example, if we wish to create a new class
of product, we can easily make use of any previous development work that has
gone into the definition of data structures and methods for existing products,
by allowing the definition of the new class to inherit them.

Example of class definitions to illustrate inheritance:

As an example, we might take the object classes ‘mammal’, ‘bird’ and ‘insect’,
which may be defined as subclasses of ‘creature’. The object class ‘person’ is a
subclass of ‘mammal’, and ‘man’ and ‘woman’ are subclasses of ‘person’. Class
definitions for this hierarchy might take the following form:

class creature
properties

type : string; weight : real;

habitat : (… some habitat type such as swamp, jungle, urban);

operations

create () -> creature;

predators (creature) -> set (creature);

life_expectancy (creature) -> integer;

8

end creature.

class mammal inherit creature;
properties

gestation_period : real;

operations

end mammal.

class person inherit mammal;
properties

surname, firstname : string;

date_of_birth : date;

origin : country;

end person.

class man inherit person;
properties

wife : woman;

operations

end man.

class woman inherit person;
properties

husband : man;

operations

end woman.

The inheritance mechanism may be used not only for specialisation as described
above, but for extending software modules to provide additional services (oper-
ations). For example, if we have a class (or module) A with subclass B, then B
provides the services of A as well as its own. Thus B may be considered as an
extension of A, since the properties and operations applicable to instances of A
are a subset of those applicable to instances of B.

This ability of inheritance to specify system evolution in a flexible manner is
invaluable for the construction of large software systems. For database appli-
cations, inheritance has the added advantage of providing the facility to model
natural structure and behaviour.

9

It is possible in some systems, to inherit state and/or behaviour from more than
one class. This is known as multiple inheritance; it is only supported in some
Object-oriented systems.

Encapsulation

Encapsulation in object oriented means an object contains both the data struc-
tures and the methods to manipulate the data structures. The data structures
are internal to the object and are only accessed by other objects through the
public methods. Encapsulation ensures that changes in the internal data struc-
ture of an object does not affect other objects provided the public methods
remains the same. Encapsulation provides a form of data independence.

Review question 2

• Describe the difference between methods and messages in Object-oriented
systems.

• Describe a situation in which it may be necessary to provide two different
constructor methods for instances of an object.

• Describe the main advantages of inheritance.

• Describe the concept of encapsulation in Object-oriented systems.

Implementing an application of Object databases

Implementing Object databases

An important difference between databases and OO languages is that OO lan-
guages create objects in memory, and when an OO application ends, all objects
created by the application are destroyed and the data must be written to files
in order to be used at a later date. Conversely, databases require access to
persistent data. Pure Object-oriented databases make use of Object technology
by adding persistence to existing Object-oriented languages; this allows data to
be stored as objects even when a program is not running.

In order to implement and manipulate an OO database, it is necessary to use
a language that is capable of handling OO concepts. According to Silberschatz
(1997) there are several ways in which to do this:

• An existing Relational data-manipulation language can be extended to
handle complex data-types and Object-orientation. This leads to Object-
Relational systems, discussed later in this chapter.

• A purer OO alternative is to extend an existing OO language to deal with
databases, and so it becomes a persistent programming language. C++
and other languages have all had persistent versions implemented.

10

• The Object database system may be built as such from the beginning.
db4objects, DTS/S1, Perst, etc, are examples of pure Object database
systems which have been built using this approach.

The use of OO languages allows programmers to directly manipulate data with-
out having to use an embedded data manipulation language such as SQL. This
gives programmers a language that is computationally complete and therefore
provides greater scope for creating effective business solutions.

Applications for OO databases

There are many fields where it is believed that the OO model can be used to
overcome some of the limitations of Relational technology, where the use of
complex data types and the need for high performance are essential. These
applications include:

• Computer-aided design and manufacturing (CAD/CAM)

• Computer-integrated manufacturing (CIM)

• Computer-aided software engineering (CASE)

• Geographic information systems (GIS)

• Many applications in science and medicine

• Document storage and retrieval

Problems with the OO model

One of the key arguments against OO databases is that databases are usually
not designed to solve specific problems, but need the ability to be used to solve
many different problems not always apparent at the design stage of the database.
It is for this reason that OO technology, and its use of encapsulation, can often
limit its flexibility. Indeed the ability to perform ad hoc queries can be made
quite difficult, although some vendors do provide a query language to facilitate
this.

The use of the same language for both database operations and system opera-
tions can provide many advantages, including that of reducing the impedance
mismatch: the difference in level between set-at-a-time and record-at-a-time
processing. Date (2000), however, does not agree that this is best achieved by
making the database language record-at-a-time; he even goes as far as to say
that “record-at-a-time is a throwback to the days of pre-Relational systems such
as IMS and IDMS”. Instead, he proposes that set-at-a-time facilities be added
to programming languages. Nonetheless, it could be argued that one of the
advantages of pre-Relational systems was their speed. The procedural nature of

11

OO languages can still lead to serious difficulties when it comes to optimisation,
however.

Another problem associated with pure OO databases is that in many cases its
use is comparable to that of using a sledgehammer to crack a nut. A large
proportion of organisations do not currently deal with the complex data types
that OO technology is ideally suited too, and therefore do not require complex
data processing. For these companies, there is little incentive for them to move
towards Object technology when Relational databases and online analytical pro-
cessing tools will be sufficient to satisfy their data processing requirements for
several years to come. Of course, it is always possible that these companies will
find a use for the technology as its popularity becomes more widespread.

The future of OO databases

Many applications falling into the categories cited earlier have been successfully
implemented using pure OO techniques. However, the aforementioned problems
associated with the OO database model have led to some people doubting as
to whether pure OO really is the way forward for databases, particularly with
regard to mainstream business applications. Date (2000) is a particularly vehe-
ment opponent of pure OO technology, arguing instead that the existing Rela-
tional model should evolve to include the best features of Object-orientation and
that OO in itself does not herald the dawn of the third generation of database
technology.

The Object-Relational model

Perhaps the best hope for the immediate future of database objects is the
Object-Relational model. A recent development, stimulated by the advent of
the Object-oriented model, the Object-Relational model aims to address some
of the problems of pure OO technology - such as the poor support for ad hoc
query languages - and open database technology, and provide better support for
existing relational products, by extending the Relational model to incorporate
the key features of Object-orientation. The Object-Relational model also pro-
vides scope for those using existing Relational databases to migrate towards the
incorporation of objects, and this perhaps is its key strength, in that it provides
a path for the vast number of existing Relational database users gradually to
migrate to an Object database platform, while maintaining the support of their
Relational vendor.

A major addition to the Relational model is the introduction of a stronger type
of system that can accommodate the use of complex data types, which still
allow the Relational model to be preserved. Several large database suppliers,
including IBM Informix and Oracle, have embraced the Object-Relational model
as the way forward.

12

DB2 Relational Extenders

IBM DB2 Relational Extenders are built on the Object/Relational facilities
first introduced in DB2 version2. These facilities form the first part of IBM’s
implementation of the emerging SQL3 standard. It includes UDTs (User Defined
Types), UDFs (User Defined Functions), large objects (LOBs), triggers, stored
procedure and checks.

The DB2 Relational Extenders are used to define and implement new complex
data types. The Relational Extenders encapsulate the attribute structure and
behaviour of these new data types, storing them in table columns of a DB2
database. The new data types can be accessed through SQL statements in the
same manner as the standard DB2 data types. The DBMS treats these data
types in a strongly typed manner, ensuring that they are only used where data
items or columns of the particular data type are anticipated. A DB2 Relational
Extender is therefore a package consisting of a number of UDTs, UDFs, triggers,
stored procedures and constraints.

When installing a Relational Extender on a database, various files are copied
into the server’s directories, including the function library containing the UDFs.
Then an application is run against the database to define the Relational Exten-
der’s database definition to the server. These include scripts to define the UDTs
and UDFs making up the Relational Extender.

IBM Informix DataBlades

The DataBlades are standard software modules that plug into the database and
extend its capabilities. A DataBlade is like an Object-oriented package, similar
to a C++ class library that encapsulates a data object’s class definition. The
DataBlade not only allows the addition of new and advanced data types to the
DBMS, but it also enables specification of new, efficient and optimised access
and processing methods for these data types.

A DataBlade includes the data type definition (or structure) as well as the
methods (or operations) through which it can be processed. It also includes the
rules (or integrity constraints) that should be enforced, similar to a standard
built-in data type.

A DataBlade is composed of UDT, a number of UDFs, access methods, inter-
faces, tables, indexes and client code.

Object-Relational features in Oracle 11

Important

The object features described in the following can only be used with Oracle
Enterprise edition. In particular, if you are using Personal Oracle edition for

13

this module, you will not be able to create the objects described. You will
however be able to perform the required activities, as these involve examining
sample scripts that are included in the Oracle Personal Edition package. If your
Learning Support Centre has a version of Oracle running on a mainframe or
minicomputer, it is possible that access to the Enterprise Edition of Oracle can
be provided. This is not necessary for completion of the activities and exercises
of this chapter, but would be necessary if you wish to consolidate the information
given here with some practical experience of Oracle’s object features.

We shall examine in some detail the facilities incorporated in Oracle11, as these
provide a good example of how one of the major database vendors is seeking
to increase the level of Object support within the DBMS, while maintaining
support for the Relational model.

Abstract data types

Abstract data types (ADTs) are provided to enable users to define complex data
types, which are structures consisting of a number of different elements, each
of which uses one of the base data types provided within the Oracle product.
For example, an abstract data type could be created to store addresses. Such
a data type might consist of three separate base attributes, each of which is
of type varchar(30). From the time of its creation, an ADT can be referred to
when creating tables in which the ADT is to be used. The address ADT would
be established with the following definition in Oracle 8:

CREATE TYPE ADDRESS_TYPE AS OBJECT (STREET VARCHAR2(30),

CITY VARCHAR2(30),

COUNTRY VARCHAR2(30));

ADTs can be nested (their definitions can make use of other ADTs). For exam-
ple, if we wished to set up an ADT to describe customers, we could make use
of the address ADT above as follows:

CREATE TYPE CUSTOMER_TYPE AS OBJECT (CUST_NO NUM-
BER(6),

NAME VARCHAR2(50),

BIRTHDATE DATE,

GENDER CHAR,

ADDRESS ADDRESS_TYPE);

The advantages of ADTs are that they provide a standard mechanism for defin-
ing complex data types within an application, and facilitate reuse of complex
data definitions.

14

Object tables

These are tables created within Oracle11 which have column values that are
based on ADTs. Therefore, if we create a table which makes use of the customer
and address ADTs described above, the table will be an object table. The code
to create such a table would be as follows:

CREATE TABLE CUSTOMER OF CUSTOMER_TYPE;

Note that this CREATE TABLE statement looks rather different to those en-
countered in the chapter on SQL Data Definition Language (DDL). It is very
brief, because it makes use of the previous work we have done in establishing
the customer and address ADTs.

It is extremely important to bear in mind the distinction between object tables
and ADTs.

ADTs are the building blocks on which object tables can be created. ADTs
themselves cannot be queried, in the same way that the built-in data types in
Oracle such as number and varchar2 cannot be queried. ADTs simply provide
the structure which will be used when objects are inserted into an object table.
Object tables are the element which is queried, and these are established using a
combination of base data types such as varchar2, date, number and any relevant
ADTs as required.

Nested tables

A nested table is a table within a table. It is a collection of rows, represented as
a column in the main table. For each record in the main table, the nested table
may contain multiple rows. This can be considered as a way of storing a one-
to-many relationship within one table. For example, if we have a table storing
the details of departments, and each department is associated with a number
of projects, we can use a nested table to store details about projects within the
department table. The project records can be accessed directly through the
corresponding row of the department table, without needing to do a join. Note
that the nested table mechanism sacrifices first normal form, as we are now
storing a repeating group of projects associated with each department record.
This may be acceptable, if it is likely to be a frequent requirement to access
departments with their associated projects in this way.

Varying arrays

A varying array, or varray, is a collection of objects, each with the same data
type. The size of the array is preset when it is created. The varying array is
treated like a column in a main table. Conceptually, it is a nested table, with
a preset limit on its number of rows. Varrays also then allow us to store up to
a preset number of repeating values in a table. The data type for a varray is
determined by the type of data to be stored.

15

Support for large objects

Large objects, or LOBs as they are known in Oracle8, are provided for by a
number of different predefined data types within Oracle11. These predefined
data types are as follows:

• Blob: Stores any kind of data in binary format. Typically used for multi-
media data such as images, audio and video.

• Clob: Stores string data in the database character set format. Used for
large strings or documents that use the database character set exclusively.
Characters in the database character set are in a fixed-width format.

• Nclob: Stores string data in National Character Set format. Used for large
strings or documents in the National Character Set. Supports characters
of varying-width format.

• Bfile: Is a pointer to a binary file stored outside of the database in the
host operating system file system, but accessible from database tables.

It is possible to have multiple large objects (including different types) per table.

Summary

Despite the advances made in OO technology and its widespread acceptance
in general programming use, pure Object-orientation has only achieved serious
acceptance in a limited number of specialised fields and not general, industrial-
strength applications. The two main reasons for this appear to be the problems
that moving to OO introduces, in addition to the fact that Relational technol-
ogy still has a great deal to offer. The way forward for the use of objects in
databases seems to be the Object-Relational model, extending the existing Rela-
tional model to incorporate the best features of OO technology, thus delivering
the best of both worlds.

Discussion topic

There are a number of applications, such as engineering design, for which Object-
oriented database systems are clearly superior to Relational systems. For a
number of commercial applications, however, the advantage is perhaps less clear.
Imagine you are starting up a company, which requires to keep data about
customers, orders, products and sales. Discuss with your colleagues whether
you would prefer to go for a Relational, Object-Relational or Object-oriented
database solution. Factors you should take into account are as follows:

• The nature of the products to be sold.

• Whether the database is to be connected to the Internet.

16

• The volume of the data (both in terms of the numbers of records of each
type, and the frequency of transactions to be supported).

Consider in your discussions the way in which each of these factors might affect
your decision.

Further work

Polymorphism

Object-orientation contains a number of new concepts and terminology, most
of which have been introduced to some extent in this chapter. One important
area that has not been covered in detail, is the ability to provide alternative
implementations of computer processing. For example, it may be required to
calculate the salary of full-time employees in one way, and of part-time employees
in another. This facility can be provided in Object-oriented systems through the
mechanism of polymorphism. Using the core text for the module, investigate
the concept of polymorphism, and identify two further situations where it might
be applied.

17

Chapter 17. Web Database Connectivity

Table of contents

• Objectives
• Introduction
• Context

– Basic concepts
– Web-based client-server applications
– Context summary

• Web database architectures
– Components of a database application

∗ Browser layer
∗ Application logic layer
∗ Database connection layer
∗ Database layer

– 2-tier client-server architecture
– 3-tier client-server architecture

• Database gateways
– Client-side solutions
– Server-side solutions

• Client-side Web database programming
– Browser extensions

∗ JavaScript
∗ Java
∗ ActiveX
∗ Plug-ins

– External applications
• Server-side Web database programming

– CGI (Common Gateway Interface)
∗ Advantages and disadvantages of CGI

– Extended CGI
– HTTP server APIs and server modules

∗ Server vendor modules
∗ Advantages of server APIs and modules

– Important issues
– Comparison of CGI, server APIs and modules, and FastCGI
– Proprietary HTTP servers

• Connecting to the database
– Database API libraries

∗ Native database APIs
∗ Database-independent APIs: ODBC
∗ Benefits of database APIs
∗ Shortcomings of database APIs

– Template-driven packages
∗ The approach

1

∗ Benefits of template-driven packages
∗ Shortcomings of template-driven packages

– GUI application builders
∗ The approach
∗ Benefits of visual tools
∗ Shortcomings of visual tools

• Managing state and persistence in Web applications
– Technical options
– The URL approach

∗ Benefits of the URL approach
∗ Shortcomings of the URL approach

– URL QUERY_STRING
∗ Benefits of the hidden fields approach
∗ Shortcomings of the hidden fields approach

– HTTP cookies
∗ Benefits of cookies
∗ Shortcomings of cookies

– Important considerations
∗ Managing state on the client
∗ Managing state on the server

• Security Issues in Web Database Applications
– Proxy servers
– Firewalls
– Digital signatures
– Digital certificates
– Kerberos
– Secure sockets layer (SSL) and secure HTTP (S-HTTP)
– Java security
– ActiveX security

• Performance issues in Web database applications
• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Understand the requirements for connecting database systems to the Web.

• Critically compare a number of approaches that might be used to build
the Web database connectivity.

• Make recommendations for a given company and specific scenario regard-
ing which of the commonly used mechanisms is likely to be most appro-
priate, taking into consideration relative cost, security, likely transaction
volumes and required performance.

2

Introduction

In parallel with this chapter, you should read Chapter 29 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter introduces you to the exciting topic of combining World Wide Web
(WWW) technology with that of databases. It is about bridging a gap between
new technologies and ‘old’ in order to achieve what has never been achievable
before. The emergence of the WWW is arguably one of the most important
technological advances in this century, and since its birth a decade ago, it has
changed many people’s lives and had a profound impact on society.

The Web has been expanding at an incredible speed and even while you are
reading this, hundreds and thousands of people are getting ‘online’ and hooked
to the Web. Reactions to this technology are understandably mixed. People
are excited, shocked, confused, puzzled or even angered by it. Whatever your
reaction might be, you are being affected and benefiting from it. Without the
Web technology, the creation of a global campus would not have been possible.
It is fair to say that the WWW is playing and will continue to play an important
role (perhaps the most important role) in shaping the future world of technology,
business and industry.

The database technology has been around for a long time now, and for many
business and government offices, databases systems have already become an es-
sential and integral part of the organisation. Now the new technology has given
the ‘old’ a shot in the arm, and the combination of the two creates many ex-
citing opportunities for developing advanced database applications, which will
in turn produce additional benefits for the traditional database applications. A
multinational company, for example, can create a Web-based database appli-
cation to enable the effective sharing of information among offices around the
world.

As far as database applications are concerned, a key aspect of the WWW tech-
nology is that it offers a brand new platform to collect, deliver and disseminate
information. Via the Web, a database application can be made available, inter-
actively, to users and organisations anywhere in the world.

In this chapter, we are going to examine the impact that the WWW brings to the
‘traditional’ database technology. We will see how databases can be connected
to the Web, and the most effective way of using the new technology to develop
database applications. We will also study the most commonly used approaches
for creating Web databases, and discuss related issues such as dynamic updating
of Web pages inline with the changes in databases, performance, and security
concerns.

As the Web contains many large, complex, multimedia documents, the mate-
rials covered in this chapter are relevant to the discussion of Object-oriented

3

databases. The reason is that the Object-oriented model is considered the
most suitable for the storage, organisation and retrieval of large sets of Web
documents. Also, the need to process high volumes of queries and updates
over the Web has an important impact on performance considerations. Tradi-
tional techniques need to be adapted or even changed to satisfy performance
requirements of Web applications. Lastly, the discussion about client-server ap-
plications (Chapter 15) is also relevant to this chapter, because Web databases
represent a new type of such applications.

Context

Basic concepts

Before we start to discuss Web database applications, we need to clarify a num-
ber of related terms and concepts.

Internet: It is a worldwide collection of interconnected computer networks,
which belong to various organisations (e.g. educational, business and govern-
ments). It is not synonymous to the WWW. The services that are normally
available on the Internet include email, real-time communication (e.g. confer-
encing and chat), news services, and facilities for accessing remote computers
to send and receive documents.

The WWW or simply the Web: The WWW comprises software (e.g. Web
servers and browsers) and data (e.g. Web sites). It simply represents a (huge)
set of information resources and services that live on the Internet. Each Web site
consists of a set of Web pages, which typically contain multimedia data (e.g. text,
images, sound and video). In addition, a Web page can include hyperlinks to
other Web pages which allow users (also called net surfers) to navigate through
the Web of information pages.

Intranet: A Web site or group of sites which belongs to an organisation and
can only be accessed by members of that organisation. Between the Internet
and an intranet, there is an extra layer of software or hardware called a firewall.
Its main function is to prevent unauthorised access to a private network (e.g. an
intranet) from the Internet.

Extranet: An intranet which allows partial access by authorised users from
outside the organisation via the Internet.

HTTP (HyperText Transfer Protocol): The standard protocol for trans-
ferring Web pages through the Internet. HTTP defines how clients (i.e. users)
and servers (i.e. providers) should communicate.

HTML (HyperText Markup Language): A simple yet powerful language
that is commonly used to format documents which are to be published on the
Web.

4

URL (Uniform Resource Locator): A string of alphanumeric characters
that represents the location of a resource (e.g. a Web page) on the Internet and
how that resource should be accessed.

There are two types of Web pages: static and dynamic.

1. Static: An HTML document stored in a file is a typical example of a static
Web page. Its contents do not change unless the file itself is changed.

2. Dynamic: For a dynamic Web page, its contents are generated each
time it is accessed. As a result, a dynamic Web page can respond to
user input from the browser by, for example, returning data requested by
the completion of a form or returning the result of a database query. A
dynamic page can also be customised by and for each user. Once a user
has specified some preferences when accessing a particular site or page, the
information can be recorded and appropriate responses can be generated
according to those preferences.

From the above, it can be seen that dynamic Web pages are much more powerful
and versatile than static Web pages, and will be a focus for developing Web
database applications. When the documents to be published are dynamic, such
as those resulting from queries to databases, the appropriate hypertext needs to
be generated by the servers. To achieve this, we must write scripts that perform
conversions from different data formats into HTML ‘on-the-fly’. These scripts
also need to recognise and understand the queries performed by clients through
HTML forms and the results generated by the DBMS.

In short, a Web database application normally interacts with an existing
database, using the Web as a means of connection and having a Web browser or
client program on the front end. Typically such applications use HTML forms
for collecting user input (from the client); CGI (Common Gateway Interface,
to be discussed later) to check and transfer the data from the server; and a
script or program which is or calls a database client to submit or retrieve data
from the database. The diagram below gives a graphical illustration of such a
scenario. More will be discussed in later parts of this chapter.

5

Web-based client-server applications

As mentioned earlier in the Introduction, Web-based database applications are
a new type of client-server application. Some of the traditional client-server
database techniques may still be adapted. However, because of the incorporation
of the Web technology, there are important differences as set out in the following
table.

6

Platform independence: Web clients are platform-independent and do not
require modification to be run on different operating systems. Traditional
database clients, on the other hand, require extensive porting efforts to sup-
port multiple platforms. This is arguably one of the most compelling reasons
for building a Web-based client-server database application.

Interpreted applications: Web applications are written in interpreted lan-
guages (e.g. HTML and Java). This has an adverse effect on performance. In
many applications, however, this is a price worth paying to gain the advantage
of being platform independent. Time-critical applications may not be good
candidates to be implemented on the Web.

No need for installation: Another benefit of Web database applications is
that the need for installing special software is eliminated on the clients’ side.
It is pretty safe to assume that the clients have already had a Web browser
installed, which is the only piece of software needed for the clients to run the
applications.

Simple client: As a client needs just a browser to run a Web-based database
application, the potential complications are minimised.

Common interface across applications: Again, because there is no need
for specialised software, users have the benefit of using a browser for possibly
different applications.

Limited GUI (Graphical User Interface): This is one area in which Web-
based database applications may fall short. Highly customised application inter-
faces and highly interactive clients may not translate well as Web applications.
This is because of the HTML limitations. At the moment, HTML forms do not
offer an extensive feature set. Although JavaScript language can extend the
functionality of HTML-based applications, it is too complex, adds to download-

7

ing time, and degrades performance.

Integrate with other applications: Because of the benefit of being platform
independent, different applications that adhere to the HTML standard can be
integrated without many difficulties.

Non-persistent connection to database: Persistent database connections
are highly efficient data channels between a client and the DBMS, and therefore,
are ideal for database applications. However, Web-based applications do not
have this benefit. A Web-based client maintains its connection to a database
only as long as is necessary to retrieve the required data, and then releases it.
Thus, Web application developers must address the added overhead for creating
new database connections each time a client requires database access.

Apart from the above differences, there are some other important concerns for
Web-based applications:

• Reliability of the Internet: At the moment, there are reliability prob-
lems with the Internet. It may break down; data may be lost on the
net; large amounts of data traffic may slow down or even overwhelm the
network system.

• Security: Security on the Internet is of great concern for any organisation
which has developed Web-based database applications. For example, the
database may be broken into, or confidential data may be intercepted
during transmission by unauthorised parties or even criminals.

At the present, a lot of research and development work is being carried out to
address these concerns. There is no doubt that the potential problems can be
overcome and over time, the Internet will be more reliable and more secure for
connecting the world.

Context summary

In this section, we have drawn an overall picture of Web-based database appli-
cations. We have briefly mentioned how a DBMS can be integrated with the
Web, and what their advantages and disadvantages are as compared to the tra-
ditional client-server applications. In the rest of this chapter, we will study the
details of creating Web database applications and discuss the commonly used
approaches of linking databases to the Web.

Review question 1

• Are the Internet and WWW (Web) the same concept? Why?

• What are intranets and extranets?

• What is a URL?

• Most Web sites have URLs starting with http://……. Why?

8

• What is a dynamic Web page? What are its characteristics?

• What are the major features of a Web-based client-server application?

Web database architectures

Components of a database application

Web database applications may be created using various approaches. However,
there are a number of components that will form essential building blocks for
such applications. In other words, a Web database application should comprise
the following four layers (i.e. components):

• Browser layer

• Application logic layer

• Database connection layer

• Database layer

Browser layer

The browser is the client of a Web database application, and it has two major
functions. First, it handles the layout and display of HTML documents. Second,
it executes the client-side extension functionality such as Java, JavaScript, and
ActiveX (a method to extend a browser’s capabilities).

The three most popular browsers at the present are Mozilla Firefox (Firefox for
short), Google Chrome and Microsoft Internet Explorer (IE).

All three browsers are graphical browsers. During the early days of the Web,
a text-based browser, called Lynx, was popular. As loading graphics over the
Internet can be a slow and time-consuming process, database performance may
be affected. If an application requires a speedy client and does not need to
display graphics, then the use of Lynx may be considered.

All browsers implement the HTML standard. The discussion of HTML is be-
yond this chapter, but you need to know that it is a language used to format
data/documents to be displayed on the Web.

Browsers are also responsible for providing forms for the collection of user input,
packaging the input, and sending it to the appropriate server for processing. For
example, input can include registration for site access, guest books and requests
for information. HTML, Java, JavaScript or ActiveX (for IE) may be used to
implement forms.

9

Application logic layer

The application logic layer is the part of a Web database application with which
a developer will spend the most time. It is responsible for:

• Collecting data for a query (e.g. a SQL statement).

• Preparing and sending the query to the database via the database connec-
tion layer.

• Retrieving the results from the connection layer.

• Formatting the data for display.

Most of the application’s business rules and functionality will reside in this layer.
Whereas the browser client displays data as well as forms for user input, the
application logic component compiles the data to be displayed and processes
user input as required. In other words, the application logic generates HTML
that the browser renders. Also it receives, processes and stores user input that
the browser sends.

Depending on the implementation methods used for the database application,
the application logic layer may have different security responsibilities. If the
application uses HTML for the front end, the browser and server can handle
data encryption (i.e. a security measure to ensure that data will not be able
to be intercepted by unauthorised parties). If the application is a Java applet
and uses Java for the front end, then it itself must be responsible for adopting
transmission encryption.

Database connection layer

This is the component which actually links a database to the Web server. Be-
cause manual Web database programming can be a daunting task, many current
Web database building tools offer database connectivity solutions, and they are
used to simplify the connection process.

The database connection layer provides a link between the application logic
layer and the DBMS. Connection solutions come in many forms, such as DBMS
net protocols, API (Application Programming Interface [see note below]) or
class libraries, and programs that are themselves database clients. Some of
these solutions resulted in tools being specifically designed for developing Web
database applications. In Oracle, for example, there are native API libraries
for connection and a number of tools, such as Web Publishing Assistant, for
developing Oracle applications on the Web.

The connection layer within a Web database application must accomplish a
number of goals. It has to provide access to the underlying database, and also
needs to be easy to use, efficient, flexible, robust, reliable and secure. Different
tools and methods fulfil these goals to different extents.

10

Note

An API consists of a set of interrelated subroutines that provide the functionality
required to develop programs for a target operating environment. For example,
Microsoft provides different APIs targeted at the construction of 16- and 32-bit
Windows applications. An API would provide functions for all aspects of system
activity, such as memory, file and process management. Specialised APIs are
also supplied by software vendors to support the use of their products, such as
database and network management systems.

Database layer

This is the place where the underlying database resides within the Web database
application. As we have already learned, the database is responsible for storing,
retrieving and updating data based on user requirements, and the DBMS can
provide efficiency and security measures.

In many cases, when developing a Web database application, the underlying
database has already been in existence. A major task, therefore, is to link the
database to the Web (the connection layer) and to develop the application logic
layer.

2-tier client-server architecture

Traditional client-server applications typically have a 2-tier architecture as il-
lustrated in the figure below. The client (tier 1) is primarily responsible for
the presentation of data to the user, and the server (tier 2) is responsible for
supplying data services to the client. The client will handle user interfaces and
main application logic, and the server will mainly provide access services to the
underlying database.

11

If such a 2-tier architecture is used to implement a Web database application,
tier 1 will contain the browser layer, the application logic layer and the connec-
tion layer. Tier 2 accommodates the DBMS. This will inevitably result in a fat
client.

3-tier client-server architecture

In order to satisfy requirements of increasingly complex distributed database
applications, a 3-tier architecture was proposed to replace the 2-tier one. There
are three tiers in this new architecture, each of which can potentially run on a
different platform.

The first tier is the client, which contains user interfaces. The middle tier
accommodates the application server, which provides application logic and data
processing functions. The third tier contains the actual DBMS, which may run
on a separate server called a database server.

12

The 3-tier architecture is more suitable for implementing a Web database ap-
plication. The browser layer can reside in tier 1, together with a small part
of the application logic layer. The middle tier implements the majority of the
application logic as well as the connection layer. Tier 3 is for the DBMS.

Referring to the figure below, for example, it can be seen that the Web Client is
in the first tier. The Web Server and Gateway are in the middle tier and they
form the application server. The DBMS and possibly other data sources are in
the third tier.

13

Having studied the Web database architectures, we should understand that the
most important task in developing a Web database application is to build the
database connection layer. In other words, we must know how to bridge the gap
between the application logic layer and the database layer.

Review question 2

• What is the typical architecture of a Web database application?

• How can a 3-tier client-server architecture be used to implement a Web
database application?

Database gateways

A Web database gateway is a bridge between the Web and a DBMS, and
its objective is to provide a Web-based application the ability to manipulate

14

data stored in the database. Web database gateways link stateful systems
(i.e. databases) with a stateless, connectionless protocol (i.e. HTTP). HTTP
is a stateless protocol in the sense that each connection is closed once the server
provides a response. Thus, a Web server will not normally keep any record about
previous requests. This results in an important difference between a Web-based
client-server application and a traditional client-server application:

• In a Web-based application, only one transaction can occur on a connec-
tion. In other words, the connection is created for a specific request from
the client. Once the request has been satisfied, the connection is closed.
Thus, every request involving access to the database will have to incur the
overhead of making the connection.

• In a traditional application, multiple transactions can occur on the same
connection. The overhead of making the connection will only occur once
at the beginning of each database session.

There are a number of different ways to create Web database gateways. Gener-
ally, they can be grouped into two categories: client-side solutions and server-
side solutions, as illustrated below:

15

Client-side solutions

The client-side solutions include two types of approaches for connections:
browser extensions and external applications.

16

Browser extensions are add-ons to the core Web browser that enhance and
augment the browser’s original functionality. Specific methods include plug-ins
for Firefox, Chrome and IE, and ActiveX controls for IE. Also, all the three types
of browsers (Firefox, Chrome and IE) support Java and JavaScript languages
(i.e. Java applets and JavaScript can be used to extend browsers’ capabilities).

External applications are helper applications or viewers. They are typically
existing database clients that reside on the client machine and are launched
by the Web browser in a particular Web application. Using external applica-
tions is a quick and easy way to bring legacy database applications online, but
the resulting system is neither open nor portable. Legacy database clients do
not take advantages of the platform independence and language independence
available through many Web solutions. Legacy clients are resistant to change,
meaning that any modification to the client program must be propagated via
costly manual installations throughout the user base.

Server-side solutions

Server-side solutions are more widely adopted than the client-side solutions. A
main reason for this is that the Web database architecture requires the client to
be as thin as possible. The Web server should not only host all the documents,
but should also be responsible for dealing with all the requests from the client.

In general, the Web server should be responsible for the following:

• Listening for HTTP requests.

• Checking the validity of the request.

• Finding the requested resource.

• Requesting authentication if necessary.

• Delivering requested resource.

• Spawning programs if required.

• Passing variables to programs.

• Delivering output of programs to the requester.

• Displaying error message if necessary.

The client (browser) should be responsible for some of the following:

• Rendering HTML documents.

• Allowing users to navigate HTML links.

• Displaying image.

• Sending HTML form data to a URL.

17

• Interpreting Java applets.

• Executing plug-ins.

• Executing external helper applications.

• Interpreting JavaScript and other scripting language programs.

• Executing ActiveX controls in the case of IE.

In the following sections, we are going to discuss both client-side and server-side
solutions in some detail.

Review question 3

• What is a gateway in a Web database application and why is it needed?

• Where can we implement a gateway for a Web database application?

Client-side Web database programming

Major tasks of client-side Web database application programming include the
creation of browser extensions and the incorporation of external applications.
These types of gateways take advantage of the resources of the client machine,
to aid server-side database access. Remember, however, it is advantageous to
have a thin client. Thus, the scope of such programming on the client-side
should be limited. A very large part of the database application should be on
the server side.

Browser extensions

Browser extensions can be created by incorporating script language interpreters
to support script languages (e.g. JavaScript), bytecode interpreters to support
Java, and dynamic object linkers to support various plug-ins.

JavaScript

JavaScript is a scripting language that allows programmers to create and cus-
tomise applications on the Internet and intranets. On the client side, it can be
used to perform simple data manipulation such as mathematical calculations
and form validation. JavaScript code is normally sent as a part of an HTML
document and is executed by the browser upon receipt (the browser must have
the script language interpreter).

Note that JavaScript has little to do with Java language. JavaScript was origi-
nally called LiveScript, but it was changed to benefit from the excitement sur-
rounding Java. The only relationship between JavaScript and Java is a gate-
way between the former and Java applets (Web applications written in Java).

18

JavaScript provides developers with a simple way to access certain properties
and methods of Java applets on the same page, without having to understand
or modify the Java source code of the applet.

Connection to databases

As a database gateway, JavaScript on the client side does not offer much without
the aid of a complementary approach such as Java, plug-ins and CGI (Common
Gateway Interface, to be discussed later). For example:

• If a Java applet on a page of HTML has access to a database, a programmer
can write JavaScript code using LiveConnect to manipulate the applet.

• If there is a form on the HTML document and if an action parameter
for that form refers to a CGI program that has access to a database, a
programmer can write JavaScript code to manipulate the data elements
within the form and then submit it (i.e. submit a kind of request to a
DBMS).

Performance

JavaScript can improve the performance of a Web database application if it is
used for client-side state management. It can eliminate the need to transfer state
data repeatedly between the browser and the Web server. Instead of sending an
HTTP request each time it updates an application state, it sends the state only
once as the final action. However, there are some side effects resulting from this
gain in performance. For example, it may result in the application becoming
less robust if state management is completely on the client side. If the client
accidentally or deliberately exits, the session state is lost.

Java

As mentioned earlier, Java applets can be manipulated by JavaScript functions
to access databases. In general, Java applets can be downloaded into a browser
and executed on the client side (the browser should have the bytecode inter-
preter). The connection to the database is made through appropriate APIs
(Application Programming Interface, such as JDBC and ODBC). We will dis-
cuss the details in the next section: Server-Side Web Database Programming.

ActiveX

ActiveX is a way to extend Microsoft IE’s (Internet Explorer) capabilities. An
ActiveX control is a component on the browser that adds functionality which
cannot be obtained in HTML, such as access to a file on the client side, other
applications, complex user interfaces, and additional hardware devices. ActiveX
is similar to Microsoft OLE (Object Linking and Embedding), and ActiveX
controls can be developed by any organisation and individual. At the present,

19

more than one thousand ActiveX controls, including controls for database access,
are available for developers to incorporate into Web applications.

Connection to databases

A number of commercial ActiveX controls offer database connectivity. Because
ActiveX has abilities similar to OLE, it supports most or all the functionality
available to any Windows program.

Performance

Like JavaScript, ActiveX can aid in minimising network traffic. In many cases,
this technique results in improved performance. ActiveX can also offer rich
GUIs. The more flexible interface, executed entirely on the client side, makes
operations more efficient for users.

Plug-ins

Plug-ins are Dynamic Link Libraries (DLL) that give browsers additional func-
tionality. Plug-ins can be installed to run seamlessly inside the browser window,
transparent to the user. They have full access to the client’s resources, because
they are simply programs that run in an intimate symbiosis with the Web
browser.

To create a plug-in, the developer writes an application using the plug-in API
and native calls. The code is then compiled as a DLL. Installing a plug-in is
just a matter of copying the DLL into the directory where the browser looks
for plug-ins. The next time that the browser is run, the MIME type(s) that the
new plug-in supports will be opened with the plug-in. One plug-in may support
multiple MIME types.

There are a number of important issues concerning plug-ins:

• Plug-ins incur installation requirements. Because they are native code,
not packaged with the browser itself, plug-ins must be installed on the
client machine.

• Plug-ins are platform dependent. Whenever a change is made, it must be
made on all supported platforms.

Connection to databases

Plug-ins can operate like any stand-alone applications on the client side. They
can be used to create direct socket connections to databases via the DBMS net
protocols (such as SQL *Net for Oracle). Plug-ins can also use JDBC, ODBC,
OLE and any other methods to connect to databases.

Performance

Plug-ins are loaded on demand. When a user starts up a browser, the installed
plug-ins are registered with the browser along with their supported MIME types,

20

but the plug-ins themselves are not loaded. When a plug-in for a particular
MIME type is requested, the code is then loaded into memory. Because plug-
ins use native code, their executions are fast.

External applications

External helper applications can be new or legacy database clients, or a terminal
emulator. If there are existing traditional client-server database applications
which reside on the same machine as the browser, then they can be launched
by the browser and execute as usual.

This approach may be an appropriate interim solution for migrating from an
existing client-server application to a purely Web-based one. It is straightfor-
ward to configure the browser to launch existing applications. It just involves
the registration of a new MIME type and the associated application name. For
organisations that cannot yet afford the time and funds needed to transfer ex-
isting database applications to the Web, launching legacy applications from the
browser provides a first step that requires little work.

Maintenance issues

Using the external applications approach, the existing database applications
need not be changed. However, it means that all the maintenance burdens
associated with traditional client-server applications will remain. Any change
to the external application will require a very costly reinstallation on all client
machines. Because this is not a pure Web-based solution, many advantages
offered by Web-based applications cannot be realised.

Performance

Traditional client-server database applications usually offer good performance.
They do not incur the overhead of requiring repeated connections to the
database. External database clients can make one connection to the remote
database and use that connection for as many transactions as necessary for the
session, closing it only when finished.

Review question 4

What are the major tasks involved in client-side Web database programming?

Server-side Web database programming

CGI (Common Gateway Interface)

CGI is a protocol for allowing Web browsers to communicate with Web servers,
such as sending data to the servers. Upon receiving the data, the Web server
can then pass them to a specified external program (residing on the server

21

host machine) via environment variables or standard input stream (STDIN).
The external program is called a CGI program or CGI script. Because CGI
is a protocol, not a library of functions written specifically for any particular
Web server, CGI programs/scripts are language independent. As long as the
program/script conforms to the specification of the CGI protocol, it can be
written in any language such as C, C++ or Java. In short, CGI is the protocol
governing communications among browsers, servers and CGI programs.

In general, a Web server is only able to send documents and to tell a browser
what kinds of documents it is sending. By using CGI, the server can also launch
external programs (i.e. CGI programs). When the server recognises that a URL
points to a file, it returns the contents of that file. When the URL points to a
CGI program, the server will execute it and then send back the output of the
program’s execution to the browser as if it were a file.

Before the server launches a CGI program, it prepares a number of environment
variables representing the current state of the server which is requesting the ac-
tion. The program collects this information and reads STDIN. It then carries
out the necessary processing and writes its output to STDOUT (the standard
output stream). In particular, the program must send the MIME header infor-
mation prior to the main body of the output. This header information specifies
the type of the output.

Refer to the figure under the Basic Concepts section. The CGI approach en-
ables access to databases from the browser. The Web client can invoke a CGI
program/script via a browser, and then the program performs the required ac-
tion and accesses the database via the gateway. The outcome of accessing the
database is then returned to the client via the Web server. Invoking and ex-
ecuting CGI programs from a Web browser is mostly transparent to the user.
The following steps need to be taken in order for a CGI program to execute
successfully:

• The user (Web client) calls the CGI program by clicking on a link or by
pressing a button. The program can also be invoked when the browser
loads an HTML document (hence being able to create a dynamic Web
page).

• The browser contacts the Web server, asking for permission to run the
CGI program.

• The server checks the configuration and access files to ensure that the
program exists and the client has access authorisation to the program.

• The server prepares the environment variables and launches the program.

• The program executes and reads the environment variables and STDIN.

• The program sends the appropriate MIME headers to STDOUT, followed
by the remainder of the output, and terminates.

22

• The server sends the data in STDOUT (i.e. the output from the program’s
execution) to the browser and closes the connection.

• The browser displays the information received from the server.

As mentioned earlier, when preparing data for the browser to display, the CGI
program has to include a header as the first line of output. It specifies how the
browser should display the output. This header may be one of the following
types:

Primarily, there are four methods available for passing information from the
browser to a CGI program. In this way, clients’ input (representing users’ spe-
cific requirements) can be transmitted to the program for actions.

1. Passing parameters on the command line.

2. Passing environment variables to CGI programs.

3. Passing data to CGI programs via STDIN.

4. Using extra path information.

Detailed discussions on these methods are beyond the scope of this chapter.
Please refer to any book dealing specifically with the CGI topic.

Advantages and disadvantages of CGI

Advantages

CGI is the de facto standard for interfacing Web clients and servers with external
applications, and is arguably the most commonly adopted approach for interfac-
ing Web applications to data sources (such as databases). The main advantages
of CGI are its simplicity, language independence, Web server independence and
its wide acceptance.

Disadvantages

23

The first notable drawback of CGI is that the communication between a client
(browser) and the database server must always go through the Web server in
the middle, which may cause a bottleneck if there is a large number of users
accessing the Web server simultaneously. For every request submitted by a Web
client or every response delivered by the database server, the Web server has to
convert data from or to an HTML document. This incurs a significant overhead
to query processing.

The second disadvantage of CGI is the lack of efficiency and transaction support
in a CGI program. For every query submitted through CGI, the database server
has to perform the same logon and logout procedure, even for subsequent queries
submitted by the same user. The CGI program could handle queries in batch
mode, but then support for online database transactions that contain multiple
interactive queries would be difficult.

The third major shortcoming of CGI is due to the fact that the server has to
generate a new process or thread for each CGI program. For a popular site (like
Yahoo), there can easily be hundreds or even thousands of processes compet-
ing for memory, disk and processor time. This situation can incur significant
overhead.

Last but not least, extra measures have to be taken to ensure server security.
CGI itself does not provide any security measures, and therefore developers of
CGI programs must be security conscious. Any request for unauthorised action
must be spotted and stopped.

Extended CGI

As discussed in the previous section, one of the major concerns with CGI is
its performance. With CGI, a process is spawned on the server each time a
request is made for a CGI program. There is no method for keeping a spawned
process alive between successive requests, even if they are made by the same
user. Furthermore, CGI does not inherently support distributed processing, nor
does it provide any mechanism for sharing commonly used data or functionality
among active and future CGI requests. Any data that exists in one instance of
a CGI program cannot be accessed by another instance of the same program.

In order to overcome these problems, an improved version of CGI, called
FastCGI, has been developed with the following features:

• Language independence: As with CGI, FastCGI is a protocol and not
dependent on any specific language.

• Open standard: Like CGI, FastCGI is positioned as an open standard.
It can be implemented by anyone. The specifications, documentation
and source code (in different languages) can be obtained at the Web site
https://soramimi.jp/fastcgi/fastcgispec.html.

24

• Independence from the Web server architecture: A FastCGI application
need not be modified when an existing Web server architecture changes.
As long as the new architecture supports the FastCGI protocol, the appli-
cation will continue to work.

• Distributed computing: FastCGI allows the Web application to be run on
a different machine from the Web server. In this way, the hardware can
be tuned optimally for the software.

• Multiple, extensible roles: In addition to the functionality offered by CGI
(i.e. receiving data and returning responses), FastCGI can fill multiple roles
such as a filter role and an authoriser role. A FastCGI application can
filter a requested file before sending it to the client; the authoriser program
can make an access control decision for a request, such as looking up a
username and password pair in a database. If more roles are needed, more
definitions and FastCGI programs can be written to fulfil them.

• Memory sharing: In some cases, a Web application might need to refer
to a file on disk. Under CGI, the file would have to be read into the
memory space of that particular instance of the CGI program; if the CGI
program were accessed by multiple users simultaneously, the file would
be loaded and duplicated into different memory locations. With FastCGI,
different instances of the same application can access the same file from
the same section of memory without duplication. This approach improves
performance.

• Allocating processes: FastCGI applications do not require the Web server
to start a new process for each application instance. Instead, a certain
number of processes are allotted to the FastCGI application. The number
of processes dedicated for an application is user-definable. These processes
can be initiated when the Web server is started or on demand.

FastCGI seems to be a complete solution for Web database programming, as it
includes the best features of CGI and server APIs. In the following sections, a
number of CGI-alternative approaches are discussed.

HTTP server APIs and server modules

HTTP server (Web server) APIs and modules are the server equivalent of
browser extensions. The central theme of Web database sites created with
HTTP server APIs or modules is that the database access programs coexist
with the server. They share the address space and run-time process of the
server. This approach is in direct contrast to the architecture of CGI, in which
CGI programs run as separate processes and in separate memory spaces from
the HTTP server.

Instead of creating a separate process for each CGI program, the API offers a
way to create an interface between the server and the external programs using

25

dynamic linking or shared objects. Programs are loaded as part of the server,
giving them full access to all the I/O functions of the server. In addition, only
one copy of the program is loaded and shared among multiple requests to the
server.

Server vendor modules

Server modules are just prefabricated applications written in some server APIs.
Developers can often purchase commercial modules to aid or replace the devel-
opment of an application feature. Sometimes, the functionality required in a
Web database application can be found as an existing server module.

Vendors of Web servers usually provide proprietary server modules to support
their products. There are a very large number of server modules that are com-
mercially available, and the number is still rising. For example, Oracle pro-
vides the Oracle PL/SQL module, which contains procedures to drive database-
backed Web sites. The Oracle module supports both NSAPI and ISAPI.

Advantages of server APIs and modules

Having database access programs coexist with the HTTP server improves Web
database access due to improved speed, resource sharing, and the range of func-
tionality.

• Server speed

API programs run as dynamically loaded libraries or modules. A server
API program is usually loaded the first time the resource is requested,
and therefore, only the first user who requests that program will incur the
overhead of loading the dynamic libraries. Alternatively, the server can
force this first instantiation so that no user will incur the loading overhead.
This technique is called preloading. Either way, the API approach is more
efficient than CGI.

• Resource sharing

Unlike a CGI program, a server API program shares address space with
other instances of itself and with the HTTP server. This means that
any common data required by the different threads and instances need
exist only in one place. This common storage area can be accessed by
concurrent and separate instances of the server API program.

The same principle applies to common functions and code. The same set
of functions and code are loaded just once and can be shared by multi-
ple server API programs. The above techniques save space and improve
performance.

• Range of functionality

26

A CGI program has access to a Web transaction only at certain limited
points. It has no control over the HTTP authentication scheme. It has
no contact with the inner workings of the HTTP server, because a CGI
program is considered external to the server.

In contrast, server API programs are closely linked to the server; they
exist in conjunction with or as part of the server. They can customise the
authentication method as well as transmission encryption methods. Server
API programs can also customise the way access logging is performed,
providing more detailed transaction logs than are available by default.

Overall, server APIs provide a very flexible and powerful solution to extending
the capabilities of Web servers. However, this approach is much more complex
than CGI, requiring specialised programmers with a deep understanding of the
Web server and sophisticated programming skills.

Important issues

• Server architecture dependence

Server APIs are closely tied to the server they work with. The only way to
provide efficient cross-server support is for vendors to adhere to the same
API standard. If a common API standard is used, programs written for
one server will work just as well with another server. However, setting up
standards involves compromises among competitors. In many cases, they
are hard to come by.

• Platform dependence

Server APIs and modules are also dependent on computing platforms.
Some servers are supported on multiple platforms. Nevertheless, each
supporting version is dependent on that platform. Similarly, the Microsoft
server is only available for various versions of Windows.

• Programming language

Most Web servers can be extended using a variety of programming lan-
guages and facilities. In addition, Microsoft provides an application en-
vironment called Active Server Pages. Active Server Pages is an open,
compile-free application environment in which developers can combine
HTML, scripts and reusable ActiveX server components to create dynamic
and powerful Web-based business solutions.

Comparison of CGI, server APIs and modules, and FastCGI

The following table provides a straightforward comparison among approaches
of CGI, server APIs and modules, and FastCGI:

27

Proprietary HTTP servers

A proprietary HTTP server is defined as a server application that handles HTTP
requests and provides additional functionality that is not standard or common
among available HTTP servers. The functionality includes access to a particular
database or data source, and translation from a legacy application environment
to the Web.

Examples of proprietary servers include IBM Domino, Oracle Application Ex-
press Listener and Hyper-G. These products were created for specific needs. For
Domino, the need is tight integration with legacy Lotus Notes applications, al-
lowing them to be served over the Web. Oracle Application Express Listener
was designed to provide highly efficient and integrated access to back-end Ora-
cle databases. For Hyper-G, the need is to have easily maintainable Web sites
with automatic link update capabilities.

The main objectives of creating proprietary servers are to meet specialised and
customised needs, and to optimise performance. However, the benefits of pro-
prietary servers must be carefully weighed against their exclusive ties to a Web
database product (which may bring many shortcomings). It requires a thorough
understanding of the business requirements in order to determine whether or
not a proprietary Web server is appropriate in a project.

Review question 5

28

• What is CGI?

• What are the typical steps in the procedure by a Web client of invoking a
CGI program?

• What are Web server APIs and server modules?

• Compare the features of CGI, FastCGI, and server APIs and modules.

Connecting to the database

In previous sections, we have studied various approaches that enable browsers
(Web clients) to communicate with Web servers, and in turn allow Web clients
to have access to databases. For example, CGI, FastCGI or API programs can
be invoked by the Web client to access the underlying database. In this section,
we are going to discuss how database connections can actually be made via those
CGI/FastCGI/API programs. We will learn what specific techniques, tools and
languages are available for making the connections. In short, we will see how
the database connection layer is built for the underlying database.

In general, database connectivity solutions include the use of:

• Native database APIs

• Database-independent APIs

• Template-driven database access packages

• Third-party class libraries

Do not be confused with the concepts of Web server APIs and database APIs.
Web server APIs are used to write server applications, in which database
APIs are used specifically for connecting to and accessing the database. Also,
database APIs can be used to write a CGI program which allows developers
to create a Web application with a database back end. Similarly, a template-
driven database access package, along with a program written in a Web server’s
API (e.g. NSAPI, ISAPI), is another way to link a Web front end to a database
back end.

Database API libraries

Before we look at specific API database connectivity solutions, let’s give back-
ground to database API libraries.

Database API libraries are at the core of every Web database application and
gateway. Regardless how a Web database application is built (whether by man-
ually coding CGI programs or by using a visual application builder), database
API libraries are the foundation of database access.

29

The approach

Database API libraries are collections of functions or object classes that pro-
vide source code access to databases. They offer a method of connecting to
the database engine (under a username and password if user authentication is
supported by the DBMS), sending queries across the connection, and retrieving
the results and/or error messages in a desired format.

Traditional client-server database applications have already employed database
connectivity libraries supplied by vendors and third-party software companies
(i.e., third party class libraries). Because of this fact of wider user base, database
APIs have the advantage over other gateway solutions for Web database con-
nectivity.

The Web database applications that require developers to use database API
libraries are mainly CGI, FastCGI or server API programs. Web database
application building tools, including template-driven database access packages
and visual GUI builders, use database APIs as well as the supporting gateways
(such as CGI and server API), but all these interactivities are hidden from the
developers.

Native database APIs

Native database APIs are platform-dependent as well as programming language
dependent. However, most popular databases (such as Oracle) support mul-
tiple platforms in the first place, and therefore, the porting between different
platforms should not require excessive effort.

In general, programs that use native database APIs are faster than those using
other methods, because the libraries provide direct and low-level access. Other
database access methods tend to be slower, because they add another layer of
programming to provide the developer a different, easier, or more customised
programming interface. These additional layers slow the overall transaction
down.

Native database API programming is not inherently dependent on a Web server.
For example, a CGI program using native API calls to Oracle that works with
the Netscape server should also work with other types of servers. However, if
the CGI program also incorporates Web server-specific functions or modules, it
will be dependent on that Web server.

Database-independent APIs: ODBC

The most popular standard database-independent API was pioneered by Mi-
crosoft. It is called ODBC (Open Database Connectivity) and is supported by
all of the most popular databases such as Microsoft Access and Oracle.

30

ODBC requires a database-specific driver or client to be loaded on the database
client machine. In a Java application that accesses Oracle, for example, the
server that hosts the Java application would need to have an Oracle ODBC
client installed. This client would allow the Java application to connect to the
ODBC data source (the actual database) without knowing anything about the
Oracle database.

In addition to the database-specific ODBC driver being installed on the client
machine, Java requires that a JDBC-ODBC bridge (i.e. another driver. JDBC
stands for Java Database Connectivity) be present on the client machine. This
JDBC-ODBC driver translates JDBC to ODBC and vice versa, so that Java
programs can access ODBC-compliant data sources but still use their own JDBC
class library structure.

Having the database-specific ODBC driver on the client machine dictates that
Web database Java applications or applets using ODBC be 3-tiered. The
database client of the Web application must reside on a server: either the same
server as the Web server or a remote server. Otherwise, the database-specific
ODBC driver would have to exist on every user’s computer, which is a very
undesirable situation. The diagram below provides a graphical illustration of
such an architecture.

Benefits of database APIs

Database APIs (native or independent) arguably offer the most flexible way
in which Web database applications are created. Applications created with
native database APIs are more efficient than those with database-independent
APIs. This database connectivity solution is the fastest way to access database
functionality and has been tested rigorously in the database software industry.
It is worth noting that database APIs have been used successfully for years even
before the invention of the Web.

Shortcomings of database APIs

The most notable disadvantage of programming in database API is complexity.
For rapid application development and prototyping, it is better to use a high-
level tool, such as template-driven database access software or visual application
builders.

Another disadvantage is with ODBC. Because ODBC standardises access to
databases from multiple vendors, applications using ODBC do not have access
to native SQL database calls that are not supported by the ODBC standard.
In some cases, this can be inconvenient and may even affect application perfor-
mance.

31

32

Template-driven packages

The approach

Template-driven database connectivity packages are offered by database vendors
and third-party developers to simplify Web database application programming.
Such a package usually consists of the following components:

• Template consisting of HTML and non-standard tags or directives

• Template parser

• Database client daemons

Template-driven packages are very product dependent. Different DBMSs re-
quire database access templates in different formats. An application developed
for one product will be strongly tied to it. Migrating from one product to an-
other is very difficult and requires a rewrite of all the database access, flow
control and output-formatting commands.

An example of a template-driven package is PHP.

Benefits of template-driven packages

The most important benefit from using a template-driven package is speed of
development. Assuming an available package has been installed and configured
properly, it takes as little time as a few hours to create a Web site that displays
information directly from the database.

Shortcomings of template-driven packages

The structures of templates are normally predetermined by vendors or third-
party developers. As a result, they only offer a limited range of flexibility and
customisability. Package vendors provide what they feel is important function-
ality, but, as with most off-the-shelf tools, such software packages may not let
you create applications requiring complex operations.

Although templates offer a rapid path to prototyping and developing simple
Web database applications, the ease of development is obtained for the cost of
speed and efficiency. Because the templates must be processed on demand and
require heavy string manipulation (templates are of a large text type or string
type; they must be parsed by the parser), using them is slow compared with
using direct access such as native database APIs.

The actual performance of an application should be tested and evaluated before
the usefulness of such a package is ruled out. The overhead of parsing templates
may be negligible if using high-performance machines. Other factors, such as
development time or development expertise, may be more important than a
higher operational speed.

33

GUI application builders

Visual Web database building tools offer an interesting development environ-
ment for creating Web database applications. For developers accustomed to
point-and-click application programming, these tools help speed the develop-
ment process. For instance, Visual Basic and/or Microsoft Access developers
should find such a tool intuitive and easy to use.

The approach

The architectures of visual building tools vary. In general, they include a user-
friendly GUI (Graphical User Interface), allowing developers to build a Web
database application with a series of mouse clicks and some textual input. These
tools also offer application management so that a developer no longer needs to
juggle multiple HTML documents and CGI, NSAPI or ISAPI programs manu-
ally.

At the end of a building session, the tool package can generate applications using
various techniques. Some applications are coded using ODBC; some use native
database APIs for the databases they support; and others may use database net
protocols.

Some of these tools create their own API, which can be used by other developers.
Some generate code that works but can still be modified and customised by
developers using various traditional IDEs, compilers and debuggers.

A building tool may generate a CGI program or a Web server API program
(such as NSAPI and ISAPI). Some sophisticated tools even offer all the options.
The developer can choose what he/she wants.

Unlike native database APIs or template-driven database connectivity packages,
visual Web database development tools tend to be as open as possible. Many
offer development support for the popular databases.

Benefits of visual tools

Visual development tools can be of great assistance to developers who are fa-
miliar and comfortable with visual application development techniques. They
offer rapid application development and prototyping, and an organised way to
manage the application components. Visual tools also shield the developer from
low-level details of Web database application development. As a result, a de-
veloper can create a useful Web application without the need to know what is
happening in the code levels.

Shortcomings of visual tools

34

Depending on the sophistication of the package used, the resulting programs
may be slower to execute than similar programs coded by an experienced pro-
grammer. Visual application building tools, particularly Object-oriented ones,
tend to generate fat programs with a lot of unnecessary sub-classing.

Another potential drawback is cost. A good visual tool may be too expensive
for a small one-off development budget.

Review question 6

• What are database APIs? Who uses them and why?

• Why are template-driven packages useful for building database connec-
tions? What are the shortcomings?

• How can we benefit from using visual development tools to build database
connections?

Managing state and persistence in Web applications

State is an abstract concept of being, which can be explained by a set of rules,
facts or truisms. A state in a database application includes a set of variables
and/or other means to record who the user/client is, what tasks he/she has
been doing, at what position he/she is at a particular instance in time, and
many other useful pieces of information about a database session. Persistence is
the capability of remembering a state and tracking state changes across different
applications or different periods of time within an instance of an application or
multiple instances.

The requirement of state maintenance in Web database applications results in
the increased complexity. As mentioned before in the Context section, HTTP is
connectionless, which means that once an HTTP request is sent and a response
is received, the connection to the server is closed. If a connection were to be
kept open between client and server, the server could at any time query the
client for state information and vice versa. The server would be able to know
the identity of the user throughout the session once the user logged in. However,
the reality is that there is no constant connection throughout the session. Thus,
the server cannot have memory of the user’s identity even after user login. In
this situation, programmers must find a way to make session state persist.

Technical options

There are several options available to programmers to maintain state. They
range from open systems options defined in HTTP and CGI standards, to pro-
prietary mechanisms written from scratch.

35

The most important task in maintaining persistence is to keep track of the
identity of the user. If the identity can persist, any other data/information can
usually be made to persist in exactly the same manner.

The URL approach

It works as follows:

• A registration or login page is delivered to the user.

• The user types in a username and password, and then submits the page.

• The username and password pair are sent to a server-side CGI program,
which extracts the values from the QUERY_STRING environment vari-
able.

• The values are checked by the server to determine whether or not the user
is authenticated.

• If he/she is authenticated, the authenticated state is reflected in a ran-
domly generated session ID (SID), which is stored in a database along
with other necessary data to describe the state of the user session.

• The SID can then be stored in all URLs within HTML documents returned
by the server to the client, therefore tracking the identity of the user
throughout the session.

Benefits of the URL approach

The URL approach is easy to use to maintain state. To retrieve a state, the
receiving CGI program need only collect the data from environment variables
in the GET method and act on it as necessary. To pass on, set or change the
state, the program simply creates new URLs with the appropriate data.

Shortcomings of the URL approach

If the state information has to be kept in the URL, the URL becomes very
long and can be very messy. Also, such a URL displays part of the application
code and low-level details. This causes security concerns, and may be used by
hackers.

If an application manages state on the client side using the URL method, the
state will be lost when the user quits the browser session unless the user book-
marks the URL. A bookmark saves the URL in the browser for future retrieval.
If state is maintained solely in the URL without any server-side state data
management, bookmarking is sufficient to recreate the state in a new browser
session. However, having the user perform this maintenance task is obviously
undesirable.

36

URL QUERY_STRING

This is another popular method of maintaining state. A registered user in a site
has a hidden form appended to each page visited within the site. This form
contains the username and the name of the current page. When the user moves
from one page to another, the hidden form moves as well and is appended to
the end of the succeeding HTML page.

Benefits of the hidden fields approach

Like the URL approach, it is easy to use to maintain state. In addition, because
the fields are hidden, the user has a seamless experience and sees a clean URL.

Another advantage of using this approach is that, unlike using URLs, there is
no limit on the size of data that can be stored.

Shortcomings of the hidden fields approach

As with the URL approach, users can fake states by editing their own version of
the HTML hidden fields. They can bring up the document source in an editor,
change the data stored, and then submit the tampered form to the server. This
raises serious security concerns.

Data is also lost between sessions. If the entire session state is stored in hidden
fields, that state will not be accessible after the user exits the browser unless the
user specifically saves the HTML document to disk or with a bookmark. Again,
it is undesirable to involve users in this kind of maintenance task.

HTTP cookies

An HTTP cookie is a technique that helps maintain state in Web applications.
A cookie is in fact a small text file containing:

• Name of the cookie

• Domains for which the cookie is valid

• Expiration time in GMT

• Application-specific data such as user information

Cookies are sent by the server to the browser, and saved to the client’s disk.
Whenever necessary, the server can request a desired cookie from the client.
The client browser will check whether it has it. If it does, the browser will send
the information stored in the cookie to the server.

37

Benefits of cookies

Cookies can be completely transparent. As long as a user does not choose the
browser option to be alerted before accepting cookies, his/her browser will han-
dle incoming cookies and place them on the client disk without user intervention.

Cookies are stored in a separate file, whose location is handled by the browser
and difficult for the user to find. Also, cookies are difficult to tamper with. This
increases security.

Because cookies are stored on the client disk, the cookie data is accessible even
in a new browser session. It does not require theuser to do anything.

If a programmer chooses to set an expiration date or time for a cookie, the
browser will invalidate the cookie at the appropriate time.

Shortcomings of cookies

The amount of data that can be stored with a cookie is usually limited to 4
kilobytes. If an application has very large state data, other techniques must be
considered.

Because cookies are physically stored on the client disk, they cannot move with
the user. This side effect is important for applications whose users often change
machines.

Although cookies are difficult to tamper with, it is still possible for someone to
break into them. Remember a cookie is just a text file. If a user can find it and
edit it, it can still cause security problems.

Important considerations

Managing state on the client

An application can maintain all of its state on the client-side with any of the
methods discussed in the previous section.

• Benefits of the client-side maintenance

On attraction of maintaining state on the client is simplicity. It is easier to
keep all the data in one place, and by doing it on the client, it eliminates
the need for server database programming and maintenance.

If an application uses client-side extensions to maintain state, it can also
provide a faster response to the user because the need to network access
is eliminated.

• Shortcomings of the client-side maintenance

38

If all the state data is on the client-side, there is a danger that users
can somehow forge state information by editing URLs, hidden fields, and
cookies. This leads to security risks in server programs.

With the exception of the cookie approach to maintaining state, there is
no guarantee that the necessary data will be saved when the client exits
unexpectedly. Thus, the robustness of the application is compromised.

Managing state on the server

This approach for maintaining state actually involves using both the client and
the server. Usually a small piece of information, either a user ID or a session
key is stored on the client-side. The server program uses this ID or key to look
up the state data in a database.

• Benefits of the server-side maintenance

Maintaining state on the server is more reliable and robust than the client-
side maintenance. As long as the client can provide an ID or a key, the
user’s session state can be restored, even between different browsing ses-
sions.

Server-side maintenance can result in thin clients. The less dependent a
Web database application is on the client, the less code needs to exist on
or be transmitted to the client.

Server-side maintenance also leads to better network efficiency, because
only small amounts of data need to be transmitted between the client and
the server.

• Shortcomings of the server-side maintenance

The main reason an application would not be developed using server-side
state maintenance is its complexity, because it requires the developer to
write extensive code. However, the benefits of implementing server-side
state management outweigh the additional work required.

Review question 7

• What is state and persistence management in Web database applications?

• What are the technical options available for managing state and persis-
tence?

Security Issues in Web Database Applications

Security risks exist in many areas of a Web database application. This is because
the very foundations of the Internet and Web – TCP/IP and HTTP – are
very weak with respect to securities. Without special software, all Internet
traffic travels in the open and anyone with a little bit skill can intercept data

39

transmission on the Internet. If no measures are taken, there will be many
security loopholes that can be explored by malicious users on the Internet.

In general, security issues in Web database applications include the following:

• Data transmission (communication) between the client and the server is
not accessible to anyone else except the sender and intended receiver (pri-
vacy).

• Data cannot be changed during transmission (integrity).

• The receiver can be sure that the data is from the authenticated sender
(authenticity).

• The sender can be sure the receiver is the genuinely intended one (non-
fabrication).

• The sender cannot deny he/she sent it (non-repudiation).

• The request from the client should not ask the server to perform illegal or
unauthorised actions.

• The data transmitted to the client machine from the server must not be
allowed to contain executables that will perform malicious actions.

At the present, there are a number of measures that can be taken to address
some of the above issues. These measures are not perfect in the sense that
they cannot cover every eventuality, but they should help get rid of some of
the loopholes. It must be stressed that security is the most important but least
understood aspect of Web database programming. More work still needs to be
done to enhance security.

Proxy servers

A proxy server is a system that resides between a Web browser and a Web
server. It intercepts all requests to the Web server to determine if it can fulfil
the requests itself. If not, it forwards the requests to the Web server.

Due to the fact that the proxy server is between browsers and the Web server,
it can be utilised to be a defence for the server.

Firewalls

Because a Web server is open for access by anyone on the Internet, it is normally
advised that the server should not be connected to the intranet (i.e., an organi-
sation’s internal network). This way, no one can have access to the intranet via
the Web server.

However, if a Web application has to use a database on the intranet, then the
firewall approach can be used to prevent unauthorised access.

40

A firewall is a system designed to prevent unauthorised access to or from a
private network (intranet). It can be implemented in either hardware, software,
or both. All data entering or leaving the intranet (connected to the Internet)
must pass through the firewall. They are checked by the firewall system and
anything that does not meet the specified security criteria is blocked.

A proxy server can act as a firewall because it intercepts all data in and out,
and can also hide the address of the server and intranet.

Digital signatures

A digital signature consists of two pieces of information: a string of bits that is
computed from the data (message) that is being signed along with the private
key of the requester for the signature.

The signature can be used to verify that the data is from a particular individual
or organisation. It has the following properties:

• Its authenticity is verifiable using a computation based on a corresponding
public key.

• If the private key is kept secret, the signature cannot be forged.

• It is unique for the data signed. The computation will not produce the
same result for two different messages.

• The signed data cannot be changed, otherwise the signature will no longer
verify the data as being authentic.

The digital signature technique is very useful for verifying authenticity and
maintaining integrity.

Digital certificates

A digital certificate is an attachment to a message used for verifying the sender’s
authenticity. Such a certificate is obtained from a Certificate Authority (CA),
which must be a trust-worthy organisation.

When a user wants to send a message, he/she can apply for a digital certificate
from the CA. The CA issues an encrypted certificate containing the applicant’s
public key and other identification information. The CA makes its own key
publicly available.

When the message is received, the recipient uses the CA’s public key to decode
the digital certificate attached to the message, verifies it as issued by the CA, and
then obtains the sender’s public key and identification information held within
the certificate. With this information, the recipient can send an encrypted reply.

41

Kerberos

Kerberos is a server of secured usernames and passwords. It provides one cen-
tralised security server for all data and resources on the network. Database
access, login, authorisation control, and other security measures are centralised
on trusted Kerberos servers. The main function is to identify and validate a
user.

Secure sockets layer (SSL) and secure HTTP (S-HTTP)

SSL is an encryption protocol developed by Netscape for transmitting private
documents over the Internet. It works by using a private key to encrypt data
that is to be transferred over the SSL connection. Netscape, Firefox, Chrome
and Microsoft IE support SSL.

Another protocol for transmitting data securely over the Internet is called Secure
HTTP, a modified version of the standard HTTP protocol. Whereas SSL creates
a secure connection between a client and a server, over which any amount of
data can be sent securely, S-HTTP is designed to transmit individual messages
securely.

In general, the SSL and S-HTTP protocols allow a browser and a server to
establish a secure link to transmit information. However, the authenticity of
the client (the browser) and the server must be verified. Thus, a key component
in the establishment of secure Web sessions using SSL or S-HTTP protocols
is the digital certificate. Without authentic and trustworthy certificates, the
protocols offer no security at all.

Java security

If Java is used to write the Web database application, then many security mea-
sures can be implemented within Java. Three Java components can be utilised
for security purposes:

• The class loader: It not only loads each required class and checks it is
in the correct format, but also ensures that the application/applet does
not violate system security by allocating a namespace. This technique can
effectively define security levels for each class and ensure that a class with
a lower security clearance can never be in place of a class with a higher
clearance.

• The bytecode verifier: Before the Java Virtual Machine (JVM) will al-
low an application/applet to execute, its code must be verified to ensure:
compiled code is correctly formatted; internal stacks will not overflow or
underflow; no illegal data conversions will occur; bytecode instructions are
correctly typed; and all class member accesses are valid.

42

• The security manager: An application-specific security manager can be
defined within a browser, and any applets downloaded by this browser are
subject to its (security manager’s) security policies. This can prevent a
client from being attacked by dangerous methods.

ActiveX security

For Java, security for the client machine is one of the most important design
factors. Java applet programming provides as many features as possible without
compromising the security of the client. In contrast, ActiveX’s security model
places the responsibility for the computer’s safety on the user (client). Before
a browser downloads an ActiveX control that has not been digitally signed or
has been certified by an unknown CA, it displays a dialog box warning the user
that this action may not be safe. It is up to the user to decide whether to abort
the downloading, or continue and accept a potential damaging consequence.

Review question 8

• What are the major security concerns in Web database applications?

• What are the measures that can be taken to address the security concerns?

Performance issues in Web database applications

Web database applications are very complex, more so than stand-alone or tra-
ditional client-server applications. They are a hybrid of technology, vendors,
programming languages, and development techniques.

Many factors work together in a Web database application and any one of
them can hamper the application’s performance. It is crucial to understand the
potential bottlenecks in the application as well as to know effective, well-tested
solutions to address the problems.

The following is a list of issues concerning performance:

• Network consistency: The availability and speed of network connec-
tions can significantly affect performance.

• Client and server resources: This is the same consideration as in the
traditional client-server applications. Memory and CPU are the scarce
resources.

• Database performance: It is concerned with the overhead for establish-
ing connections, database tuning, and SQL query optimisation.

• Content delivery: This is concerned with the content’s download time
and load time. The size of any content should be minimised to reduce
download time; and appropriate format should be chosen for a certain

43

document (mainly images and graphics) so that load time can be min-
imised.

• State maintenance: It should always minimise the amount of data trans-
ferred between client and server and minimise the amount of processing
necessary to rebuild the application state.

• Client-side processing: If some processing can be carried out on the
client-side, it should be done so. Transmitting data to the server for
processing that can be done on the client-side will degrade performance.

• Programming language: A thorough understanding of the tasks at
hand and techniques available can help choose the most suitable language
for implementing the application.

Discussion topics

In this chapter, we have studied various approaches for constructing the Web
database connectivity, including GUI-based development tools. Both Oracle
and Microsoft offer visual development tools. Discuss:

1. What are the pros and cons of using GUI-based tools?

2. Do you prefer programming using APIs or visual tools? Why?

44

Chapter 18. Temporal Databases

Table of contents

• Objectives
• Introduction

– Temporal databases: The complexities of time
– Concepts of time

∗ Continuous or discrete
∗ Granularity
∗ Time quanta
∗ Timelines, points, duration and intervals

– The important temporal work of Allen (1983)
– Unary intervals
– Relative and absolute times
– Temporal data behaviour

∗ Continuous temporal data
∗ Discrete temporal data
∗ Stepwise constant temporal data
∗ Period-based temporal data

• Temporal database concepts
– Some important concepts

∗ Valid time
∗ Transaction time
∗ Timestamp
∗ Calendar
∗ Time order

• Database representation and reasoning with time
– Snapshot databases
– Rollback databases
– Historical databases
– Temporal databases

• Incorporating time in Relational databases
– Recording changes to databases

∗ Archiving
∗ Time-slicing

– Tuple timestamping
– Attribute timestamping
– UNFOLD and COALESCE: Two useful temporal Relational opera-

tors
∗ UNFOLD
∗ COALESCE

– Further work and application
∗ Review question
∗ Discussion topic

• Additional content and activities

1

– Temporal database design
∗ Entity Relationship Time model

– The ERT-SQL language

Almost all database applications are concerned with the modelling and storage
of data that varies with time. It is not surprising therefore, that a great deal of
research and development, both in industry and in universities, has gone into
developing database systems that support the time-related or temporal aspects
of data processing. In this chapter we shall examine the major issues in the
provision of support for temporal data. We shall explore some of the most
important research that has been done in the area, and identify the influence of
this research on query languages.

Objectives

At the end of this chapter you should be able to:

• Define and use important temporal concepts, such as time point, time
interval, and time-interval operators such as before, after and overlaps.

• Explain the issues involved in modelling a number of time-varying features
of data, such as transaction time, valid time and time granularity.

• Understand the temporal data model at the conceptual level.

• Describe some of the extensions to conventional query languages that have
been proposed to support temporal query processing.

Introduction

Detailed concepts of temporal databases can be found in the book titled “Time
and Relational Theory (Temporal Databases in the Relational Model and SQL),
2nd Edition by C.J. Date, Hugh Darwen and Nikos Lorentzos”

Temporal databases: The complexities of time

A temporal database is generally understood as a database capable of supporting
storage and reasoning of time-based data. For example, medical applications
may be able to benefit from temporal database support — a record of a patient’s
medical history has little value unless the test results, e.g. the temperatures,
are associated to the times at which they are valid, since we may wish to do
reasoning about the periods in time in which the patient’s temperature changed.

Temporal databases store temporal data, i.e. data that is time dependent
(timevarying). Typical temporal database scenarios and applications include
time-dependent/time-varying economic data, such as:

2

• Share prices

• Exchange rates

• Interest rates

• Company profits

The desire to model such data means that we need to store not only the respec-
tive value but also an associated date or a time period for which the value is
valid. Typical queries expressed informally might include:

• Give me last month’s history of the Dollar-Pound Sterling exchange rate.

• Give me the share prices of the NYSE on October 17, 1996.

Many companies offer products whose prices vary over time. Daytime telephone
calls, for example, are usually more expensive than evening or weekend calls.
Travel agents, airlines or ferry companies distinguish between high and low
seasons. Sports centres offer squash or tennis courts at cheaper rate during the
day. Hence, prices are time dependent in these examples. They are typically
summarised in tables with prices associated with a time period.

As well as the user of a database recording when certain data values are valid,
we may wish to store (for backup, or analysis reasons) historical records of
changes made to the database. So each time a change to a database is made the
system may automatically store a transaction timestamp. Therefore a temporal
database may be storing two different pieces of time data for a tuple — the
user-defined period of time for which the data is valid (e.g. October to April
[winter season] rental of tennis courts are 1 US dollar per hour), and the system-
generated transaction timestamp for when the tuple (or part of a tuple) was
changed (e.g. 14:55 on 03/01/1999). A temporal database ability to store these
different kinds of data makes possible many different kinds of temporal-based
queries, as long as its query language and data model are sophisticated enough
to formally model and allow reasoning about temporal data. It is the possible
gains from such temporal querying facilities that has provided the motivation
for research and development into extending the Relational database model for
temporal data (and suggesting alternatives to the Relational model…).

Our everyday life is very often influenced by timetables for buses, trains, flights,
university lectures, laboratory access and even cinema, theatre or TV pro-
grammes. As one consequence, many people plan their daily activities by using
diaries, which themselves are a kind of timetable. Timetables or diaries can be
regarded as temporal relations in terms of a Relational temporal data model.
Medical diagnosis often draws conclusions from a patient’s history, i.e. from the
evolution of his/her illness. The latter is described by a series of values, such as
the body temperature, cholesterol concentration in the blood, blood pressure,
etc. As in the first example, each of these values is only valid during a certain
period of time (e.g. a certain day). Typically a doctor would retrieve a patient’s
values’ history, analyse trends and base diagnosis on such observations. Similar

3

examples can be found in many areas that rely on the observation of evolu-
tionary processes, such as environmental studies, economics and many natural
sciences.

Concepts of time

Continuous or discrete

From a philosophical point of view we might argue either that time passes
continuously, flowing as if a stream or river of water, or we can think of time
passing in discrete units of time, each with equal duration, as we think of time
when listening to the ticking of a clock. For the purposes of recording and
reasoning about time, many people prefer to work with a conceptual model of
time as being discrete and passing in small, measurable units; however, there
are some occasions and applications where a continuous model of time is most
appropriate.

Granularity

When we think about time as passing in discrete units, depending on the purpose
or application, different-sized units may be appropriate. So the age of volcanoes
may be measured in years, or decades, or hundreds of years. The age of motor
cars may be measured in years, or perhaps months for ‘young’ cars. The age
of babies may be measured in years, or months, or weeks, or days. The age of
bacteria in seconds or milliseconds. The size of the units of time used to refer to a
particular scenario is referred to as the granularity of the temporal units — small
temporal grains refer to short units of time (days, hours, seconds, milliseconds,
etc), and large temporal grains refer to longer units of time (months, years,
decades, etc).

Time quanta

For a particular situation we may wish to define the smallest unit of time which
can be recorded or reasoned about. One way to refer to the chosen, indivisible
unit of time is as ‘time quanta’. Sometimes the term ‘chronon’ or ‘time granule’
is used to refer to the indivisible units of time quanta for a situation or system.
In this chapter we shall use the term time quanta.

Timelines, points, duration and intervals

When attempting to represent and reason about time, four important concepts
are:

• Points: Formally a point in time has no duration; it simply refers to a
particular position in the timeline under discussion. We can talk of the
point in time at which some event begins or ends.

4

• Duration: A duration refers to a number of time quanta; for example, a
week, two months, three years and 10 seconds are all durations. A duration
refers to a particular magnitude (size) of a part of a timeline, but not the
direction (so whether we talk of a week ago or a week beginning in three
days’ time, we are still referring to a length of time of a week).

• Interval: An interval has a start time point and an end time point. Using
more formal notation, we can refer to an interval I(s, e) with start point
‘s’ and end point ‘e’, and for which all points referring to time from s
to e (inclusive) make up the interval. Note that there is an assumption
(constraint) that the timepoint ‘s’ does not occur after the timepoint ‘e’
(an interval of zero time quanta would have a start point and end point
that were equal).

• Timeline: Conceptually we can often imagine time as moving along a line
in one direction. When graphically representing time, it is usual to draw
a line (often with an arrow to show time direction), where events shown
towards the end of the timeline have occurred later than those shown
towards the beginning of the line. Often a graphical timeline is draw like
an axis on a graph (by convention, the X-axis represents time) and the
granularity of the time units is marked (and perhaps labelled) along the
X-axis.

You may find the following diagram useful in illustrating these four concepts:

Looking at the figure, there are two events, E1 and E2. We see that event E1
starts at the time point ‘d2’ and ends at time point ‘d7’, therefore event E1 is
an example of an interval. All that is written for event E2 is that it lasts four
days, so event E2 is a duration (although we might attempt to infer from the
X-axis that E2 appears to start at d4 and end at d7, but perhaps E2 is four days
measured back from d7). The X-axis is a labelled arrow ‘time’, and represents
a timeline. There are units labelled on the X-axis from ‘d1’ to ‘d8’, and a note
indicates that these units are time quanta representing one day each.

5

Since the time quanta are a day each for this model, we are not able to model
any time units of less that one day (so even if it looked like an event started
halfway between two units on the diagram, we could not meaningfully talk of
day 1 plus 12 hours or whatever). This does raise an issue when attempting to
convert from a model of one time granularity to anothe. For example, if all data
from the model above were to be added to a database where the time quanta
was in terms of hours, what hour of the day would ‘d3’ represent? Would it
be midnight when the day started, or midday, or 09:00 in the morning (the
start of a working day)? Such questions must be answered by any data analyst
if converting between different temporal models, which is one reason why it is
so important to choose an appropriate granularity of time quanta. It might
seem reasonable, just in case, to choose a very small time quanta, such as
seconds or milliseconds,but there may be significant memory implications for
such a choice (e.g. if the database system had to use twice as much memory to
record millisecond timestamps for each attribute of each tuple, rather than just
recording the day timestamp).

The important temporal work of Allen (1983)

Much of the recent work in the fields of time-based computing (both for
databases and other areas such as artificial intelligence) is based on the work of
J. F. Allen. A publication by Allen that is frequently cited in literature about
time-based reasoning is:

Maintaining Knowledge about Temporal Intervals, J. F. Allen, CACM (Com-
munications of the Association for Computing Machinery) Volume 16 number
11, November 1983.

Allen’s contribution to those wishing to represent and reason about time-based
information consisted of the formalisation of possible relationships between pairs
of intervals. Although the following, informal overview may seem obvious from
an intuitive perspective, Allen presented these concepts in a rigorous, formal
way which has been the basis for much temporal reasoning and computer system
design since.

Consider two events, E1 and E2. Each event has a starting point in time and an
ending point in time — therefore each event takes place as an interval in time.
The following are the possible relationships between two intervals (events):

• E1 starts and ends before E2 begins.

• E1 ends at the same point in time that E2 begins — the two events are
temporally contiguous. We can say that the end of E1 meets the beginning
of E2.

• E1 starts before E2 starts, but the end of E1 overlaps with the beginning
of E2. E2 ends after E1 has ended.

6

• E1 takes place entirely during the period that E2 exists, i.e. E1 starts after
E2 and E1 finishes before E2.

• E1 occurs after E2 has ended.

• Both E1 and E2 may start at the same time (likewise, both E1 and E2
might finish at the same time).

Each of these relationships can be formally defined as an operation between
intervallic events, and these operators are often referred to as ‘Allen’s operators’.
Each of the above is perhaps more easily understood in graphical representa-
tions.

• E1 BEORE E2 — E1 occurs before E2

• E1 MEETS E2 — The end of E1 meets the beginning of E2

• E1 OVERLAPS E2 — E1 overlaps with E2

7

• E1 DURING E2 — E1 takes place during E2 (E1 and E1 may start and finish
at the same time)

• E1 AFTER E2 — E1 occurs after E2 has ended

• E1 STARTS E2 — E1 starts at the same time that E2 starts (and E1 does
not end after E2)

8

• E1 FINISHES E2 — E1 finishes at the same time that E2 ends (and E1 does
not start before E2)

Unary intervals

For certain formal reasoning and temporal relational operators, the concept of
a unary interval is important. A unary interval has a duration of one time unit
(one time quantum). For example:

Interval_A(t4, t4)

The interval Interval_A has a start time of ‘t4’ and an end time of ‘t4’. Therefore
it starts at the beginning of the time quantum t4, and ends at the end of the
time quantum t4, and so has a duration of 1 time quantum. Other examples of
unary intervals include:

Interval_B(t1, t1) Interval_C(t9, t9) and so on.

Any interval with start time ‘s’ and end time ‘e’ can be ‘unfolded’ into a sequence
of unary intervals. For example, some Interval_D(t3, t7), which starts at t3
and ends at t7, can be thought of as being the same as the set of unary intervals:

9

(t3, t3) (t4, t4) (t5, t5) (t6, t6) (t7, t7)

We shall return to the use of the unary interval concept when relational temporal
operators are investigated.

Relative and absolute times

A reference to a duration or interval can be absolute or relative to some time
point or other interval. The position on the time axis of a period or of an instant
can be given as an absolute position, such as the calendric time (e.g. “Blood
pressure taken on 3November 1996”). This is a common approach adopted by
data models underlying temporal medical databases.

However, it also is common in medicine to reason with relative time references:
“Heartbeat measurement taken after a long walk”, “the day after tomorrow”,
etc. The relationship between times can be qualitative (before, after, etc) as
well as quantitative (three days before, 397 years after, etc.). Examples include:

• Mary’s salary was raised yesterday.

• It happened sometime last week.

• It happened within three days of Easter.

• The French revolution occurred 397 years after the discovery of America.

Temporal data behaviour

In general, the behaviour of temporal entities can be classified into one of four
basic categories, namely:

• Discrete

• Continuous

• Stepwise constant

• Period based

These can be depicted graphically as shown in the figures below. We shall
consider each category of temporal data individually.

Continuous temporal data

Continuous behaviour is observed where an attribute value is recorded con-
stantly over time such that its value may be constantly changing. Continuous
behaviour can often be found in monitoring systems recording continuous char-
acteristics - for example, a speedometer of a motorcar.

10

Discrete temporal data

Discrete data attributes are recorded at specific points in time but have no
definition at any other points in time. Discrete data is associated with individual
events such as “A complete check-up was on a particular date”.

Stepwise constant temporal data

Stepwise constant data consists of values that change at a point in time, then
remain constant until being changed again - for example, blood pressure mea-
surement.

11

Period-based temporal data

Period-based data models the behaviour of events that occur over some period
of time but, at the end of this period, become undefined. An example of period-
based data would be patient drug usage records, where a patient takes a drug
for a prescribed period of time and then stops taking it.

Exercises

Exercise 1 - Temporal terms and concepts

State whether each of the following is a point, duration or interval:

• 10 seconds

• 14.45 on 3/Feb/2007

• Three days

• From 1/3/99 to 5/1/99

Exercise 2 - Granularity

Which is the smaller level of temporal granularity: seconds or days?

Exercise 3 - Time quanta

What are time quanta? Are seconds or days examples of time quanta?

Exercise 4 - Interval operators

Consider the following scenario:

• Event E1 (s1, e1), where

1. the time E1 starts is t2, i.e. s1=t2

2. the time E1 ends is t7, i.e. e1=t7

• event E2 (s2, e2), where

1. the time E2 starts is t5=t4, i.e. s2=t7

2. the time E2 ends is t7, i.e. e2=t7

12

• event E2 starts at t4 and ends at t7

In terms of Allen’s operators, what can we say about the relationship(s) between
E1 and E2?

Draw a diagram showing the two events on the timeline t1, t2, … t8, to illustrate
the relationship between the intervals.

Exercise 5 - Relative and absolute time

Which of the following are absolute and which are relative times?

• 7th May 1991

• The day after tomorrow

• 14:13 on Monday 14th April 2010

• A week after last Tuesday

• 10 minutes after we finish work

Exercise 6 - Category of temporal data behaviour

What kind of temporal data behaviour does the following graph represent?

Temporal database concepts

A database might be informally defined as a collection of related data. This data
corresponds to some piece of the Universe of Discourse (UoD) — i.e. the data
we record represents a model of those parts of the real world (or an imagined
world) which we are interested in, and wish to reason about. An example of a
Universe of Discourse might be the patients, doctors, operating theatres, booked
operations and available drugs in a hospital. Another UoD might be a basketball
competition made up of each team, player, set of fixtures and results of games
played to date.

The figure below illustrates that at a particular point in time, the Universe of
Discourse is in a particular state, and we create a database at this point in time
recording details of the state of the UoD:

13

As time passes, the UoD is subject to events that change its state (i.e. events
that change one or more of the component objects that populate our UoD).
These changes are also reflected within the database, as shown in the next
figure - assuming, of course, that we maintain the equivalence of the UoD with
the database. So for example, a new patient arriving in the hospital means a
change in our UoD. We will wish to update our database (with new patient
details) to record and model the changes in our UoD. Therefore the state of the
UoD and the state of our database changes with events that occur over time.

14

To give another example, assume that the UoD, and thus the database, contains
information about employees and their salaries (see figure below). At time t-1
employee E1 has salary S1. At time t, the employee is given a salary increase
and thus, his salary becomes S2. Later, at time t+1, the employee actually
changes department and manager and his new salary becomes S3.

A temporal database is a database that deals with not only the ‘current’ state
(in this example, t+1) but also with all the previous states of the salary history.
To achieve that, we need to be able to model and reason about the time axis,
and also be able to model and reason about the evolution of the data over time
(usually referred to as the data or database history).

In order to deal with the time axis, the temporal database should have con-
structs to model the different notions of time (e.g. point, intervals, granularity

15

and calendar units) and reason about them through temporal operators such
as DURING and BEFORE. In the last two decades, the Relational data model
has become the most popular database model because of its simplicity and solid
mathematical foundation. However, the Relational data model originally pro-
posed does not address the temporal dimension of data. Since there is a need for
temporal data, many temporal extensions to Relational data models and query
languages have been proposed. The incorporation of the temporal dimension
has taken a number of different forms. One approach is the strategy of extend-
ing the schema of the relation to include one or more distinguished temporal
attributes (e.g. START TIME, END TIME) to represent the intervals of time
a tuple was ‘true’ for the database. This approach is called tuple timestamping.
Another approach, referred to as attribute timestamping, involves adding ad-
ditional attributes to the schema, with the domain of each attribute extended
from simple values to complex values to incorporate the temporal dimension.

Some important concepts

In this section we shall define some important concepts resulting from the pre-
vious discussions.

Valid time

The valid time of a fact is the time when the fact is true in the modelled reality.
A fact may have associated any number of instants and time intervals, with
single instants and intervals being important special cases. Valid times are
usually supplied by the user.

An example would be that Fred Bloggs was employed as marketing director at
Matrix Incorporated from 1/3/1999 to 5/6/1999 — i.e. the valid time interval
for a tuple recording that Fred Bloggs was marketing director is from 1/3/1999
to 5/6/1999.

The valid time has nothing to do with the time that data has been added to the
database, so for example, we may have recorded this data and valid time about
Fred Bloggs on 28/2/1999.

The valid time for data can be changed — e.g. perhaps Fred Bloggs comes out
of retirement, and so a second interval from 12/10/2000 to 1/6/2001 is added
to the valid times for his employment as marketing director.

Transaction time

A database fact is stored in a database at some point in time. A transaction time
of a data fact is the time at which the information about a modelled object or
event is stored in the database. The transaction time is automatically recorded
by the DBMS and cannot be changed. If a fact is updated to a database at

16

10:15 on 4/2/1999, this transaction time never changes. If the data is changed
at a later time, then a second transaction time is generated for the change, and
so on. In this way a history of database changes based on transaction time
timestamps is built up.

Timestamp

A timestamp is a time value associated with some object, e.g. an attribute value
or a tuple. The concept may be specialised to valid timestamp, transaction
timestamp or, for a particular temporal data model, some other kind of times-
tamp.

Calendar

A calendar provides a human interpretation of time. As such, calendars ascribe
meaning to temporal values where the particular meaning or interpretation is
relevant to the user — in particular, the mapping between human-meaningful
time values and underlying timeline. Calendars are most often cyclic, allowing
human-meaningful time values to be expressed succinctly. For example, dates
in the common Gregorian calendar may be expressed in the form <day, month,
year> (for the UK) or <month, day, year> (for the US), where each of the fields
‘day’ and ‘month’ cycle as time passes (although year will continue to increase
as time passes).

Time order

Different properties can be associated with a time axis composed from instants.
Time is linear when the set of time points is completely ordered, also branching
for the tasks of diagnosis, projection or forecasting (such as prediction of a
medical evolution over time). Circular time describes recurrent events, such as
“taking regular insulin every morning”.

Review question 1

• What are the differences between valid time and transaction time?

• What are the differences between an absolute time and relative time? Give
examples.

• What are the differences between a time period and time interval? Give
examples.

• What are the differences between a time point and time period?

17

Database representation and reasoning with time

Four types of databases can be identified, according to the ability of a database
to support valid time and/or transaction time, and the extent to which the
database can be updated with regard to time.

Snapshot databases

A snapshot database can support either valid time or transaction time, but not
both. It contains a ‘snapshot’ of the state of the database at a point in time.
The term ‘snapshot’ is used to refer to the computational state of a database at
a particular point in time.

If the data stored in the database represents a correct model of the world at
this current point in time, then the database state represents transaction time
— i.e. the database contents are the representation of the world for the current
timestamp of the DBMS.

If the data stored in the database is valid or true at this current point in time,
then the database state represents valid time.

Results from database operations take effect from commit time and past states
are forgotten (overwritten). Snapshot databases are what one would usually
think of as a database (with no recording of changes or past data values).

Rollback databases

A rollback database has a sequence of states that are indexed by transaction
time, i.e. the time the information was stored in the database. A rollback
database preserves the past states of the database but not those of the real
world. Therefore, it cannot correct errors in past information, nor represent
that some facts will be valid for some future time.

Each time a change is made to a database, the before and after states are
recorded for the transaction timestamp at the time the change takes place — so
that at a later date, the database can be returned to a previous state.

Historical databases

These support only valid time. As defined earlier,valid time of a fact is the time
when the fact is true in the modelled reality. The semantics of valid time are
closely related to reality and, therefore, historical databases can maintain the
history of the modelled Universe of Discourse and represent current knowledge
about the past. However, historical databases cannot view the database as it
was at some moment in the past.

18

In other words, a historical database can record that some fact F was valid from
1/1/1996 to 4/5/1998, but it is not recorded when these valid times were added
to the database, so it is not possible to state that on 1/1/1997 it was recorded
that fact F was true — perhaps we have retrospectively recorded when fact F
was true at some time after 1/1/1997. Thus it is possible to reason about what
we think was true for a given point of time, but not possible to answer questions
about when we knew the facts were true, since no changes to the database have
been recorded.

A historical database could be thought of as a snapshot of our beliefs about
the past — at this point in time, we believe fact F was valid from 1/1/1996 to
4/5/1998 and that is all we can say.

Temporal databases

These represent both transaction time and valid time and thus are both histori-
cal and rollback. So temporal databases record data about valid time (e.g. that
we believe fact F is valid from 1/1/1996 to 4/5/1998) and the transaction time
when such data was entered into the database (e.g. that we added this belief
on 4/6/1997). This means that we can now rollback our temporal database to
find out what our valid time beliefs were for any given past transaction time
(e.g. what did we believe about fact F on 2/3/1997?).

Temporal databases allows retroactive update — i.e. coming into effect after
the time to which the data was referenced. Temporal databases also support
proactive update — i.e. coming into effect before the time to which the data was
referenced. Thus, in a temporal database, we can represent explicitly a scenario
such as the following:

• On January 17, 1997 (transaction time), the physician entered in the pa-
tient’s record the fact that on January 12, 1997 (valid time) the patient
had an allergic reaction to a sulfa-type drug, and that the physician be-
lieved that the patient would take a non-sulfa type drug from January
20 to February 20. If on February 1st the physician decides the patient
no longer needs the drug, the database will be amended to show that the
patient only took the non-sulfa drug from January 20th to February 1st.

Review question 2

• What are the differences between relative and absolute times?

• What are the differences between a snapshot database and a historical
database?

• What are the differences between a snapshot database and a temporal
database?

19

Incorporating time in Relational databases

In this final section, we briefly look at ways in which time data may be recorded
and queried using extensions to the Relational model. It is not necessary to
understand the fine details of temporal Relational query statements, but you
should understand the different kinds of timestamping approaches, and the con-
cepts around the two suggested temporal Relational operators, COALESCE and
UNFOLD.

Recording changes to databases

Let us now examine how the different types of temporal databases may be rep-
resented in the Relational model. A conventional relation can be visualised
as a two-dimensional structure of tuples and attributes. Adding time as a
third dimension to a conventional relation will change the relation into a three-
dimensional structure. There have been many attempts in the past to find a
suitable design structure that would be able to cope with handling the extra
time dimension. We will describe these attempts in general, pointing out their
successes and failures.

Archiving

One of the earliest methods of maintaining time-based data for a database was
to backup (archive) all the data stored in the database at regular intervals;
i.e. the entire database was copied, with a timestamp, weekly or daily. However,
information between backups is lost and retrieval of achieved information is slow
and clumsy, since an entire version of the database needs to be loaded/searched.

Time-slicing

The time-slicing method works if the database is stored as tables, such as in the
Relational database model. When a change to the database occurs, at least one
attribute of at least one tuple (record) from a particular table is changed. The
time-slicing approach simply stores the entire table prior to the event and gives
it a timestamp. Then a duplicate but updated copy is created and becomes
part of the ‘live’ database state. Time-slicing is more efficient and easier to
implement than archiving, since only those tables which are changed are copied
with a timestamp. However, there still a lot of data redundancy in the time-
slicing approach. This data redundancy is a result of duplicating a whole table
when, for example, only one attribute value of one tuple was changed. With
time-slicing, it is not possible to know the lifespan of a particular database state.

20

Tuple timestamping

Tuple timestamping means that each relation is augmented with two time at-
tributes representing a time interval, as illustrated in the figure below (the two
attributes are the time points a tuple was ‘live’ for the database, i.e. starting
time point and ending time point).

The entire table does not need to be duplicated; new tuples are simply added
to the existing table when an event occurs. These new tuples are appended at
the end of the table.

Examples:

Example with data:

21

Attribute timestamping

Attribute timestamping is implemented by attribute values consisting of two
components, a timestamp and the data value. Some approaches to attribute
timestamping use time intervals instead of timestamps, which express lifespan
better than other constructs. Using time intervals can avoid the main problem
of tuple timestamping, which breaks tuples into unmatched versions within or
across tables. Retrieval is fast for single attributes, but poor for complete tuples.

UNFOLD and COALESCE: Two useful temporal Relational operators

The temporal Relational operators UNFOLD and COALESCE are important
core concepts in most suggested extensions to the Relational model for temporal
databases. The UNFOLD operator makes use of the concept of unary intervals
introduced earlier in the chapter, and the COALECSE operator is the logical
opposite of UNFOLD. We shall investigate each below.

UNFOLD

The temporal Relational operator UNFOLD works on a set of tuples with valid
or transaction time intervals (i.e. start and end time attributes) and expands
the relation so that the data has a tuple for each unary interval appearing in any
of the intervals for the data. This is probably best understood with an example.
Consider the following temporal relation, NIGHTSHIFT, recording employees
who are security guards for particular factory sites for particular dates (we will
use valid dates in this example):

22

We can see intuitively from the table that employee #0027 has been on duty at
site S03 for 2, 3, 4, 5 and 8, 9 March 1999. The UNFOLD operator makes this
formal and explicit by replacing the tuples with intervals greater than one time
quantum with multiple, unary intervals as follows:

The usefulness of such an operator means that once a table has been UN-
FOLDED it becomes a simple query to find out whether a tuple was valid
for any given time quantum.

COALESCE

The COALESCE temporal Relational operator is the logical opposite of UN-
FOLD in that it attempts to reduce the number of tuples to the minimum,
i.e. wherever a sequence of intervals can be summarised in a single interval, this
is done. Consider the following set of tuples for our NIGHTSHIFT relation:

23

We might assume that employee #0027 came in for extras days on 4/3/99 to
cover a colleague’s sick leave; likewise for employee #0102 on 4/3/99.

We can see intuitively that employee #0027 was working from 2/3/99 until
4/3/99, and from 8/3/99 until 11/3/99. The COALESCE temporal Relational
operator formalises this concept of using the minimum number of tuples to
represent the intervals when data is valid. The result of the COALESCE query
on the relation is as follows:

Result of query: NIGHTSHIFT COALESCE StartVDate, FinishVDate

You may wish to refer to the recommended reading for this chapter to investigate
further the details of these two temporal Relational operators.

Further work and application

Review question

Consider the following statements spoken in 2015.

“Two days ago, I was seven years old,” said a little girl. “Next year, I’ll be 10!”

Can this be true? If so, what was the date the little girl was born, and what
was the date when she was speaking?

Discussion topic

Discuss how time instants and time periods can be use to model time-oriented
medical data.

24

Additional content and activities

Temporal database design

Amongst many existing data models, we have chosen the Entity Relationship
Time (ERT) model for its simplicity and the support of the SQL language.

Entity Relationship Time model

The Entity Relationship Time model (ERT) is an extended entity-relationship
type model that additionally accommodates ‘complex objects’ and ‘time’. The
ERT model consists of the following concepts:

• Entity: Anything, concrete or abstract, uniquely identifiable and being
of interest during a certain time period.

• Entity class: The collection of all the entities to which a specific defini-
tion and common properties apply at a specific time period.

• Relationship: Any permanent or temporary association between two
entities or between an entity and a value.

• Relationship class: The collection of all the relationships to which a
specific definition applies at a specific time period.

• Value: An object perceived individually, which is only of interest when
it is associated with an entity. That is, values cannot exist on their own.

• Value class: The proposition establishing a domain of values.

• Time period: A pair of time points expressed at the same abstraction
level.

• Time period class: A collection of time periods.

• Complex object: A complex value or a complex entity. A complex entity
is an abstraction (aggregation or grouping) of entities and relationships.
A complex value is an abstraction (aggregation or grouping) of simple
values.

• Complex object class: A collection of complex objects. That is, it can
be a complex entity or a complex value class.

The time structure denotes the granularity of the timestamp. Various types of
granularity are provided including: second, minute, hour, day, month and year.
The default granularity type is the second. Obviously, if the user specifies a
granularity type for a timestamped ERT object, this granularity type supports
all the super types of it. For example, if the day granularity type is specified,
the actual timestamp values will have a year, a month and a day reference.
Furthermore, the time structure can be user-defined, e.g. a granularity of a
week may be necessary.

25

Besides the temporal dimension, ERT differs from the entity-relationship model
in that it regards any association between objects as the unified form of a re-
lationship, thus avoiding the unnecessary distinction between attributes and
relationships. A relationship class denotes a set of associations between two
entity classes or between an entity class and a value class, and in that, all re-
lationships are binary and each relationship has its inverse. Additionally, for
every relationship class, apart from the objects participating, the relationship
involvements of the objects and the cardinality constraints should be specified.

The relationship involvements specify the roles of the object in the specified rela-
tionship e.g. Employee works_for Department, Department employs Employee.
Furthermore, for each relationship involvement, a user-supplied constraint rule
must be defined which restricts the number of times an entity or a value can
participate in this involvement. This constraint is called a cardinality constraint
and it is applied to the instances of the relationship by restricting its popula-
tion. As an example, consider the case where the constraint for relationship
(Employee, works_for, Department) is 1:N. This is interpreted as: one Em-
ployee can be associated to at least one instance of Department, while there is
no upper limit to the number of Departments an Employee is associated with.

Another additional feature of the ERT model is the concept of complex object
(entity or value class). The basic motivation for the inclusion of the complex
object class in the external formalism, is to abstract away detail, which in several
cases is not of interest. In addition, no distinction is made between aggregation
and grouping, but rather a general composition mechanism is considered which
involves relationships/attributes. For the modelling of complex objects, a special
type of relationship class is provided, named IsPartOf.

An entity or relationship class can be derived. This implies that its instances
are not stored by default, but for each such derivable component, there is a
corresponding derivation rule which gives the instances of this class at any time.
Derived schema components are one of the fundamental mechanisms in semantic
models for data abstraction and encapsulation.

The graphical representation of ERT constructs is depicted below.

The construct of timestamp is modelled as a pair (a,b), where a denotes the
temporal semantic category (TSC) while b denotes the time structure. Three
different temporal semantic categories have been identified, namely:

• Decomposable

• Nondecomposable

• time points

The ERT notation for the three concepts is TPI for the decomposable time
periods, TI for the nondecomposable time interval and TP for the time point.
The time structure denotes the granularity of the timestamp.

26

An example ERT schema is depicted in the figure above. Several entity classes
can be found in the diagram, namely: Employee, Manager, Secretary, Depart-
ment and Car. These are represented using a rectangle with the addition of a
‘time box’, which shows that the entity is time varying. Complex entity classes
are represented using double rectangles, e.g. Car, while for derived entity class
the rectangle is dashed, e.g. Best_Department. For the entity classes partici-
pating in a hierarchy, an arrow is used for specifying the parent entity class.

Relationship classes are represented using a small filled rectangle and can be
time varying (with the addition of ‘T’) or not. In addition, for every relationship
class, relationship involvements and cardinality constraints are specified.

Value classes e.g. Name, Address or Dept_ID, are represented with rectangles
which have a small black triangle at the bottom right corner. Complex value
classes e.g. Address are represented using double rectangles.

Every complex object can be further analysed into its components. The notation
used is the same as in the top-level schema, adding the special type relationship
IsPartOf. The complex entity class Car is illustrated in the first figure below,
while the complex value class Address is illustrated in the second figure below.

27

An example of a derived entity class is illustrated in the figure below, and
population of entity class Employee and entity class Department are shown in
the two tables below that.

28

The ERT-SQL language

In this section, we describe the temporal query language ERT-SQL primarily
used for manipulating an ERT-based database. The ERT-SQL is based on the
standard SQL2 and on the valid time SQL (VT-SQL) language.

The ERT-SQL statements are divided into three language groups:

• Data Definition Language (DDL): These statements are used to de-
fine the ERT schema, by specifying one by one all ERT components (for
example, CREATE ENTITY, CREATE RELATIONSHIP).

• Data Manipulation Language (DML): DML statements are used to
query or update data of an ERT database (for example, SELECT, IN-
SERT).

• Schema Manipulation Language (SML): These statements are used
to alter the ERT schema (for example DROP ENTITY, ALTER EN-
TITY).

Full description of ERT-SQL is beyond the scope of this chapter. Thus, in the

29

rest of this section, the capabilities of ERT-SQL are illustrated with a number
of examples.

The CREATE statement has the structure and facilities similar to that of the
standard SQL, but it is extended in order to be able to capture the temporal
and structural semantics of the ERT model.

“Create entity employee class, employee and also relationship class (employee,
department).”

CREATE ENTITY Employee (TPI,DAY)

(VALUE,Name,CHAR(20),has,1,1,of,1,1)

(VALUE,Salary,INTEGER,has,1,N,of,1,N(TPI,DAY))

(COMPLEX VALUE,Address,has,1,1,of,1,N(TPI,DAY))

CREATE RELATIONSHIP (Employee,Department,works_for,1,1,employs,1,N(TI,MONTH))

The SELECT statement also has the structure and facilities similar to that of
the standard, with temporal capability.

“Give the periods during which the employee ‘Ali’ had been working for the
‘Toys’ department.”

SELECT [Employee, Department, works_for].TIMESTAMP

FROM Employee, Department

WHERE Dept_Name = ‘Toys’ AND Name=‘Ali’

The INSERT statement is used to add instances both to entity and to relation-
ship classes.

“Insert the ‘Toys’ department with existence period from the first day of 1994
and Profit £10000.”

INSERT INTO Department

VALUES

Dept_ID = ‘D151294’

Dept_Name = ‘Toys’ ‘[1/1/1994,)’

Profit = 10000

TIMESTAMP = ‘[1/1/1994,)’

“Insert the information that the employee with name ‘Ali’ has been working for
the ‘Toys’ department from 5/4/1994 to 1/5/1996.”

INSERT INTO RELATIONSHIP (Employee, Department, works_for)

TIMESTAMP = ‘[5/4/1994, 1/5/1996)’

WHERE (Name = (‘Ali’)) AND (Dept_Name = ‘Toys’)

30

The DELETE statement is used to delete particular instances from an entity
class or from a relationship class.

“Delete the information that the employee ‘Ali’ had worked for the ‘Toys’ de-
partment for the period [1/1/1990,1/2/1990).”

DELETE FROM RELATIONSHIP (Employee,Department,works_for)

WHERE (TIMESTAMP = ‘[1/1/1990, 1/2/1990)’) AND (Name = ‘Ali’) AND
(Dept_Name = ‘Toys’)

The UPDATE statement is used to alter the contents of an instance either of
an entity class or of a relationship class.

“The department ‘Toys’ had this name for the period ‘[1/1/1970,1/1/1987)’ and
not for the ‘[1/1/1960,1/1/1990)’. Enter the correct period.”

UPDATE RELATIONSHIP(Department, Dept_Name, has)

SET TIMESTAMP = ‘[1/1/1970,1/1/1987)’

WHERE(TIMESTAMP=‘[1/1/1960,1/1/1990)’) AND (Dept_Name=‘Toys’)

The DROP statement is used to remove entity classes (simple, complex or de-
rived) or relationship classes from an ERT schema.

“Remove the Department entity class.”

DROP ENTITY Department

“Remove the relationship class between entities Employee and Car with role
name ‘owns’.”

DROP RELATIONSHIP (Employee, Car, owns)

The ALTER statement is used to add and remove value classes or to add a new
component to a complex object.

“Add to the entity Employee, value class ‘Bank_Account’.”

ALTER ENTITY Employee

ADD (VALUE,Bank_Account,INTEGER,has,1,1,of,1,N)

“Alter timestamped relationship between Employee and Department. Set tem-
poral semantic category to TPI and granularity to DAY.”

ALTER RELATIONSHIP

(Employee, Department, works_for)

TIMESTAMP (TPI,DAY)

Additional review questions

1. Using the employee database example in the Extend section, express the
following query in ERT-SQL language:

31

• “Insert the information that the employee with name ‘Ali’ has been work-
ing for the ‘Toys’ department from 5/4/1994 to 1/5/1996.”

• “Alter timestamped relationship between Employee and Department. Set
temporal semantic category to TPI and granularity to DAY.”

2. What are the three language groups of ERT-SQL?

32

Chapter 19. Data Warehousing and Data Mining

Table of contents

• Objectives
• Context
• General introduction to data warehousing

– What is a data warehouse?
– Operational systems vs. data warehousing systems

∗ Operational systems
∗ Data warehousing systems

– Differences between operational and data warehousing systems
– Benefits of data warehousing systems

• Data warehouse architecture
– Overall architecture
– The data warehouse
– Data transformation
– Metadata
– Access tools

∗ Query and reporting tools
∗ Application development tools
∗ Executive information systems (EIS) tools
∗ OLAP
∗ Data mining tools

– Data visualisation
– Data marts
– Information delivery system

• Data warehouse blueprint
– Data architecture

∗ Volumetrics
∗ Transformation
∗ Data cleansing
∗ Data architecture requirements

– Application architecture
∗ Requirements of tools

– Technology architecture
• Star schema design

– Entities within a data warehouse
∗ Measure entities
∗ Dimension entities
∗ Category detail entities

– Translating information into a star schema
• Data extraction and cleansing

– Extraction specifications
– Loading data
– Multiple passes of data

1

– Staging area
– Checkpoint restart logic
– Data loading

• Data warehousing and data mining
• General introduction to data mining

– Data mining concepts
– Benefits of data mining

• Comparing data mining with other techniques
– Query tools vs. data mining tools
– OLAP tools vs. data mining tools
– Website analysis tools vs. data mining tools
– Data mining tasks
– Techniques for data mining
– Data mining directions and trends

• Data mining process
– The process overview
– The process in detail

∗ Business objectives determination
∗ Data preparation

· Data selection
· Data pre-processing
· Data transformation

∗ Data mining
∗ Analysis of results
∗ Assimilation of knowledge

• Data mining algorithms
– From application to algorithm
– Popular data mining techniques

∗ Decision trees
∗ Neural networks
∗ Supervised learning

· Preparing data
∗ Unsupervised learning - self-organising map (SOM)

• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Distinguish a data warehouse from an operational database system, and
appreciate the need for developing a data warehouse for large corporations.

• Describe the problems and processes involved in the development of a data
warehouse.

• Explain the process of data mining and its importance.

2

• Understand different data mining techniques.

Context

Rapid developments in information technology have resulted in the construction
of many business application systems in numerous areas. Within these systems,
databases often play an essential role. Data has become a critical resource in
many organisations, and therefore, efficient access to the data, sharing the data,
extracting information from the data, and making use of the information stored,
has become an urgent need. As a result, there have been many efforts on firstly
integrating the various data sources (e.g. databases) scattered across different
sites to build a corporate data warehouse, and then extracting information from
the warehouse in the form of patterns and trends.

A data warehouse is very much like a database system, but there are distinctions
between these two types of systems. A data warehouse brings together the
essential data from the underlying heterogeneous databases, so that a user only
needs to make queries to the warehouse instead of accessing individual databases.
The co-operation of several processing modules to process a complex query is
hidden from the user.

Essentially, a data warehouse is built to provide decision support functions for
an enterprise or an organisation. For example, while the individual data sources
may have the raw data, the data warehouse will have correlated data, summary
reports, and aggregate functions applied to the raw data. Thus, the warehouse
is able to provide useful information that cannot be obtained from any indi-
vidual databases. The differences between the data warehousing system and
operational databases are discussed later in the chapter.

We will also see what a data warehouse looks like – its architecture and other
design issues will be studied. Important issues include the role of metadata as
well as various access tools. Data warehouse development issues are discussed
with an emphasis on data transformation and data cleansing. Star schema, a
popular data modelling approach, is introduced. A brief analysis of the relation-
ships between database, data warehouse and data mining leads us to the second
part of this chapter - data mining.

Data mining is a process of extracting information and patterns, which are pre-
viously unknown, from large quantities of data using various techniques ranging
from machine learning to statistical methods. Data could have been stored in
files, Relational or OO databases, or data warehouses. In this chapter, we will
introduce basic data mining concepts and describe the data mining process with
an emphasis on data preparation. We will also study a number of data mining
techniques, including decision trees and neural networks.

We will also study the basic concepts, principles and theories of data ware-
housing and data mining techniques, followed by detailed discussions. Both

3

theoretical and practical issues are covered. As this is a relatively new and
popular topic in databases, you will be expected to do some extensive searching,
reading and discussion during the process of studying this chapter.

General introduction to data warehousing

In parallel with this chapter, you should read Chapter 31, Chapter 32 and Chap-
ter 34 of Thomas Connolly and Carolyn Begg, “Database Systems A Practical
Approach to Design, Implementation, and Management”, (5th edn.).

What is a data warehouse?

A data warehouse is an environment, not a product. The motivation for build-
ing a data warehouse is that corporate data is often scattered across different
databases and possibly in different formats. In order to obtain a complete piece
of information, it is necessary to access these heterogeneous databases, obtain
bits and pieces of partial information from each of them, and then put together
the bits and pieces to produce an overall picture. Obviously, this approach
(without a data warehouse) is cumbersome, inefficient, ineffective, error-prone,
and usually involves huge efforts of system analysts. All these difficulties deter
the effective use of complex corporate data, which usually represents a valuable
resource of an organisation.

In order to overcome these problems, it is considered necessary to have an envi-
ronment that can bring together the essential data from the underlying hetero-
geneous databases. In addition, the environment should also provide facilities
for users to carry out queries on all the data without worrying where it actu-
ally resides. Such an environment is called a data warehouse. All queries are
issued to the data warehouse as if it is a single database, and the warehouse
management system will handle the evaluation of the queries.

Different techniques are used in data warehouses, all aimed at effective inte-
gration of operational databases into an environment that enables strategic use
of data. These techniques include Relational and multidimensional database
management systems, client-server architecture, metadata modelling and repos-
itories, graphical user interfaces, and much more.

A data warehouse system has the following characteristics:

• It provides a centralised utility of corporate data or information assets.

• It is contained in a well-managed environment.

• It has consistent and repeatable processes defined for loading operational
data.

• It is built on an open and scalable architecture that will handle future
expansion of data.

4

• It provides tools that allow its users to effectively process the data into
information without a high degree of technical support.

A data warehouse is conceptually similar to a traditional centralised warehouse
of products within the manufacturing industry. For example, a manufacturing
company may have a number of plants and a centralised warehouse. Different
plants use different raw materials and manufacturing processes to manufacture
goods. The finished products from the plants will then be transferred to and
stored in the warehouse. Any queries and deliveries will only be made to and
from the warehouse rather than the individual plants.

Using the above analogy, we can say that a data warehouse is a centralised place
to store data (i.e. the finished products) generated from different operational
systems (i.e. plants). For a big corporation, for example, there are normally
a number of different departments/divisions, each of which may have its own
operational system (e.g. database). These operational systems generate data day
in and day out, and the output from these individual systems can be transferred
to the data warehouse for further use. Such a transfer, however, is not just a
simple process of moving data from one place to another. It is a process involving
data transformation and possibly other operations as well. The purpose is
to ensure that heterogeneous data will conform to the same specification and
requirement of the data warehouse.

Building data warehouses has become a rapidly expanding requirement for most
information technology departments. The reason for growth in this area stems
from many places:

• With regard to data, most companies now have access to more than 20
years of data on managing the operational aspects of their business.

• With regard to user tools, the technology of user computing has reached
a point where corporations can now effectively allow the users to navi-
gate corporation databases without causing a heavy burden to technical
support.

• With regard to corporate management, executives are realising that the
only way to sustain and gain an advantage in today’s economy is to better
leverage information.

Operational systems vs. data warehousing systems

Before we proceed to detailed discussions of data warehousing systems, it is
beneficial to note some of the major differences between operational and data
warehousing systems.

Operational systems

5

Operational systems are those that assist a company or an organisation in its
day-to-day business to respond to events or transactions. As a result, oper-
ational system applications and their data are highly structured around the
events they manage. These systems provide an immediate focus on business
functions and typically run in an online transaction processing (OLTP) comput-
ing environment. The databases associated with these applications are required
to support a large number of transactions on a daily basis. Typically, opera-
tional databases are required to work as fast as possible. Strategies for increasing
performance include keeping these operational data stores small, focusing the
database on a specific business area or application, and eliminating database
overhead in areas such as indexes.

Data warehousing systems

Operational system applications and their data are highly structured around
the events they manage. Data warehouse systems are organised around the
trends or patterns in those events. Operational systems manage events and
transactions in a similar fashion to manual systems utilised by clerks within
a business. These systems are developed to deal with individual transactions
according to the established business rules. Data warehouse systems focus on
business needs and requirements that are established by managers, who need
to reflect on events and develop ideas for changing the business rules to make
these events more effective.

Operational systems and data warehouses provide separate data stores. A
data warehouse’s data store is designed to support queries and applications for
decision-making. The separation of a data warehouse and operational systems
serves multiple purposes:

• It minimises the impact of reporting and complex query processing on
operational systems.

• It preserves operational data for reuse after that data has been purged
from the operational systems.

• It manages the data based on time, allowing the user to look back and see
how the company looked in the past versus the present.

• It provides a data store that can be modified to conform to the way the
users view the data.

• It unifies the data within a common business definition, offering one ver-
sion of reality.

A data warehouse assists a company in analysing its business over time. Users
of data warehouse systems can analyse data to spot trends, determine problems
and compare business techniques in a historical context. The processing that
these systems support include complex queries, ad hoc reporting and static re-
porting (such as the standard monthly reports that are distributed to managers).

6

The data that is queried tends to be of historical significance and provides its
users with a time-based context of business processes.

Differences between operational and data warehousing systems

While a company can better manage its primary business with operational sys-
tems through techniques that focus on cost reduction, data warehouse systems
allow a company to identify opportunities for increasing revenues, and therefore,
for growing the business. From a business point of view, this is the primary way
to differentiate these two mission-critical systems. However, there are many
other key differences between these two types of systems.

• Size and content: The goals and objectives of a data warehouse differ
greatly from an operational environment. While the goal of an operational
database is to stay small, a data warehouse is expected to grow large – to
contain a good history of the business. The information required to assist
us in better understanding our business can grow quite voluminous over
time, and we do not want to lose this data.

• Performance: In an operational environment, speed is of the essence.
However, in a data warehouse, some requests – ‘meaning-of-life’ queries
– can take hours to fulfil. This may be acceptable in a data warehouse
environment, because the true goal is to provide better information, or
business intelligence. For these types of queries, users are typically given
a personalised extract of the requested data so they can further analyse
and query the information package provided by the data warehouse.

• Content focus: Operational systems tend to focus on small work areas,
not the entire enterprise; a data warehouse, on the other hand, focuses on
cross-functional subject areas. For example, a data warehouse could help
a business understand who its top 20 at-risk customers are – those who are
about to drop their services – and what type of promotions will assist in not
losing these customers. To fulfil this query request, the data warehouse
needs data from the customer service application, the sales application,
the order management application, the credit application and the quality
system.

• Tools: Operational systems are typically structured, offering only a few
ways to enter or access the data that they manage, and lack a large amount
of tools accessibility for users. A data warehouse is the land of user tools.
Various tools are available to support the types of data requests discussed
earlier. These tools provide many features that transform and present the
data from a data warehouse as business intelligence. These features offer
a high flexibility over the standard reporting tools that are offered within
an operational systems environment.

7

Benefits of data warehousing systems

Driven by the need to gain competitive advantage in the marketplace, organi-
sations are now seeking to convert their operational data into useful business
intelligence – in essence fulfilling user information requirements. The user’s
questioning process is not as simple as one question and the resultant answer.
Typically, the answer to one question leads to one or more additional questions.
The data warehousing systems of today require support for dynamic iterative
analysis – delivering answers in a rapid fashion. Data warehouse systems, often
characterised by query processing, can assist in the following areas:

• Consistent and quality data: For example, a hospital system had a
severe data quality problem within its operational system that captured
information about people serviced. The hospital needed to log all people
who came through its door regardless of the data that was provided. This
meant that someone who checked in with a gunshot wound and told the
staff his name was Bob Jones, and who subsequently lost consciousness,
would be logged into the system identified as Bob Jones. This posed a huge
data quality problem, because Bob Jones could have been Robert Jones,
Bobby Jones or James Robert Jones. There was no way of distinguishing
who this person was. You may be saying to yourself, big deal! But if you
look at what a hospital must do to assist a patient with the best care, this is
a problem. What if Bob Jones were allergic to some medication required to
treat the gunshot wound? From a business sense, who was going to pay for
Bob Jones’ bills? From a moral sense, who should be contacted regarding
Bob Jones’ ultimate outcome? All of these directives had driven this
institution to a proper conclusion: They needed a data warehouse. This
information base, which they called a clinical repository, would contain
quality data on the people involved with the institution – that is, a master
people database. This data source could then assist the staff in analysing
data as well as improving the data capture, or operational system, in
improving the quality of data entry. Now when Bob Jones checks in, they
are prompted with all of the patients called Bob Jones who have been
treated. The person entering the data is presented with a list of valid
Bob Joneses and several questions that allow the staff to better match the
person to someone who was previously treated by the hospital.

• Cost reduction: Monthly reports produced by an operational system
could be expensive to store and distribute. In addition, very little content
in the reports is typically universally useful, and because the data takes
so long to produce and distribute, it’s out of sync with the users’ require-
ments. A data warehouse implementation can solve this problem. We
can index the paper reports online and allow users to select the pages of
importance to be loaded electronically to the users’ personal workstations.
We could save a bundle of money just by eliminating the distribution of
massive paper reports.

8

• More timely data access: As noted earlier, reporting systems have
become so unwieldy that the data they present is typically unusable after
it is placed in users’ hands. What good is a monthly report if you do not
get it until the end of the following month? How can you change what
you are doing based on data that old? The reporting backlog has never
dissipated within information system departments; typically it has grown.
Granting users access to data on a more timely basis allows them to better
perform their business tasks. It can also assist in reducing the reporting
backlog, because users take more responsibility for the reporting process.

• Improved performance and productivity: Removing information sys-
tems professionals from the reporting loop and empowering users results in
internal efficiency. Imagine that you had no operational systems and had
to hunt down the person who recorded a transaction to better understand
how to improve the business process or determine whether a promotion
was successful. The truth is that all we have done is automate this night-
mare with the current operational systems. Users have no central sources
for information and must search all of the operational systems for the
data that is required to answer their questions. A data warehouse assists
in eliminating information backlogs, reporting backlogs, information sys-
tem performance problems and so on by improving the efficiency of the
process, eliminating much of the information search missions.

It should be noted that even with a data warehouse, companies still require
two distinct kinds of reporting: that which provides notification of operational
conditions needing response, and that which provides general information, often
summarised, about business operations. The notification-style reports should
still be derived from operational systems, because detecting and reporting these
conditions is part of the process of responding to business events. The gen-
eral information reports, indicating operational performance typically used in
analysing the business, are managed by a data warehouse.

Review question 1

Analyse the differences between data warehousing and operational systems, and
discuss the importance of the separation of the two systems.

Activity 1

Research how a business in your area of interest has benefited from the data
warehousing technology.

Data warehouse architecture

Data warehouses provide a means to make information available for decision-
making. An effective data warehousing strategy must deal with the complexities
of modern enterprises. Data is generated everywhere, and controlled by differ-
ent operational systems and data storage mechanisms. Users demand access to

9

data anywhere and any time, and data must be customised to their needs and
requirements. The function of a data warehouse is to prepare the current trans-
actions from operational systems into data with a historical context, required
by the users of the data warehouse.

Overall architecture

The general data warehouse architecture is based on a Relational database man-
agement system server that functions as the central repository for informational
data. In the data warehouse architecture, operational data and processing is
completely separate from data warehouse processing. This central information
repository is surrounded by a number of key components designed to make the
entire environment functional, manageable and accessible by both the opera-
tional systems that source data into the warehouse and by end-user query and
analysis tools. The diagram below depicts such a general architecture:

10

Typically, the source data for the warehouse is coming from the operational ap-
plications, or an operational data store (ODS). As the data enters the data
warehouse, it is transformed into an integrated structure and format. The
transformation process may involve conversion, summarisation, filtering and
condensation of data. Because data within the data warehouse contains a large
historical component (sometimes over 5 to 10 years), the data warehouse must

11

be capable of holding and managing large volumes of data as well as different
data structures for the same database over time.

The data warehouse

The central data warehouse database is a cornerstone of the data warehousing
environment. This type of database is mostly implemented using a Relational
DBMS (RDBMS). However, a warehouse implementation based on traditional
RDBMS technology is often constrained by the fact that traditional RDBMS im-
plementations are optimised for transactional database processing. Certain data
warehouse attributes, such as very large database size, ad hoc query processing
and the need for flexible user view creation, including aggregates, multi-table
joins and drill-downs, have become drivers for different technological approaches
to the data warehouse database.

Data transformation

A significant portion of the data warehouse implementation effort is spent ex-
tracting data from operational systems and putting it in a format suitable for in-
formation applications that will run off the data warehouse. The data-sourcing,
clean-up, transformation and migration tools perform all of the conversions,
summarisation, key changes, structural changes and condensations needed to
transform disparate data into information that can be used by the decision
support tool. It also maintains the metadata. The functionality of data trans-
formation includes:

• Removing unwanted data from operational databases.

• Converting to common data names and definitions.

• Calculating summaries and derived data.

• Establishing defaults for missing data.

• Accommodating source data definition changes.

The data-sourcing, clean-up, extraction, transformation and migration tools
have to deal with some important issues as follows:

• Database heterogeneity: DBMSs can vary in data models, data access
languages, data navigation operations, concurrency, integrity, recovery,
etc.

• Data heterogeneity: This is the difference in the way data is defined and
used in different models – there are homonyms, synonyms, unit incom-
patibility, different attributes for the same entity, and different ways of
modelling the same fact.

12

Metadata

A crucial area of data warehousing is metadata, which is a kind of data that
describes the data warehouse itself. Within a data warehouse, metadata de-
scribes and locates data components, their origins (which may be either the
operational systems or the data warehouse), and their movement through the
data warehouse process. The data access, data stores and processing informa-
tion will have associated descriptions about the data and processing – the inputs,
calculations and outputs – documented in the metadata. This metadata should
be captured within the data architecture and managed from the beginning of a
data warehouse project. The metadata repository should contain information
such as that listed below:

• Description of the data model.

• Description of the layouts used in the database design.

• Definition of the primary system managing the data items.

• A map of the data from the system of record to the other locations in
the data warehouse, including the descriptions of transformations and
aggregations.

• Specific database design definitions.

• Data element definitions, including rules for derivations and summaries.

It is through metadata that a data warehouse becomes an effective tool for an
overall enterprise. This repository of information will tell the story of the data:
where it originated, how it has been transformed, where it went and how often
– that is, its genealogy or artefacts. Technically, the metadata will also improve
the maintainability and manageability of a warehouse by making impact analysis
information and entity life histories available to the support staff.

Equally important, metadata provides interactive access to users to help un-
derstand content and find data. Thus, there is a need to create a metadata
interface for users.

One important functional component of the metadata repository is the informa-
tion directory. The content of the information directory is the metadata that
helps users exploit the power of data warehousing. This directory helps inte-
grate, maintain and view the contents of the data warehousing system. From a
technical requirements point of view, the information directory and the entire
metadata repository should:

• Be a gateway to the data warehouse environment, and therefore, should
be accessible from any platform via transparent and seamless connections.

• Support an easy distribution and replication of its content for high perfor-
mance and availability.

13

• Be searchable by business-oriented keywords.

• Act as a launch platform for end-user data access and analysis tools.

• Support the sharing of information objects such as queries, reports, data
collections and subscriptions between users.

• Support a variety of scheduling options for requests against the data ware-
house, including on-demand, one-time, repetitive, event-driven and condi-
tional delivery (in conjunction with the information delivery system).

• Support the distribution of query results to one or more destinations in any
of the user-specified formats (in conjunction with the information delivery
system).

• Support and provide interfaces to other applications such as e-mail, spread-
sheet and schedules.

• Support end-user monitoring of the status of the data warehouse environ-
ment.

At a minimum, the information directory components should be accessible by
any Web browser, and should run on all major platforms, including MS Win-
dows, Windows NT and UNIX. Also, the data structures of the metadata repos-
itory should be supported on all major Relational database platforms.

These requirements define a very sophisticated repository of metadata informa-
tion. In reality, however, existing products often come up short when imple-
menting these requirements.

Access tools

The principal purpose of data warehousing is to provide information to busi-
ness users for strategic decision-making. These users interact with the data
warehouse using front-end tools. Although ad hoc requests, regular reports and
custom applications are the primary delivery vehicles for the analysis done in
most data warehouses, many development efforts of data warehousing projects
are focusing on exceptional reporting also known as alerts, which alert a user
when a certain event has occurred. For example, if a data warehouse is designed
to access the risk of currency trading, an alert can be activated when a certain
currency rate drops below a predefined threshold. When an alert is well syn-
chronised with the key objectives of the business, it can provide warehouse users
with a tremendous advantage.

The front-end user tools can be divided into five major groups:

1. Data query and reporting tools.

2. Application development tools.

3. Executive information systems (EIS) tools.

14

4. Online analytical processing (OLAP) tools.

5. Data mining tools.

Query and reporting tools

This category can be further divided into two groups: reporting tools and man-
aged query tools. Reporting tools can be divided into production reporting tools
and desktop report writers.

Production reporting tools let companies generate regular operational reports or
support high-volume batch jobs, such as calculating and printing pay cheques.
Report writers, on the other hand, are affordable desktop tools designed for
end-users.

Managed query tools shield end-users from the complexities of SQL and
database structures by inserting a metalayer between users and the database.
The metalayer is the software that provides subject-oriented views of a database
and supports point-and-click creation of SQL. Some of these tools proceed to
format the retrieved data into easy-to-read reports, while others concentrate
on on-screen presentations. These tools are the preferred choice of the users
of business applications such as segment identification, demographic analysis,
territory management and customer mailing lists. As the complexity of the
questions grows, these tools may rapidly become inefficient.

Application development tools

Often, the analytical needs of the data warehouse user community exceed the
built-in capabilities of query and reporting tools. Organisations will often rely
on a true and proven approach of in-house application development, using graph-
ical data access environments designed primarily for client-server environments.
Some of these application development platforms integrate well with popular
OLAP tools, and can access all major database systems, including Oracle and
IBM Informix.

Executive information systems (EIS) tools

The target users of EIS tools are senior management of a company. The tools
are used to transform information and present that information to users in a
meaningful and usable manner. They support advanced analytical techniques
and free-form data exploration, allowing users to easily transform data into
information. EIS tools tend to give their users a high-level summarisation of
key performance measures to support decision-making.

OLAP

15

These tools are based on concepts of multidimensional database and allow a
sophisticated user to analyse the data using elaborate, multidimensional and
complex views. Typical business applications for these tools include product
performance and profitability, effectiveness of a sales program or a marketing
campaign, sales forecasting and capacity planning. These tools assume that the
data is organised in a multidimensional model, which is supported by a spe-
cial multidimensional database or by a Relational database designed to enable
multidimensional properties.

Data mining tools

Data mining can be defined as the process of discovering meaningful new corre-
lation, patterns and trends by digging (mining) large amounts of data stored in
a warehouse, using artificial intelligence (AI) and/or statistical/mathematical
techniques. The major attraction of data mining is its ability to build predictive
rather than retrospective models. Using data mining to build predictive mod-
els for decision-making has several benefits. First, the model should be able
to explain why a particular decision was made. Second, adjusting a model on
the basis of feedback from future decisions will lead to experience accumulation
and true organisational learning. Finally, a predictive model can be used to
automate a decision step in a larger process. For example, using a model to
instantly predict whether a customer will default on credit card payments will
allow automatic adjustment of credit limits rather than depending on expensive
staff making inconsistent decisions. Data mining will be discussed in more detail
later on in the chapter.

Data visualisation

Data warehouses are causing a surge in popularity of data visualisation tech-
niques for looking at data. Data visualisation is not a separate class of tools;
rather, it is a method of presenting the output of all the previously mentioned
tools in such a way that the entire problem and/or the solution (e.g. a result of
a Relational or multidimensional query, or the result of data mining) is clearly
visible to domain experts and even casual observers.

Data visualisation goes far beyond simple bar and pie charts. It is a collection
of complex techniques that currently represent an area of intense research and
development, focusing on determining how to best display complex relationships
and patterns on a two-dimensional (flat) computer monitor. Similar to medical
imaging research, current data visualisation techniques experiment with various
colours, shapes, 3D imaging and sound, and virtual reality to help users really
see and feel the problem and its solutions.

16

Data marts

The concept of data mart is causing a lot of excitement and attracts much
attention in the data warehouse industry. Mostly, data marts are presented
as an inexpensive alternative to a data warehouse that takes significantly less
time and money to build. However, the term means different things to different
people. A rigorous definition of data mart is that it is a data store that is
subsidiary to a data warehouse of integrated data. The data mart is directed
at a partition of data (often called subject area) that is created for the use
of a dedicated group of users. A data mart could be a set of denormalised,
summarised or aggregated data. Sometimes, such a set could be placed on
the data warehouse database rather than a physically separate store of data.
In most instances, however, a data mart is a physically separate store of data
and is normally resident on a separate database server, often on the local area
network serving a dedicated user group.

Data marts can incorporate different techniques like OLAP or data mining. All
these types of data marts are called dependent data marts because their data
content is sourced from the data warehouse. No matter how many are deployed
and what different enabling technologies are used, different users are all accessing
the information views derived from the same single integrated version of the data
(i.e. the underlying warehouse).

Unfortunately, the misleading statements about the simplicity and low cost of
data marts sometimes result in organisations or vendors incorrectly positioning
them as an alternative to the data warehouse. This viewpoint defines indepen-
dent data marts that in fact represent fragmented point solutions to a range of
business problems. It is missing the integration that is at the heart of the data
warehousing concept: data integration. Each independent data mart makes its
own assumptions about how to consolidate data, and as a result, data across
several data marts may not be consistent.

Moreover, the concept of an independent data mart is dangerous – as soon
as the first data mart is created, other organisations, groups and subject ar-
eas within the enterprise embark on the task of building their own data marts.
As a result, you create an environment in which multiple operational systems
feed multiple non-integrated data marts that are often overlapping in data con-
tent, job scheduling, connectivity and management. In other words, you have
transformed a complex many-to-one problem of building a data warehouse from
operational data sources into a many-to-many sourcing and management night-
mare. Another consideration against independent data marts is related to the
potential scalability problem.

To address data integration issues associated with data marts, a commonly
recommended approach is as follows. For any two data marts in an enterprise,
the common dimensions must conform to the equality and roll-up rule, which
states that these dimensions are either the same or that one is a strict roll-up

17

of another.

Thus, in a retail store chain, if the purchase orders database is one data mart
and the sales database is another data mart, the two data marts will form a
coherent part of an overall enterprise data warehouse if their common dimensions
(e.g. time and product) conform. The time dimension from both data marts
might be at the individual day level, or conversely, one time dimension is at
the day level but the other is at the week level. Because days roll up to weeks,
the two time dimensions are conformed. The time dimensions would not be
conformed if one time dimension were weeks and the other a fiscal quarter. The
resulting data marts could not usefully coexist in the same application.

The key to a successful data mart strategy is the development of an overall
scalable data warehouse architecture, and the key step in that architecture is
identifying and implementing the common dimensions.

Information delivery system

The information delivery system distributes warehouse-stored data and other
information objects to other data warehouses and end-user products such as
spreadsheets and local databases. Delivery of information may be based on
time of day, or on the completion of an external event. The rationale for the
delivery system component is based on the fact that once the data warehouse
is installed and operational, its users don’t have to be aware of its location and
maintenance. All they may need is the report or an analytical view of data,
at a certain time of the day, or based on a particular, relevant event. And of
course, such a delivery system may deliver warehouse-based information to end
users via the Internet. A Web-enabled information delivery system allows users
dispersed across continents to perform sophisticated business-critical analysis,
and to engage in collective decision-making that is based on timely and valid
information.

Review question 2

• Discuss the functionality of data transformation in a data warehouse sys-
tem.

• What is metadata? How is it used in a data warehouse system?

• What is a data mart? What are the drawbacks of using independent data
marts?

18

Data Warehouse Development

Data warehouse blueprint

A data warehouse blueprint should include clear documentation of the following
items:

• Requirements: What does the business want from the data warehouse?

• Architecture blueprint: How will you deliver what the business wants?

• Development approach: What is a clear definition of phased delivery
cycles, including architectural review and refinement processes?

The blueprint document essentially translates an enterprise’s mission, goals and
objectives for the data warehouse into a logical technology architecture com-
posed of individual sub-architectures for the application, data and technology
components of a data warehouse, as shown below:

An architecture blueprint is important, because it serves as a road map for all
development work and as a guide for integrating the data warehouse with legacy
systems. When the blueprint is understood by the development staff, decisions
become much easier. The blueprint should be developed in a logical sense rather
than in a physical sense. For the database components, for example, you will
state things like “the data store for the data warehouse will support an easy-
to-use data manipulation language that is standard in the industry, such as
SQL”. This is a logical architecture-product requirement. When you implement

19

the data warehouse, this could be Sybase SQL Server or Oracle. The logical
definition allows your implementations to grow as technology evolves. If your
business requirements do not change in the next three to five years, neither will
your blueprint.

Data architecture

As shown in the ‘Overall architecture’ section earlier, a data warehouse is pre-
sented as a network of databases. The sub-components of the data architecture
will include the enterprise data warehouse, metadata repository, data marts
and multidimensional data stores. These sub-components are documented sep-
arately, because the architecture should present a logical view of them. It is
for the data warehouse implementation team to determine the proper way to
physically implement the recommended architecture. This suggests that the im-
plementation may well be on the same physical database, rather than separate
data stores, as shown below:

20

Volumetrics

A number of issues need to be considered in the logical design of the data
architecture of a data warehouse. Metadata, which has been discussed earlier,
is the first issue, followed by the volume of data that will be processed and

21

housed by a data warehouse. The latter is probably the biggest factor that
determines the technology utilised by the data warehouse to manage and store
the information. The volume of data affects the warehouse in two aspects: the
overall size and ability to load.

Too often, people design their warehouse load processes only for mass loading
of the data from the operational systems to the warehouse system. This is
inadequate. When defining your data architecture, you should devise a solution
that allows mass loading as well as incremental loading. Mass loading is typically
a high-risk area; the database management systems can only load data at a
certain speed. Mass loading often forces downtime, but we want users to have
access to a data warehouse with as few interruptions as possible.

Transformation

A data architecture needs to provide a clear understanding of transformation
requirements that must be supported, including logic and complexity. This is
one area in which the architectural team will have difficulty finding commercially
available software to manage or assist with the process. Transformation tools
and standards are currently immature. Many tools were initially developed to
assist companies in moving applications away from mainframes. Operational
data stores are vast and varied. Many data stores are unsupported by these
transformation tools. The tools support the popular database engines, but do
nothing to advance your effort with little-known or unpopular databases. It is
better to evaluate and select a transformational tool or agent that supports a
good connectivity tool, such as Information Builder’s EDA/SQL, rather than
one that supports a native file access strategy. With an open connectivity
product, your development teams can focus on multiplatform, multidatabase
transformations.

Data cleansing

In addition to finding tools to automate the transformation process, the devel-
opers should also evaluate the complexity behind data transformations. Most
legacy data stores lack standards and have anomalies that can cause enormous
difficulties. Again, tools are evolving to assist you in automating transforma-
tions, including complex issues such as buried data, lack of legacy standards
and non-centralised key data.

• Buried data

Often, legacy systems use composite keys to uniquely define data. Al-
though these fields appear as one in a database, they represent multiple
pieces of information. The diagram below illustrates buried data by show-
ing a vehicle identification number that contains many pieces of informa-
tion.

22

• Lack of legacy standards

Items such as descriptions, names, labels and keys have typically been
managed on an application-by-application basis. In many legacy systems,
such fields lack clear definition. For example, data in the name field some-
times is haphazardly formatted (Brent Thomas; Elizabeth A. Hammer-
green; and Herny, Ashley). Moreover, application software providers may
offer user-oriented fields, which can be used and defined as required by
the customer.

• Non-centralised key data

As companies have evolved through acquisition or growth, various systems
have taken ownership of data that may not have been in their scope. This
is especially true for companies that can be characterised as heavy users
of packaged application software and those that have grown through ac-
quisition. Notice how the non-centralised cust_no field varies from one
database to another for a hypothetical company represented below:

The ultimate goal of a transformation architecture is to allow the developers
to create a repeatable transformation process. You should make sure to clearly
define your needs for data synchronisation and data cleansing.

23

Data architecture requirements

As a summary of the data architecture design, this section lists the main re-
quirements placed on a data warehouse.

• Subject-oriented data: Data that is contained within a data warehouse
should be organised by subject. For example, if your data warehouse fo-
cuses on sales and marketing processes, you need to generate data about
customers, prospects, orders, products, and so on. To completely define
a subject area, you may need to draw upon data from multiple opera-
tional systems. To derive the data entities that clearly define the sales
and marketing process of an enterprise, you might need to draw upon an
order entry system, a sales force automation system, and various other
applications.

• Time-based data: Data in a data warehouse should relate specifically
to a time period, allowing users to capture data that is relevant to their
analysis period. Consider an example in which a new customer was added
to an order entry system with a primary contact of John Doe on 2/11/99.
This customer’s data was changed on 4/11/99 to reflect a new primary
contact of Jane Doe. In this scenario, the data warehouse would contain
the two contact records shown in the following table:

• Update processing: A data warehouse should contain data that repre-
sents closed operational items, such as fulfilled customer order. In this
sense, the data warehouse will typically contain little or no update pro-
cessing. Typically, incremental or mass loading processes are run to insert
data into the data warehouse. Updating individual records that are al-
ready in the data warehouse will rarely occur.

• Transformed and scrubbed data: Data that is contained in a
data warehouse should be transformed, scrubbed and integrated into
user-friendly subject areas.

• Aggregation: Data needs to be aggregated into and out of a data ware-
house. Thus, computational requirements will be placed on the entire
data warehousing process.

• Granularity: A data warehouse typically contains multiple levels of gran-
ularity. It is normal for the data warehouse to be summarised and contain
less detail than the original operational data; however, some data ware-
houses require dual levels of granularity. For example, a sales manager

24

may need to understand how sales representatives in his or her area per-
form a forecasting task. In this example, monthly summaries that contain
the data associated with the sales representatives’ forecast and the actual
orders received are sufficient; there is no requirement to see each individ-
ual line item of an order. However, a retailer may need to wade through
individual sales transactions to look for correlations that may show people
tend to buy soft drinks and snacks together. This need requires more de-
tails associated with each individual purchase. The data required to fulfil
both of these requests may exist, and therefore, the data warehouse might
be built to manage both summarised data to fulfil a very rapid query and
the more detailed data required to fulfil a lengthy analysis process.

• Metadata management: Because a data warehouse pools information
from a variety of sources and the data warehouse developers will perform
data gathering on current data stores and new data stores, it is required
that storage and management of metadata be effectively done through the
data warehouse process.

Application architecture

An application architecture determines how users interact with a data ware-
house. To determine the most appropriate application architecture for a com-
pany, the intended users and their skill levels should be assessed. Other fac-
tors that may affect the design of the architecture include technology currently
available and budget constraints. In any case, however, the architecture must
be defined logically rather than physically. The classification of users will help
determine the proper tools to satisfy their reporting and analysis needs. A
sampling of user category definitions is listed below:

• Power users: Technical users who require little or no support to develop
complex reports and queries. This type of user tends to support other
users and analyse data through the entire enterprise.

• Frequent users: Less technical users who primarily interface with the
power users for support, but sometimes require the IT department to
support them. These users tend to provide management reporting support
up to the division level within an enterprise, a narrower scope than for
power users.

• Casual users: These users touch the system and computers infrequently.
They tend to require a higher degree of support, which normally includes
building predetermined reports, graphs and tables for their analysis pur-
pose.

Requirements of tools

25

Tools must be made available to users to access a data warehouse. These tools
should be carefully selected so that they are efficient and compatible with other
parts of the architecture and standards.

• Executive information systems (EIS): As mentioned earlier, these
tools transform information and present that information to users in a
meaningful and usable manner. They support advanced analytical tech-
niques and free-form data exploration, allowing users to easily transform
data into information. EIS tools tend to give their users a high-level
summarisation of key performance measures to support decision-making.
These tools fall into the big-button syndrome, in which an application de-
velopment team builds a nice standard report with hooks to many other
reports, then presents this information behind a big button. When a user
clicks the button, magic happens.

• Decision support systems (DSS): DSS tools are intended for more
technical users, who require more flexibility and ad hoc analytical capa-
bilities. DSS tools allow users to browse their data and transform it into
information. They avoid the big button syndrome.

• Ad hoc query and reporting: The purpose of EIS and DSS applica-
tions is to allow business users to analyse, manipulate and report on data
using familiar, easy-to-use interfaces. These tools conform to presentation
styles that business people understand and with which they are comfort-
able. Unfortunately, many of these tools have size restrictions that do not
allow them to access large stores or to access data in a highly normalised
structure, such as a Relational database, in a rapid fashion; in other words,
they can be slow. Thus, users need tools that allow for more traditional
reporting against Relational, or two-dimensional, data structures. These
tools offer database access with limited coding and often allow users to
create read-only applications. Ad hoc query and reporting tools are an
important component within a data warehouse tool suite. Their greatest
advantage is contained in the term ‘ad hoc’. This means that decision
makers can access data in an easy and timely fashion.

• Production report writer: A production report writer allows the de-
velopment staff to build and deploy reports that will be widely exploited
by the user community in an efficient manner. These tools are often com-
ponents within fourth generation languages (4GLs) and allow for complex
computational logic and advanced formatting capabilities. It is best to
find a vendor that provides an ad hoc query tool that can transform itself
into a production report writer.

• Application development environments (ADE): ADEs are nothing
new, and many people overlook the need for such tools within a data
warehouse tool suite. However, you will need to develop some presenta-
tion system for your users. The development, though minimal, is still a
requirement, and it is advised that data warehouse development projects

26

standardise on an ADE. Example tools include Microsoft Visual Basic
and Powersoft Powerbuilder. Many tools now support the concept of cross-
platform development for environment such as Windows, Apple Macintosh
and OS/2 Presentation Manager. Every data warehouse project team
should have a standard ADE in its arsenal.

• Other tools: Although the tools just described represent minimum re-
quirements, you may find a need for several other speciality tools. These
additional tools include OLAP, data mining and managed query environ-
ments.

Technology architecture

It is in the technology architecture section of the blueprint that hardware, soft-
ware and network topology are specified to support the implementation of the
data warehouse. This architecture is composed of three major components -
clients, servers and networks – and the software to manage each of them.

• Clients: The client technology component comprises the devices that are
utilised by users. These devices can include workstations, personal com-
puters, personal digital assistants and even beepers for support personnel.
Each of these devices has a purpose being served by a data warehouse.
Conceptually, the client either contains software to access the data ware-
house (this is the traditional client in the client-server model and is known
as a fat client), or it contains very little software and accesses a server that
contains most of the software required to access a data warehouse. The
later approach is the evolving Internet client model, known as a thin client
and fat server.

• Servers: The server technology component includes the physical hard-
ware platforms as well as the operating systems that manage the hardware.
Other components, typically software, can also be grouped within this
component, including database management software, application server
software, gateway connectivity software, replication software and configu-
ration management software.

• Networks: The network component defines the transport technologies
needed to support communication activities between clients and servers.
This component includes requirements and decisions for wide area net-
works (WANs), local area networks (LANs), communication protocols and
other hardware associated with networks, such as bridges, routers and
gateways.

Review question 3

• What are the problems that you may encounter in the process of data
cleansing?

27

• Describe the three components of the technology architecture of a data
warehousing system.

Star schema design

Data warehouses can best be modelled using a technique known as star schema
modelling. It defines data entities in a way that supports the decision-makers’
view of a business and that reflects the important operational aspects of the
business. A star schema contains three logical entities: dimension, measure and
category detail (or category for short).

A star schema is optimised to queries, and therefore provides a database design
that is focused on rapid response to users of the system. Also, the design that is
built from a star schema is not as complicated as traditional database designs.
Hence, the model will be more understandable for users of the system. Also,
users will be able to better understand the navigation paths available to them
through interpreting the star schema. This logical database design’s name hails
from a visual representation derived from the data model: it forms a star, as
shown below:

The star schema defines the join paths for how users access the facts about their

28

business. In the figure above, for example, the centre of the star could represent
product sales revenues that could have the following items: actual sales, budget
and sales forecast. The true power of a star schema design is to model a data
structure that allows filtering, or reduction in result size, of the massive measure
entities during user queries and searches. A star schema also provides a usable
and understandable data structure, because the points of the star, or dimension
entities, provide a mechanism by which a user can filter, aggregate, drill down,
and slice and dice the measurement data in the centre of the star.

Entities within a data warehouse

A star schema, like the data warehouse it models, contains three types of logi-
cal entities: measure, dimension and category detail. Each of these entities is
discussed separately below.

Measure entities

Within a star schema, the centre of the star – and often the focus of the users’
query activity – is the measure entity. A measure entity is represented by a
rectangle and is placed in the centre of a star schema diagram.

A sample of raw measure data is shown below:

The data contained in a measure entity is factual information from which users
derive ‘business intelligence’. This data is therefore often given synonymous
names to measure, such as key business measures, facts, metrics, performance
measures and indicators. The measurement data provides users with quantita-
tive data about a business. This data is numerical information that the users
desire to monitor, such as dollars, pounds, degrees, counts and quantities. All
of these categories allow users to look into the corporate knowledge base and
understand the good, bad and ugly of the business process being measured.

The data contained within measure entities grows large over time, and therefore
is typically of greatest concern to the technical support personnel, database
administrators and system administrators.

29

Dimension entities

Dimension entities are graphically represented by diamond-shaped squares, and
placed at the points of the star. Dimension entities are much smaller entities
compared with measure entities. The dimensions and their associated data
allow users of a data warehouse to browse measurement data with ease of use
and familiarity. These entities assist users in minimising the rows of data within
a measure entity and in aggregating key measurement data. In this sense, these
entities filter data or force the server to aggregate data so that fewer rows are
returned from the measure entities. With a star schema model, the dimension
entities are represented as the points of the star, as demonstrated in the diagram
below, by the time, location, age group, product and other dimensions:

The diagram below illustrates an example of dimension data and a hierarchy
representing the contents of a dimension entity:

30

Category detail entities

Each cell in a dimension is a category and represents an isolated level within
a dimension that might require more detailed information to fulfil a user’s re-
quirement. These categories that require more detailed data are managed within
category detail entities. These entities have textual information that supports
the measurement data and provides more detailed or qualitative information to
assist in the decision-making process. The diagram below illustrates the need
for a client category detail entity within the All Clients dimension:

31

The stop sign symbol is usually used to graphically depict category entities,
because users normally flow through the dimension entities to get the measure
entity data, then stop their investigation with supporting category detail data.

Translating information into a star schema

During the data gathering process, an information package can be constructed,
based on which star schema is formed. The table below shows an information
package diagram ready for translation into a star schema. As can be seen from
the table, there are six dimensions, and within each there are different numbers
of categories. For example, the All Locations dimension has five categories while
All Genders has one. The number within each category denotes the number of
instances the category may have. For example, the All Time Periods will cover
five different years with 20 quarters and 60 months. Gender will include male,
female and unknown.

To define the logical measure entity, take the lowest category, or cell, within
each dimension along with each of the measures and take them as the measure
entity. For example, the measure entity translated from the table below would
be Month, Store, Product, Age Group, Class and Gender with the measures
Forecast Sales, Budget Sales, Actual Sales and Forecast Variance (calculated),
and Budget Variance (calculated). They could be given a name Sales Analysis
and put in the centre of the star schema in a rectangle.

32

Each column of an information package in the table above defines a dimension
entity and is placed on the periphery of the star of a star schema, symbolising the
points of the star. Following the placement of the dimension entities, you want
to define the relationships that they have with the measure entity. Because di-
mension entities always require representation within the measure entity, there
always is a relationship. The relationship is defined over the lowest-level detail
category for the logical model; that is, the last cell in each dimension. These
relationships possess typically one-to-many cardinality; in other words, one di-
mension entity exists for many within the measures. For example, you may
hope to make many product sales (Sales Analysis) to females (Gender) within
the star model illustrated in the diagram below. In general, these relationships
can be given an intuitive explanation such as: “Measures based on the dimen-
sion”. In the diagram below, for example, the relationship between Location
(the dimension entity) and Sales Analysis (the measure entity) means “Sales
Analysis based on Location”.

33

The final step in forming a star schema is to define the category detail entity.
Each individual cell in an information package diagram must be evaluated and
researched to determine if it qualifies as a category detail entity. If the user has
a requirement for additional information about a category, this formulates the
requirement for a category detail entity. These detail entities become extensions
of dimension entities, as illustrated below:

34

We need to know more detailed information about data such as Store, Product
and customer categories (i.e. Age, Class and Gender). These detail entities
(Store Detail, Product Detail and Customer Detail), having been added to the
current star schema, now appear as shown below:

35

Review question 4

What are the three types of entities in a star schema and how are they used to
model a data warehouse?

Exercise 1

An information package of a promotional analysis is shown below. To evalu-
ate the effectiveness of various promotions, brand managers are interested in
analysing data for the products represented, the promotional offers, and the
locations where the promotions ran. Construct a star schema based on the
information package diagram, and discuss how the brand manager or other an-
alysts can use the model to evaluate the promotions.

36

Data extraction and cleansing

The construction of a data warehouse begins with careful considerations on
architecture and data model issues, and with their sizing components. It is
essential that a correct architecture is firmly in place, supporting the activities
of a data warehouse. Having solved the architecture issue and built the data
model, the developers of the data warehouse can decide what data they want to
access, in which form, and how it will flow through an organisation. This phase
of a data warehouse project will actually fill the warehouse with goods (data).
This is where data is extracted from its current environment and transformed
into the user-friendly data model managed by the data warehouse. Remember,
this is a phase that is all about quality. A data warehouse is only as good as
the data it manages.

Extraction specifications

The data extraction part of a data warehouse is a traditional design process.
There is an obvious data flow, with inputs being operational systems and output
being the data warehouse. However, the key to the extraction process is how
to cleanse the data and transform it into usable information that the user can
access and make into business intelligence.

Thus, techniques such as data flow diagrams may be beneficial for defining
extraction specifications for the development. An important input for such a
specification may be the useful reports that you collected during user interviews.
In these kinds of reports, intended users often tell you what they want and what
they do not, and then you can act accordingly.

37

Loading data

Data needs to be processed for extraction and loading. An SQL select statement,
shown below, is normally used in the process:

Select Target Column List

from Source Table List

where Join & Filter List

group by

or order by Sort & Aggregate List

Multiple passes of data

Some complex extractions need to pull data from multiple systems and merge
the resultant data while performing calculations and transformations for place-
ment into a data warehouse. For example, the sales analysis example mentioned
in the star schema modelling section might be such a process. We may obtain
budget sales information from a budgetary system, which is different from the
order entry system from which we get actual sales data, which in turn is differ-
ent from the forecast management system from which we get forecast sales data.
In this scenario, we would need to access three separate systems to fill one row
within the Sales Analysis measure table.

Staging area

Creating and defining a staging area can help the cleansing process. This is a
simple concept that allows the developer to maximise up-time of a data ware-
house while extracting and cleansing the data.

A staging area, which is simply a temporary work area, can be used to manage
transactions that will be further processed to develop data warehouse transac-
tions.

Checkpoint restart logic

The concept of checkpoint restart has been around for many years. It originated
in batch processing on mainframe computers. This type of logic states that if
a long running process fails prior to completion, then restart the process at the
point of failure rather than from the beginning. Similar logic should be imple-
mented in the extraction and cleansing process. Within the staging area, define
the necessary structures to monitor the activities of transformation procedures.
Each of these programming units has an input variable that determines where

38

in the process it should begin. Thus, if a failure occurs within the seventh pro-
cedure of an extraction process that has 10 steps, assuming the right rollback
logic is in place, it would only require that the last four steps (7 through to 10)
be conducted.

Data loading

After data has been extracted, it is ready to be loaded into a data warehouse. In
the data loading process, cleansed and transformed data that now complies with
the warehouse standards is moved into the appropriate data warehouse entities.
Data may be summarised and reformatted as part of this process, depending on
the extraction and cleansing specifications and the performance requirements of
the data warehouse. After the data has been loaded, data inventory information
is updated within the metadata repository to reflect the activity that has just
been completed.

Review question 5

• How can a staging area help the cleansing process in developing a data
warehousing system?

• Why is checkpoint restart logic useful? How can it be implemented for
the data extraction and cleansing process?

Data warehousing and data mining

Data warehousing has been the subject of discussion so far. A data warehouse
assembles data from heterogeneous databases so that users need only query a
single system. The response to a user’s query depends on the contents of the
data warehouse. In general, the warehouse system will answer the query as it
is and will not attempt to extract further/implicit information from the data.

While a data warehousing system formats data and organises data to support
management functions, data mining attempts to extract useful information as
well as predicting trends and patterns from the data. Note that a data warehouse
is not exclusive for data mining; data mining can be carried out in traditional
databases as well. However, because a data warehouse contains quality data,
it is highly desirable to have data mining functions incorporated in the data
warehouse system. The relationship between warehousing, mining and database
is illustrated below:

39

In general, a data warehouse comes up with query optimisation and access tech-
niques to retrieve an answer to a query – the answer is explicitly in the warehouse.
Some data warehouse systems have built-in decision-support capabilities. They
do carry out some of the data mining functions, like predictions. For example,
consider a query like “How many BMWs were sold in London in 2010”. The
answer can clearly be in the data warehouse. However, for a question like “How
many BMWs do you think will be sold in London in 2020”, the answer may not
explicitly be in the data warehouse. Using certain data mining techniques, the
selling patterns of BMWs in London can be discovered, and then the question
can be answered.

Essentially, a data warehouse organises data effectively so that the data can be
mined. As shown in in the diagram above, however, a good DBMS that manages
data effectively could also be used as a mining source. Furthermore, data may
not be current in a warehouse (it is mainly historical). If one needs up-to-
date information, then one could mine the database, which also has transaction
processing features. Mining data that keeps changing is often a challenge.

General introduction to data mining

Data mining concepts

Data mining is a process of extracting previously unknown, valid and actionable
information from large sets of data and then using the information to make
crucial business decisions.

The key words in the above definition are unknown, valid and actionable. They

40

help to explain the fundamental differences between data mining and the tra-
ditional approaches to data analysis, such as query and reporting and online
analytical processing (OLAP). In essence, data mining is distinguished by the
fact that it is aimed at discovery of information, without a previously formulated
hypothesis.

First, the information discovered must have been previously unknown. Although
this sounds obvious, the real issue here is that it must be unlikely that the in-
formation could have been hypothesised in advance; that is, the data miner is
looking for something that is not intuitive or, perhaps, even counterintuitive.
The further away the information is from being obvious, potentially the more
value it has. A classic example here is the anecdotal story of the beer and
nappies. Apparently a large chain of retail stores used data mining to analyse
customer purchasing patterns and discovered that there was a strong associa-
tion between the sales of nappies and beer, particularly on Friday evenings. It
appeared that male shoppers who were out stocking up on baby requisites for
the weekend decided to include some of their own requisites at the same time.
If true, this shopping pattern is so counterintuitive that the chain’s competitors
probably do not know about it, and the management could profitably explore
it.

Second, the new information must be valid. This element of the definition relates
to the problem of over optimism in data mining; that is, if data miners look hard
enough in a large collection of data, they are bound to find something of interest
sooner or later. For example, the potential number of associations between
items in customers’ shopping baskets rises exponentially with the number of
items. Some supermarkets have in stock up to 300,000 items at all times, so
the chances of getting spurious associations are quite high. The possibility of
spurious results applies to all data mining and highlights the constant need for
post-mining validation and sanity checking.

Third, and most critically, the new information must be actionable. That is, it
must be possible to translate it into some business advantage. In the case of
the retail store manager, clearly he could leverage the results of the analysis by
placing the beer and nappies closer together in the store or by ensuring that
two items were not discounted at the same time. In many cases, however, the
actionable criterion is not so simple. For example, mining of historical data may
indicate a potential opportunity that a competitor has already seized. Equally,
exploiting the apparent opportunity may require use of data that is not available
or not legally usable.

Benefits of data mining

Various applications may need data mining, but many of the problems have
existed for years. Furthermore, data has been around for centuries. Why is it
that we are talking about data mining now?

41

The answer to this is that we are using new tools and techniques to solve prob-
lems in a new way. We have large quantities of data computerised. The data
could be in files, Relational databases, multimedia databases, and even on the
World Wide Web. We have very sophisticated statistical analysis packages.
Tools have been developed for machine learning. Parallel computing technology
is maturing for improving performance. Visualisation techniques improve the
understanding of the data. Decision support tools are also getting mature. Here
are a few areas in which data mining is being used for strategic benefits:

• Direct marketing: The ability to predict who is most likely to be in-
terested in what products can save companies immense amounts in mar-
keting expenditures. Direct mail marketers employ various data mining
techniques to reduce expenditures; reaching fewer, better qualified poten-
tial customers can be much more cost effective than mailing to your entire
mailing list.

• Trend analysis: Understanding trends in the marketplace is a strategic
advantage, because it helps reduce costs and timeliness to market. Fi-
nancial institutions desire a quick way to recognise changes in customer
deposit and withdraw patterns. Retailers want to know what product
people are likely to buy with others (market basket analysis). Pharma-
ceuticals ask why someone buys their product over another. Researchers
want to understand patterns in natural processes.

• Fraud detection: Data mining techniques can help discover which insur-
ance claims, cellular phone calls or credit card purchases are likely to be
fraudulent. Most credit card issuers use data mining software to model
credit fraud. Citibank, the IRS, MasterCard and Visa are a few of the com-
panies who have been mentioned as users of such data mining technology.
Banks are among the earliest adopters of data mining. Major telecom-
munications companies have an effort underway to model and understand
cellular fraud.

• Forecasting in financial markets: Data mining techniques are exten-
sively used to help model financial markets. The idea is simple: if some
trends can be discovered from historical financial data, then it is possi-
ble to predict what may happen in similar circumstances in the future.
Enormous financial gains may be generated this way.

• Mining online: Web sites today find themselves competing for customer
loyalty. It costs little for customer to switch to competitors. The electronic
commerce landscape is evolving into a fast, competitive marketplace where
millions of online transactions are being generated from log files and reg-
istration forms every hour of every day, and online shoppers browse by
electronic retailing sites with their finger poised on their mouse, ready to
buy or click on should they not find what they are looking for - that is,
should the content, wording, incentive, promotion, product or service of a
Web site not meet their preferences. In such a hyper-competitive market-

42

place, the strategic use of customer information is critical to survival. As
such, data mining has become a mainstay in doing business in fast-moving
crowd markets. For example, Amazon, an electronics retailer, is beginning
to want to know how to position the right products online and manage its
inventory in the back-end more effectively.

Comparing data mining with other techniques

Query tools vs. data mining tools

End-users are often confused about the differences between query tools, which
allow end-users to ask questions of a database management system, and data
mining tools. Query tools do allow users to find out new and interesting facts
from the data they have stored in a database. Perhaps the best way to differ-
entiate these tools is to use an example.

With a query tool, a user can ask a question like: What is the number of white
shirts sold in the north versus the south? This type of question, or query, is
aimed at comparing the sales volumes of white shirts in the north and south.
By asking this question, the user probably knows that sales volumes are af-
fected by regional market dynamics. In other words, the end-user is making an
assumption.

A data mining process tackles the broader, underlying goal of a user. Instead
of assuming the link between regional locations and sales volumes, the data
mining process might try to determine the most significant factors involved in
high, medium and low sales volumes. In this type of study, the most important
influences of high, medium and low sales volumes are not known. A user is
asking a data mining tool to discover the most influential factors that affect
sales volumes for them. A data mining tool does not require any assumptions;
it tries to discover relationships and hidden patterns that may not always be
obvious.

Many query vendors are now offering data mining components with their soft-
ware. In future, data mining will likely be an option for all query tools. Data
mining discovers patterns that direct end-users toward the right questions to
ask with traditional queries.

OLAP tools vs. data mining tools

Let’s review the concept of online analytical processing (OLAP) first. OLAP
is a descendant of query generation packages, which are in turn descendants of
mainframe batch report programs. They, like their ancestors, are designed to
answer top-down queries from the data or draw what-if scenarios for business an-
alysts. During the last decade, OLAP tools have grown popular as the primary

43

methods of accessing database, data marts and data warehouses. OLAP tools
are designed to get data analysts out of the custom report-writing business and
into the ‘cube construction’ business. OLAP tools provide multidimensional
data analysis – that is, they allow data to be broken down and summarised by
product line and marketing region, for example.

OLAP deals with the facts or dimensions typically containing transaction data
relating to a firm’s products, locations and times. Each dimension can also con-
tain some hierarchy. For example, the time dimension may drill down from year,
to quarter, to month, and even to weeks and days. A geographical dimension
may drill up from city, to state, to region, to country and so on. The data in
these dimensions, called measures, is generally aggregated (for example, total
or average sales in pounds or units).

The methodology of data mining involves the extraction of hidden predictive
information from large databases. However, with such a broad definition as
this, an OLAP product could be said to qualify as a data mining tool. That
is where the technology comes in, because for true knowledge discovery to take
place, a data mining tool should arrive at this hidden information automatically.

Still another difference between OLAP and data mining is how the two operate
on the data. Similar to the direction of statistics, OLAP is a top-down approach
to data analysis. OLAP tools are powerful and fast tools for reporting on data,
in contrast to data mining tools that focus on finding patterns in data. For
example, OLAP involves the summation of multiple databases into highly com-
plex tables; OLAP tools deal with aggregates and are basically concerned with
addition and summation of numeric values, such as total sales in pounds. Man-
ual OLAP may be based on need-to-know facts, such as regional sales reports
stratified by type of businesses, while automatic data mining is based on the
need to discover what factors are influencing these sales.

OLAP tools are not data mining tools since the query originates with the
user. They have tremendous capabilities for performing sophisticated user-
driven queries, but they are limited in their capability to discover hidden trends
and patterns in database. Statistical tools can provide excellent features for de-
scribing and visualising large chunks of data, as well as performing verification-
driven data analysis. Autonomous data mining tools, however, based on Artifi-
cial Intelligence (AI) technologies, are the only tools designed to automate the
process of knowledge discovery.

Data mining is data-driven or discovery-driven analysis and requires no assump-
tions. Rather, it identifies facts or conclusions based on patterns discovered.
OLAP and statistics provide query-driven, user-driven or verification-driven
analysis. For example, OLAP may tell a bookseller about the total number
of books it sold in a region during a quarter. Statistics can provide another
dimension about these sales. Data mining, on the other hand, can tell you the
patterns of these sales, i.e. factors influencing the sales.

44

Website analysis tools vs. data mining tools

Every time you visit a Web site, the Web server enters a valuable record of that
transaction in a log file. Every time you visit an electronic commerce site, a
cookie is issued to you for tracking what your interests are and what products
or services you are purchasing. Every time you complete a form on a site,
that information is written to a file. Although these server log files and form-
generated databases are rich in information, the data is itself usually abbreviated
and cryptic in plain text format with comma delimiters, making it difficult and
time-consuming to mine. The volume of information is also overwhelming: a
one-megabyte log file typically contains 4,000 to 5,000 page requests. Web site
analysis tools typically import the log file data into a built-in database, which
in turn transforms the data into aggregate reports or graphs.

This information can be fine-tuned to meet the needs of different individuals.
For example, a Web administrator may want to know about the clicks leading
to documents and images, files, scripts and applets. A designer will want to
know how visitors navigate the site and whether there are paths or points from
which many visitors jump to another site. The marketing team will want to
know the effectiveness of certain promotions. Advertisers and partners may be
interested in the number of click-throughs your site has generated to their sites.
Most Web site analysis tools provide answers to such questions as:

• What are the most common paths to the most important pages on your
site?

• What keywords bring the most traffic to your site from search engines?

• How many pages do visitors typically view on your site?

• How many visitors are you getting from different parts of the world?

• How much time do visitors spend on your site?

• How many new users visit your site every month?

However, like statistical and OLAP tools, Web analysis tools are verification-
driven. They emphasise aggregate counts and spatial views of website traffic
over time, and are not easily able to discover hidden patterns, which could
provide you with information like, what the visitors are really looking for. The
current Web site analysis tools are very good at innovative data reporting via
tables, charts and graphs.

A data mining tool does not replace a Web analysis tool, but it does give the
Web administrator a lot of additional opportunities for answering some of the
marketing and business questions. For example, imagine trying to formulate
answers to questions such as:

• What is an optional segmentation of my Web site visitors?

• Who is likely to purchase my new online products and services?

45

• What are the most important trends in my site visitors’ behaviour?

• What are the characteristics or features of my most loyal online clients?

Theoretically, these questions could be answered with a Web analysis tool. For
example, a Web administrator could try to define criteria for a customer profile
and query the data to see whether they work or not. In a process of trial and
error, a marketer could gradually develop enough intuitions about the distin-
guishing features of its predominant Web site customers, such as their gender,
age, location, income levels, etc. However, in a dynamic environment such as
the Web, this type of analysis is very time-consuming and subject to bias and
error.

On the other hand, a data mining tool (such as a decision tree generator) that
incorporates machine-learning technology could find a better answer automat-
ically, in a much shorter time – typically within minutes. More importantly,
this type of autonomous segmentation is unbiased and driven by data, not the
analyst’s intuition. For example, using a data mining tool, a log file can be
segmented into statistically significant clusters very quickly.

Data mining tasks

The most common types of data mining tasks, classified based on the kind of
knowledge they are looking for, are listed as follows:

• Classification: Data records are grouped into some meaningful sub-
classes. For example, suppose a car sales company has some information
that all the people in its list who live in City X own cars worth more than
20K. They can then assume that even those who are not on their list, but
live in City X, can afford to own cars costing more than 20K. This way,
the company classifies the people living in City X.

• Sequence detection: By observing patterns in the data, sequences are
determined. Here is an example: after John goes to the bank, he generally
goes to the grocery store.

• Data dependency analysis: Potentially interesting dependencies, rela-
tionships or associations between data items are detected. For example, if
people buy X, they tend to buy Y as well. We say there is an association
between X and Y.

• Deviation analysis: For example, John went to the bank on Saturday,
but he did not go to the grocery store after that. Instead, he went to a
football game. With this task, anomalous instances and discrepancies are
found.

46

Techniques for data mining

Data mining is an integration of multiple technologies. These include data man-
agement such as database management, data warehousing, statistics, machine
learning and decision support, and other technologies such as visualisation and
parallel computing. Many of these technologies have existed for many decades.
The ability to manage and organise data effectively has played a major role in
making data mining a reality.

Database management researchers are taking advantages of work on deductive
and intelligent query processing for data mining. One of the areas of interest is to
extend query processing techniques to facilitate data mining. Data warehousing
is another key data management technology for integrating the various data
sources and organising the data so that it can be effectively mined.

Researchers in statistical analysis are integrating their techniques with those of
machine learning to develop more sophisticated statistical techniques for data
mining. Various statistical analysis packages are now being marketed as data
mining tools. There is some dispute over this. Nevertheless, statistics is a major
area contributing to data mining.

Machine learning has been around for a while. The idea here is for the machine
to learn various rules from the patterns observed and then apply these rules to
solve new problems. While the principles used in machine learning and data
mining are similar, data mining usually considers large quantities of data to
mine. Therefore, integration of database management and machine learning
techniques are needed for data mining.

Researchers from the computing visualisation field are approaching the area
from another perspective. One of their focuses is to use visualisation techniques
to aid the mining process. In other words, interactive data mining is a goal of
the visualisation community.

Decision support systems are a collection of tools and processes to help man-
agers make decisions and guide them in management - for example, tools for
scheduling meetings and organising events.

Finally, researchers in high-performance computing are also working on devel-
oping appropriate algorithms in order to make large-scale data mining more
efficient and feasible. There is also interaction with the hardware community
so that appropriate architectures can be developed for high-performance data
mining.

Data mining directions and trends

While significant progresses have been made, there are still many challenges. For
example, due to the large volumes of data, how can the algorithms determine
which technique to select and what type of data mining to do? Furthermore, the

47

data may be incomplete and/or inaccurate. At times, there may be redundant
information, and at times there may not be sufficient information. It is also
desirable to have data mining tools that can switch to multiple techniques and
support multiple outcomes. Some of the current trends in data mining are
illustrated below:

Review question 6

What is data mining? How is it used in the business world?

Data mining process

The process overview

In general, when people talk about data mining, they focus primarily on the
actual mining and discovery aspects. The idea sounds intuitive and attractive.
However, mining data is only one step in the overall process. The diagram below
illustrates the process as a multistep, iterative process:

48

The business objectives drive the entire data mining process. They are the
basis on which the initial project is established and the measuring stick by
which the final results will be judged, and they should constantly guide the
team throughout the process. Also, the process is highly iterative, with possibly
many loop-backs over one or more steps. In addition, the process is far from
autonomous. In spite of recent advances in technology, the whole data mining
process remains very much a labour-intensive exercise.

However, not all steps are of equal weight in terms of typical time and effort
spent. 60% of the time goes into preparing the data for mining, highlighting the
critical dependency on clean, relevant data. The actual mining step typically
constitutes about 10% of the overall effort.

The process in detail

Business objectives determination

This step in the data mining process has a lot in common with the initial step of
any significant project undertaking. The minimum requirements are a perceived
business problem or opportunity and some level of executive sponsorship. The
first requirement ensures that there is a real, critical business issue that is worth
solving, and the second guarantees that there is the political will to do something
about it when the project delivers a proposed solution.

Frequently, you hear people saying: “Here is the data, please mine it.” But how
do you know whether a data mining solution is really needed? The only way
to find out is to properly define the business objectives. Ill-defined projects are
not likely to succeed or result in added value. Developing an understanding and
careful definition of the business needs is not a straightforward task in general.
It requires the collaboration of the business analyst with domain knowledge and
the data analyst, who can begin to translate the objectives into a data mining
application.

49

This step in the process is also the time at which to start setting expectations.
Nothing kills an otherwise successful project as quickly as overstated expecta-
tions of what could be delivered. Managing expectations will help to avoid any
misunderstanding that may arise as the process evolves, and especially as the
final results begin to emerge.

Data preparation

This is the most resource-consuming step in the process, typically requiring up
to 60% of the effort of the entire project. The step comprises three phases:

• Data selection: Identification and extraction of data.

• Data pre-processing: Data sampling and quality testing.

• Data transformation: Data conversion into an analytical model.

Data selection

The goal of data selection is to identify the available data sources and extract
the data that is needed for preliminary analysis in preparation for further min-
ing. For example, if you want to find out who will respond to a direct marketing
campaign, you need data (information) about customers who have previously
responded to mailers. If you have their name and address, you should realise
that this type of data is unique to a customer, and therefore, not the best data to
be selected for mining. Information like city and area provides descriptive infor-
mation, but demographic information is more valuable: items like a customer’s
age, general income level, types of interests and household type.

Along with each of the selected variables, associated semantic information (meta-
data) is needed to understand what each of the variables means. The metadata
must include not only solid business definitions of the data but also clear de-
scriptions of data types, potential values, original source system, data formats
and other characteristics. There are two major types of variables:

• Categorical: The possible values are finite and differ in kind. For example,
marital status (single, married, divorced, unknown), gender (male, female),
customer credit rating (good, regular, poor).

• Quantitative: There is measurable difference here between the possible
values. There are two subtypes: continuous (values are real numbers)
and discrete (values are integrates). Examples of continuous variables
are income, average number of purchases and revenue. Examples of dis-
crete variables are number of employees and time of year (month, season,
quarter).

The variables selected for data mining are called active variables, in the sense
that they are actively used to distinguish segments, make predictions or perform
some other data mining operations.

50

When selecting data, another important consideration is the expected period of
validity of the data. That is, the extent to which ongoing changes in external
circumstances may limit the effectiveness of the mining. For example, because
a percentage of customers will change their jobs every year, any analysis where
job type is a factor has to be re-examined periodically.

At this stage, the data analyst has already begun to focus on the data mining
algorithms that will best match the business application. This is an important
aspect to keep in mind as the other phases of the data preparation step evolve,
because it will guide the development of the analytical model and the fine-tuning
of the data input.

Data pre-processing

The aim of data pre-processing is to ensure the quality of the selected data.
Clean and well-understood data is a clear prerequisite for successful data mining,
just as it is with other quantitative analysis. In addition, by getting better
acquainted with the data at hand, you are more likely to know where to look
for the real knowledge during the mining stage.

Without a doubt, data pre-processing is the most problematic phase in the data
preparation step, principally because most operational data is never meant to
be for data mining purposes. Poor data quality and poor data integrity are
major issues in almost all data mining projects.

Normally, the data pre-processing phase begins with a general review of the
structure of the data and some measuring of its quality. Such an approach
usually involves a combination of statistical methods and data visualisation
techniques. Representative sampling of the selected data is a useful technique,
as large data volumes would otherwise make the review process very time-
consuming.

For categorical variables, frequency distributions of the values are a useful way
of better understanding the data content. Simple graphical tools such as his-
tograms and pie charts can quickly plot the contribution made by each value for
the categorical variable, and therefore help to identify distribution skews and
invalid or missing values. One thing that must be noted is that the frequency
distribution of any data should be considered based on a large enough represen-
tation sample. For example, if a set has 1 million males and 1 female, then it is
not a valid study for females.

When dealing with quantitative variables, the data analyst is interested in such
measures as maxim and minima, mean, mode (most frequently occurring value),
median (midpoint value) and several statistical measures of central tendency;
that is, the tendency for values to cluster around the mean. When combined,
these measures offer a powerful way of determining the presence of invalid and
skewed data. For example, maxim and minima quickly show up spurious data

51

values, and the various statistical distribution parameters give useful clues about
the level of noise in data.

During data pre-processing, two of the most common issues are noisy data and
missing values.

Noisy data

With noisy data, one or more variables have values that are significantly out of
line with what is expected for those variables. The observations in which these
noisy values occur are called outliers. Outliers can indicate good news or bad –
good news in the sense that they represent precisely the opportunities that we
are looking for; bad news in that they may well be no more than invalid data.

Different kinds of outliers must be treated in different ways. One kind of outlier
may be the result of a human error. For example, a person’s age is recorded as
650, or an income is negative. Clearly, these values have to be either corrected
(if a valid value or reasonable substitution can be found) or dropped from the
analysis. Another kind of outlier is created when changes in operational systems
have not yet been reflected in the data mining environment. For example, new
product codes introduced in operational systems show up initially as outliers.
Clearly in this case, the only action required is to update the metadata.

Skewed distribution often indicates outliers. For example, a histogram may show
that most of the people in the target group have low incomes and only a few
are high earners. It may be that these outliers are good, in that they represent
genuine high earners in this homogeneous group, or it may be that they result
from poor data collection. For example, the group may consist mainly of retired
people but, inadvertently, include a few working professionals.

In summary, what you do with outliers depends on their nature. You have to
distinguish the good outlier from the bad and react appropriately.

Missing values

Missing values include values that are simply not present in the selected data,
and/or those invalid values that we may have deleted during noise detection.
Values may be missing because of human error; because the information was
not available at the time of input; or because the data was selected across
heterogeneous sources, thus creating mismatches. To deal with missing values,
data analysts use different techniques, none of which is ideal.

One technique is simply to eliminate the observations that have missing values.
This is easily done, but it has the obvious drawback of losing valuable informa-
tion. Although this data loss may be less of a problem in situations where data
volumes are large, it certainly will affect results in mining smaller volumes or
where fraud or quality control is the objective. In these circumstances, we may
well be throwing away the very observations for which we are looking. Indeed,
the fact that the value is missing may be a clue to the source of the fraud or
quality problem. If there is a large number of observations with missing values

52

for the same variable, it may be an option to drop the variable from the analy-
sis. This again has serious consequences because, unknown to the analyst, the
variable may have been a key contributor to the solution.

The decision to eliminate data is never an easy one, nor can the consequences be
easily foreseen. Luckily, there are several ways around the problem of missing
values. One approach is to replace the missing value with its most likely value.
For quantitative variables, this most likely value could be the mean or mode.
For categorical variables, this could be the mode or a newly created value for
the variable, called UNKNOWN, for example. A more sophisticated approach
for both quantitative and categorical variables is to use a predictive model to
predict the most likely value for a variable, on the basis of the values of other
variables in observation.

Despite this stockpile of weapons to combat the problem of missing data, you
must remember that all this averaging and predicting comes at a price. The
more guessing you have to do, the further away from the real data the database
moves. Thus, in turn, it can quickly begin to affect the accuracy and validation
of the mining results.

Data transformation

During data transformation, the pre-processed data is transformed to produce
the analytical data model. The analytical data model is an informational data
model, and it represents a consolidated, integrated and time-dependent restruc-
turing of the data selected and pre-processed from various operational and ex-
ternal sources. This is a crucial phase, as the accuracy and validity of the final
results depend vitally on how the data analyst decides to structure and present
the input. For example, if a department store wants to analyse customer spend-
ing patterns, the analyst must decide whether the analysis is to be done at some
overall level, at the department level, or at the level of individual purchased ar-
ticles. Clearly, the shape of the analytical data model is critical to the types of
problems that the subsequent data mining can solve.

After the model is built, the data is typically further refined to suit the input
format requirements of the particular data mining algorithm to be used. The
fine-tuning typically involves data recording and data format conversion and
can be quite time-consuming. The techniques used can range from simple data
format conversion to complex statistical data reduction tools. Simple data con-
versions can perform calculations such as a customer’s age based on the variable
of the date of birth in the operational database. It is quite common to derive
new variables from original input data. For example, a data mining run to
determine the suitability of existing customers for a new loan product might
require to input the average account balance for the last 3-, 6- and 12-month
periods.

Another popular type of transformation is data reduction. Although it is a

53

general term that involves many different approaches, the basic objective is to
reduce the total number of variables for processing by combining several existing
variables into one new variable. For example, if a marketing department wants to
gauge how attractive prospects can be for a new, premium-level product, it can
combine several variables that are correlated, such as income, level of education
and home address, to derive a single variable that represents the attractiveness
of the prospect. Reducing the number of input variables produces a smaller and
more manageable set for further analysis. However, the approach has several
drawbacks. It is not always easy to determine which variables can be combined,
and combining variables may cause some loss of information.

Clearly, data remodelling and refining are not trivial tasks in many cases, which
explains the amount of time and effort that is typically spent in the data trans-
formation phase of the data preparation step.

Another technique, called discretisation, involves converting quantitative vari-
ables into categorical variables, by dividing the values of the input variables into
buckets. For example, a continuous variable such as income could be discretised
into a categorical variable such as income range. Incomes in the range of £0
to £15,000 could be assigned a value Low; those in the range of £15,001 to
£30,000 could be assigned a value Medium, and so on.

Last, One-of-N is also a common transformation technique that is useful when
the analyst needs to convert a categorical variable to a numeric representation,
typically for input to a neural network. For example, a categorical variable -
type of car - could be transformed into a quantitative variable with a length
equal to the number of different possible values for the original variable, and
having an agreed coding system.

Data mining

At last we come to the step in which the actual data mining takes place. The
objective is clearly to apply the selected data mining algorithm(s) to the pre-
processed data.

In reality, this step is almost inseparable from the next step (analysis of results)
in this process. The two are closely inter-linked, and the analyst typically it-
erates around the two for some time during the mining process. In fact, this
iteration often requires a step back in the process to the data preparation step.
Two steps forward, one step back often describes the reality of this part of the
data mining process.

What happens during the data mining step is dependent on the type of ap-
plication that is under development. For example, in the case of a database
segmentation, one or two runs of the algorithm may be sufficient to clear this
step and move into analysis of results. However, if the analyst is developing
a predictive model, there will be a cyclical process where the models are re-
peatedly trained and retrained on sample data before being tested against the

54

real database. Data mining developments typically involve the use of several
algorithms, which will be discussed in a later part of the chapter.

Analysis of results

Needless to say, analysing the results of the mining run is one of the most
important steps of the whole process. In addition, in spite of improvements in
graphical visualisation aids, this step can only be done properly by a skilled data
analyst working with a business analyst. The analysis of results is inseparable
from the data mining step in that the two are linked in an interactive process.

The specific activities in this step depend very much on the kind of application
that is being developed. For example, when performing a customer database
segmentation, the data analyst and business analyst attempt to label each of the
segments, to put some business interpretation on them. Each segment should be
homogeneous enough to allow for this. However, if there are only a few segments
with large concentrations of customer records, the segment cannot be sufficiently
differentiated. In this case, changing the variables on which the segmentation is
based improves the result. For example, removing the most common variables
from the large segments gives a more granular segmentation on a rerun.

When predictive models are being developed, a key objective is to test their
accuracy. This involves comparing the prediction measures against known actual
results, and input sensitivity analyses (the relative importance attributed to
each of the input variables). Failure to perform satisfactorily usually guides the
team toward the unduly influential input, or sends it in search of new input
variables. One common source of error when building a predictive model is
the selection of overly predictive variables. In the worst case, the analyst may
inadvertently select a variable that is recorded only when the event that he or
she is trying to predict occurs. Take, for example, policy cancellation data as
input to a predictive model for customer attrition. The model will perform with
100% accuracy, which should be a signal to the team to recheck the input.

Another difficulty in predictive modelling is that of over-training, where the
model predicts well on the training data but performs poorly on the unseen
test data. The problem is caused by over-exposure to the training data – the
model learns the detailed patterns of that data but cannot generalise well when
confronted with new observations from the test data set.

Developing association rules also poses special considerations. For example,
many association rules discovered may be inactionable or will reflect no more
than one-off instances. In some other cases, only the major rules, which are
already well known and therefore not actionable, are discovered. Clearly, this
is one area where careful tuning and iteration are needed to derive useful infor-
mation.

Assimilation of knowledge

55

This step closes the loop, which was opened when we set the business objectives
at the beginning of the process. The objective now is to put into action the com-
mitments made in that opening step, according to the new, valid and actionable
information from the previous process steps. There are two main challenges in
this step: to present the new findings in a convincing, business-oriented way,
and to formulate ways in which the new information can be best exploited.

Several technical issues need to be considered. At a minimum, the new informa-
tion may manifest itself as new data mining applications or modifications to be
integrated into existing technical infrastructure. Integration could involve the
inclusion of new predictive models and association rules in existing application
code, expert system shells or database procedures. In addition, operational and
informational system databases may be enhanced with new data structures. In
any event, the experiences during the data preparation step will doubtless put a
focus on data integrity in upstream operational systems. This focus will create
a demand for improved data quality and documentation in these systems, and
improved manual procedures to prevent error or fraud.

Data mining algorithms

From application to algorithm

There exist a large number of different approaches to data mining, and they can
be confusing initially. One reason for such confusions might be that inconsistent
terminology is used among data mining practitioners themselves. The table
below offers some examples of data mining applications, together with their
supporting operations (models) and techniques (algorithms):

56

The applications listed in the table represent typical business areas where data
mining is used today. Predictive modelling, database segmentation, link analy-
sis and deviation detection are the four major operations or models for imple-
menting any of the business applications. We deliberately do not show a fixed,
one-to-one link between the applications and data mining model layers, to avoid
suggestions that only certain models are appropriate for certain applications and
vice versa. Nevertheless, certain well-established links between the applications
and the corresponding operation models do exist. For example, target market-
ing strategies are always implemented by means of the database segmentation
operation. In addition, the operations (models) are not mutually exclusive. For
example, a common approach to customer retention is to segment the database
first and then apply predictive modelling to the resultant, more homogeneous
segments.

Popular data mining techniques

Decision trees

57

Decision trees (or a series of IF/THEN rules) as a commonly used machine learn-
ing algorithm are powerful and popular tools for classification and prediction.
They normally work in supervised learning situations, where they attempt to
find a test for splitting a database among the most desired categories, such as
“Web site visitor will buy vs. will not buy”. In both instances, these algorithms
will try to identify important data clusters of features within a database. Nor-
mally, an attribute (feature/field) is tested at a node of a tree; the number of
branches from that node is usually the number of possible values of that at-
tribute (for example, for gender, it will be Male, Female or Unknown, so three
branches for node gender). If the attribute is numeric, the node in a decision
tree usually tests whether its value is less than a predetermined constant, giving
a two-way split. Missing values in a data set are treated as an attribute value
in their own right. Consideration is given to the fact that a missing value may
be of some significance. An example of decision trees is shown below. It may
be generated from past experience (data) and can be used to decide what to do
according to weather conditions.

Data mining tools incorporating machine learning algorithms such as CART
(classification and regression trees), CHAID (chi-squared automatic integration
detection), ID3 (Interactive Dichotomizer) or C4.5 or C5.0 will segment a data
set into statistically significant clusters of classes based on a desired output.
Some of these tools generate ‘decision trees’ that provide a graphical breakdown
of a data set, while others produce IF/THEN rules, which segment a data set
into classes that can point out important ranges and features. Such a rule
has two parts, a condition (IF) and a result (THEN), and is represented as a
statement. For example:

IF customer_code is 03 AND number_of_purchases_made_this_year is 06
AND post_code is W1 THEN will purchase Product_X

Rule’s probability: 88%. The rule exists in 13000 records. Significance level:
Error probability < 13%

A measure of information

There are two main types of decision trees: binary and multiple branches. A
binary decision tree splits from a node in two directions, with each node rep-
resenting a yes-or-no question like the tree below. Multiple-branched decision
trees, on the other hand, can accommodate more complex questions with more
than two answers. Also, a node in such a tree can represent an attribute with
more than two possible values.

58

As mentioned before, there are a number of practical algorithms for building
decision trees. ID3 is one of them - it can automatically build trees from given
positive or negative instances. Each leaf of a decision tree asserts a positive or
negative concept.

To classify a particular input, we start at the top and follow assertions down un-
til we reach an answer. As an example, the following table lists the relationship
between species of animals and their features such as diet, size, colour and habi-
tat. Given a set of examples such as this, ID3 induces an optimal decision tree
for classifying instances. As can be seen from the figure, not all of the features
presented in the table are necessary for distinguishing classes. In this example,
the size feature is not needed at all for classifying the animals. Similarly, once
the brown or grey branches of the tree are taken, the remaining features can
be ignored. It means that colour alone is sufficient to distinguish rabbits and
weasels from the other animals.

59

The ID3 algorithm builds a decision tree in which any classification can be per-
formed by checking the fewest features (that is why the tree is called optimal).
It builds the tree by first ranking all the features in terms of their effective-
ness, from an information-theoretic standpoint, in partitioning the set of target
classes. It then makes this feature the root of the tree; each branch represents a
partition of the set of classifications. The algorithm then recurs on each branch
with the remaining features and classes. When all branches lead to single clas-
sifications, the algorithm terminates.

60

Neural networks

Neural networks (NN) are another popular data mining technique. An NN
is a system of software programs and data structures that approximates the
operation of the brain. It usually involves a large number of processors (also
called elements/neurons/nodes) operating in parallel, each with its own small
sphere of knowledge and access to data in its local memory. Typically, an NN
is initially ‘trained’ or fed with large amounts of data and rules about data
relationships. NNs are basically computing memories where the operations are
all about association and similarity. They can learn when sets of events go
together, such as when one product is sold, another is likely to sell as well,
based on patterns they have observed over time.

Supervised learning

This is basically how most neural networks learn: by example, in a supervised
mode (the correct output is known and provided to the network). Supervised
models, such as back propagation networks, are trained with pairs of examples:
positive and negative. A given input pattern is matched with a desired output
pattern. Training a supervised network is a process of providing a set of in-
puts and outputs, one at a time. The network trains by taking in each input
pattern, producing an output pattern, and then comparing its output to the
desired output. If the network output is different from the desired output, the
network adjusts its internal connection strengths (weights) in order to reduce
the difference between the actual output and the desired output. If, however,
its output matches the desired output, then the network has learned the pattern
and no correction is necessary. This process continues until the network gets the
patterns of input/output correct or until an acceptable error rate is attained.

However, because the network may get one set of patterns correct and another
wrong, the adjustments that it makes are continuous. For this reason, training
of a network is an interactive process where input/output patterns are presented
over and over again until the network ‘gets’ the patterns correctly.

A trained network has the ability to generalise on unseen data; that is, the
ability to correctly assess samples that were not in the training data set. Once
you train a network, the next step is to test it. Expose the network to samples it
has not seen before and observe the network’s output. A common methodology
is to split the available data, training on a portion of the data and testing on
the rest.

Preparing data

In general, it is easier for a NN to learn a set of distinct responses (e.g. yes
vs. no) than a continuous valued response (e.g. sales price). A common way to
deal with this problem is to ‘discrete’ an attribute. Rather than having a single
input for each sale amount, you might break it down to several ranges. Here

61

is an example. Let’s say a Web site sells software products that range in price
from very low to very high. Here, the 1-of-N coding conversion is adopted:

Most of today’s data mining tools are able to shift the data into these discrete
ranges. You should make sure that you include all ranges of values for all the
variables that the network is subject to encounter. In the Web site example,
this means including the least and most expensive items, and the lowest and
highest amounts of sales, session times, units sold, etc. As a rule, you should
have several examples in the training set for each value of a categorical attribute
and for a range of values for ordered discrete and continuous valued features.

As a summary of supervised NNs for data mining, the main tasks in using a NN
tool are listed below:

• Identify the input variables – this is very important.

• Convert the variables into usable ranges – pick a tool which will do this.

• Decide on the format of the output – continuous or categorical?

• Decide on a set of training data samples and a training schedule.

• Test the model and apply it in practice.

Unsupervised learning - self-organising map (SOM)

SOM networks are another type of popular NN algorithm that incorporate with
today’s data mining tool. An SOM network resembles a collection of neurons,
as in the human brain, each of which is connected to its neighbour. As an SOM
is exposed to samples, it begins to create self-organising clusters, like cellophane
spreading itself over chunks of data. Gradually, a network will organise clusters
and can therefore be used for situations where no output or dependent variable
is known. SOM has been used to discover associations for such purposes as
market basket analysis in retailing.

The most significant feature of an SOM is that it involves unsupervised learning
(using a training sample for which no output is known), and is commonly used

62

to discover relations in a data set. If you do not know what you are attempting
to classify, or if you feel there may be more than one way to categorise the data,
you may want to start with an SOM.

Activity 2 – SOM neural networks

http://websom.hut.fi/websom/ is a site describing SOM networks for text min-
ing. It provides good demonstration of the system. Try to see how text docu-
ments are clustered by SOM.

Review question 7

• What is a decision tree? Use an example to intuitively explain how it can be
used for data mining.

• What are the differences between supervised and unsupervised learning?

Discussion topics

In this chapter, we have covered the most important aspects of data warehousing
and data mining. The following topics are open to discussion:

• Data warehouse systems are so powerful – they improve data quality, allow
timely access, support for organisational change, improve productivity and
reduce expense. Why do we still need operational systems?

• Discuss the relationships between database, data warehouse and data min-
ing.

• Discuss why data mining is an iterative process.

63

Chapter 20. Database Administration and Tun-
ing

Table of contents

• Objectives
• Introduction
• Functions of the DBA

– Management of data activity
– Management of database structure
– Tables and tablespaces
– Data fragmentation
– Designing for the future
– Information dissemination
– Supporting application developers
– Use of the data dictionary

∗ The Oracle data dictionary
∗ Core system tables
∗ Data dictionary views
∗ Application

– Control of redundancy
– Configuration control
– Security
– Summary of DBA functions

∗ Documentation
∗ Documentation for use throughout the organisation
∗ Documentation for use within the DBA function
∗ Qualities and roles of the DBA function

• Administration of client-server systems
– Tools used in DBA administration

∗ Data dictionary
∗ Stored procedures
∗ Data buffering
∗ Asynchronous data writing
∗ Data integrity enforcement on a server
∗ Concurrency control features
∗ Communications and connectivity

– Client-server security
∗ Server security
∗ Client security
∗ Network security
∗ Checking of security violations

• Database tuning
– Tuning SQL

∗ Guidelines

1

– Tuning disk I/O
– Tuning memory
– Tuning contention
– Tools to assist performance tuning

∗ Software monitors
∗ Hardware monitors

– Other performance tools
– Concluding remarks on database tuning

• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Describe the principle functions of a database administrator.

• Discuss how the role of the database administrator might be partitioned
among a group of people in a larger organisation.

• Discuss the issues in tuning database systems, and describe examples of
typical tools used in the process of database administration.

Introduction

In parallel with this chapter, you should read Chapter 9 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

The functions of the database administrator (DBA) impact on every aspect
of database usage within an organisation, and so relate closely to most of the
chapters of this module. Database administrators often use the SQL language
for the setting up of users, table indexes and other data structures required to
support database applications. They will often work closely with analysts and
programmers during the design and implementation phases of database applica-
tions, to ensure that the decisions made during these processes are appropriate
in the context of the organisation-wide use of the database system. The DBA
will work with management and key users in developing security policy, and will
be responsible for the effective implementation of that policy in respect of the
use of the databases in the organisation. In the common situation where client-
server systems or a fully distributed database system are being used, the DBA
is likely to be the one who determines important aspects relating to how the
processing and/or data are distributed within the system, including, for exam-
ple, the frequency with which replicas are updated in a DDBMS. This activity
will be undertaken in close consultation with users and developers within the
organisation, so that the strategy is informed by a good understanding of the
priorities of the organisation as a whole. Furthermore, a good understanding of

2

the potential of new database technology, such as Object databases, is impor-
tant to the DBA role, as it enables the DBA to advise budget holders within the
organisation of the potential benefits and pitfalls of new database technology.

Modern database management systems (DBMSs) are complex software systems.
When considered within the context of an organisational environment, they are
usually key to the success of the organisation, enabling personnel at all levels of
the organisation to perform essential tasks. In order for the database systems
within an organisation to remain well aligned to requirements and provide a high
degree of availability and efficiency, the system needs to be administrated effec-
tively. The importance of the tasks of database administration was highlighted
from the early days of database systems, in the writings of James Martin and
others. With the increased complexity and frequent need in present systems to
enable multiple databases to combine to provide an efficient overall service, the
importance of database administration cannot be over-stressed. In this chapter
we shall examine the tasks involved in the administration of database systems.
We shall start by examining each of the major aspects of the job of a database
administrator (DBA), and go on to explore the way in which the tasks involve
the DBA in working with people from all levels of an organisation. In larger
organisations, the functions of the DBA are sufficiently numerous to warrant
being split among a number of different individuals who will form the members
of a DBA group. We shall look at the ways that the job of the DBA might be
partitioned, and explore the issue of what level within an organisation the DBA
functions should be placed.

One of the most important and technically demanding aspects of database ad-
ministration is the performance tuning for the database. This involves ensuring
that the database is running efficiently, and providing a reliable and responsive
service to the users of the system. In the later part of the chapter, we will dis-
cuss the major aspects of database tuning, using examples drawn from current
systems.

Functions of the DBA

Management of data activity

The term ‘data activity’ refers to the way in which data is accessed and used
within an organisation. Within medium to large organisations, formal policies
are required to define which users should be authorised to access which data,
and what levels of access they should be given; for example, query, update, copy,
etc. Processes also need to be defined to enable users to request access to data
which they would not normally be able to use. This will involve the specification
of who has responsibility for authorising users to have data access. This might
typically involve the line manager of the user requesting access, who should be
in a position to verify that access is genuinely required, plus the authorisation
of the user identified as the owner of the data, who should be in a position to

3

be aware of any implications of widening the access to the data. From time to
time, conflicts may arise during the processing of requests for access to data. For
example, a user may request access to particularly sensitive sales or personnel
data, which the data owner refuses. In these circumstances, the DBA may be
involved as one of those responsible for resolving the conflict in the best interests
of the organisation as a whole.

Much of the DBA’s activity will be focused on supporting the production en-
vironment of the organisation, where the operational programs and data are
employed in the daily business of the organisation. However, in medium to
large organisations, there will be significant activity to support developers in
the processing of writing and/or testing new software.

Data activity policies formulated to address these issues need to be clearly doc-
umented and disseminated throughout the organisation. The policies might in-
clude agreements about the availability of data, specific times at which databases
may be taken offline for maintenance, and the schedules for migrating new pro-
grams and data into the production environment.

A further aspect of data activity policy is the determination of procedures for
the backup and recovery of data. The DBA will require a detailed knowledge of
the options provided by the DBMSs being used regarding the backup of data,
the logging of transactions, and the recovery procedures in light of a range of
different types of failure.

Management of database structure

Another fundamental area of activity for the DBA concerns the definition of
the structure of the databases within the organisation. The extent to which
this is required will vary greatly depending on how mature the organisation is
in terms of existing database technology. If the organisation is in the process
of acquiring and setting up a database or databases for the first time, many
fundamental decisions need to be taken regarding how best this should be done.
Most organisations have progressed well beyond these fundamental issues today;
however, even in such organisations, the effectiveness of those initial decisions
needs to be monitored to ensure that the computer-based information within
the organisation provides a good fit for the needs of its users. Among the key
decisions to be taken during the process of establishing database systems within
an organisation are the following:

• Which type of database systems best suit the organisation? There is no
doubt that Relational database systems dominate the current marketplace,
but for some organisations, particularly those specialising in engineering
or design, there is certainly a case for examining the potential of Object-
based systems, either instead of or running alongside a Relational system.

• How many databases are required? In the early days of database systems,

4

most organisations used one single database system, and the data on that
system could be considered to provide the data model for the enterprise as
a whole. Today, it is much more often the case that a number of database
systems are employed, sometimes from different vendors, and sometimes
with different underlying data models. This usually implies the need to
transfer at least some of the data between these different systems.

• Is it necessary to establish a number of different database environments
to support different types of activity within the organisation? This might,
for example, involve the creation of development and production environ-
ments mentioned above, or may require a different organisation of work,
such as, for example in a chemical company, the setting up of one environ-
ment to support online transaction processing, and another environment
to enable the research and development of models of chemical and manu-
facturing processes.

• The interfaces between different database systems must be defined to al-
low transfer of data between them. Furthermore, interfaces between each
database system and any other important software components, such as
groupware and/or office information systems, need to be established.

The above decisions can be seen as arising at the strategic level of database
administration, and will be considered in conjunction with senior members of
the company and/or department in which the DBA is based. Nearer to the
operational level, there is a range of important decisions concerning the struc-
ture of individual database systems within the organisation. Some of these are
described below.

Tables and tablespaces

A ‘tablespace’ is a unit of disk space which contains a number of database tables.
Usually each tablespace is allocated to data of a particular type; for example,
there may be a tablespace established to contain user data, and another one to
contain temporary data, i.e. data that is only in existence for a short time and
is usually required in order to enable specific processes such as data sorting to
take place. A further example might be in a university database, where separate
tablespaces might be established respectively to support student, teaching staff
and administrative users.

As an aside, the pattern of usage of tables in the student tablespace of a uni-
versity database is very different to that typically seen in a commercial system.
Very generally speaking, in a commercial system, data activity in a production
environment might be characterised as comprising the following:

• Access to a relatively small number of fairly large tables.

• Regular executions of a predefined set of transactions.

5

• Several transactions may regularly scan large volumes of data.

In contrast, data activity in a student tablespace during a database class might
be characterised as comprising:

• Many different tables, each of which contains only a few rows.

• Irregular and different types of transactions.

• Very small numbers of records processed by each transaction.

Tablespaces are an extremely important unit of access in database administra-
tion. In many systems they are a unit of recovery, and, for example, it may be
necessary to take the whole tablespace offline in order to carry out recovery or
data reorganisation operations to data in that tablespace.

A further important consideration is the way in which tables, indexes and ta-
blespaces are allocated to physical storage media such as disks. This will be
discussed further later in this chapter, in the section on database tuning. It
is important here to point out that the DBA requires a good understanding
of the volume of query and update transactions to be made on the tables in
a tablespace, so that the allocation of physical storage space can be made in
such a way that no physical device such as a disk becomes a major bottleneck
in limiting the throughput of transactions.

Typically, database systems provide a number of parameters that can be used
to specify the size of tablespaces and tables. These often include the following:

• Initial extents: The amount of disk space initially made available to the
structure.

• Next extents: The value by which the amount of storage space available
to the structure will be increased when it runs out of space.

• Max extents: The maximum amount of space to be made available to the
structure, beyond which further growth can only be enabled by further
intervention by the DBA.

Note: An extent is a term referring to a contiguous area of disk space. For any
specific DBMS, it will consist of a number of data blocks which will be stored
together in the same extent.

Data fragmentation

Over a period of time during which a database table is being used, it is likely
to experience a significant number of inserts, updates and deletions of data.
Because it is not always possible to fit new data into the gaps left by previously
removed data, the net effect of these changes is that the storage area used to
contain the table is left rather fragmented, containing a number of small areas
which are hard to insert new data into them. This phenomenon is called ‘data

6

fragmentation’. The effect of data fragmentation in the long run is to slow down
the performance of transactions accessing data in the fragmented table, as it
takes longer to locate data in the fragmented storage space. Some database
systems provide utilities (small programs) that can be used to remove these
pockets of unusable space, consolidating the table once more into one contiguous
storage structure — this is known as defragmentation. In other DBMSs, where
no defragmentation utility is available, it may be necessary to export the table
to an operating system file, and re-import it into the database, so that the
pockets of unusable free space are removed.

Review question 1

• Describe the difference between production and development environ-
ments.

• Make a list of the range of different types of failure that the DBA needs
to plan for in determining adequate backup and recovery strategies.

• Describe typical parameters that can be used to control the growth of
tables and tablespaces.

• What is gained when a table is defragmented?

Designing for the future

An important overall principle to be applied when trying to estimate the re-
quirements for storage and performance tuning is to design for the future. It
will be part of the DBA’s role to collect information from those responsible for
the introduction of new database applications, about the volumes of data and
processing involved. Producing such estimates can be extremely difficult, but
even when these are correct, it is a mistake to plan on the basis of these figures
alone. It is more realistic to base estimates of the volume of data and processing
required on what they might be expected to have reached in a year’s time, and
to provide sufficient storage and processing capacity on that basis. This avoids
being caught by surprise, should the volume of activity within the application
grow much faster than was initially anticipated.

Information dissemination

Communication is an essential aspect of the role of the DBA. When new re-
leases of DBMSs are introduced within the organisation, or new applications or
upgrades come into use, it is important that the DBA is sensitive to the needs of
the user population as a whole, and produces usable documentation to describe
the changes that are taking place, including the possible side effects on users and
developers. An equally important role in communicating information relates to
the development and dissemination of information about programming and test-
ing standards that may be required within an organisation. This may include

7

specifications of who is able to access which data structures, and standards for
the use of query and update transactions throughout the organisation.

Supporting application developers

The DBA plays an important role in assisting those involved with the devel-
opment and/or acquisition of software for the organisation. As well as being
the gatekeeper of database resources, and monitoring future requirements for
database processing (as exemplified in activity 1 further on), the DBA can pro-
vide ongoing advice to analysts and programmers about the best use of database
resources. Typical issues that this may involve are the following:

• Information on the different types and instances of databases in the or-
ganisation, including the interfaces between them, any regular times when
databases are unavailable, etc.

• Advice on the details of existing tables and tablespaces in the databases
of the organisation.

• Advice on the use of indexes, different index types available and indexes
currently set up.

• Details of security standards and procedures.

• Details of existing standards and procedures for the use of programming
languages (including query languages).

• Details of migration procedures used for moving programs and data in
and out of production.

Use of the data dictionary

The data dictionary is a key resource for database administration. It contains
data about the tablespaces, tables, indexes, users and their privileges, database
constraints and triggers, etc. Database administrators should develop a good
knowledge of the most commonly used tables in the dictionary, and reference
it regularly to retrieve information about the current state of the system. The
way in which dictionaries are organised varies greatly between different DBMSs,
and may change significantly with different releases of the same DBMS.

The Oracle data dictionary

The Oracle data dictionary is a set of tables that the Oracle DBMS uses to record
information about the structure of the database. There is a set of core system
tables, which are owned by the Oracle user present on all Oracle databases,
the SYS user. SYS is rarely used, even by DBAs, for maintenance or enquiry
work. Instead, another Oracle user with high-level system privileges is used.

8

The DBA does not usually use the SYSTEM user, which is also automatically
defined when the database is created. This is because product-specific tables
are installed in SYSTEM, and accidental modification or deletion of these tables
can interfere with the proper functioning of some of the Oracle products.

Core system tables

The core data dictionary tables have short names, such as tab$, col$, ind$.
These core system tables are rarely referenced directly, for the information is
available in more easily usable forms in the data dictionary views defined when
the database is created. To obtain a complete list of the data dictionary views,
query the DICT view, as shown in the section on data dictionary views below.

Data dictionary views

The data dictionary views are based on the X$ and V$ tables. They make infor-
mation available in a readable format. The names of these views are available
by selecting from the DICT data dictionary view. Selecting all the rows from
this view shows a complete list of the other accessible views.

SQL*DBA is an Oracle product from which many of the database administra-
tion tasks can be performed. However, SQL*Plus provides basic column format-
ting, whereas the SQL*DBA utility does not. Therefore, you use SQL*Plus for
running queries on these views. If you are not sure which data dictionary view
contains the information that you want, write a query on the DICT_COLUMNS
view.

Most views used for day-to-day access begin with USER, ALL or DBA. The
USER views show information on objects owned by the Oracle user running
the query. The data dictionary views beginning with ALL show information
on objects owned by the current Oracle user as well as objects to which the
user has been given access. If you connect to a more privileged Oracle account
such as SYS or SYSTEM, you can access the DBA data dictionary views. The
DBA views are typically used only by the DBA. They show information for all
the users of the database. The SELECT ANY TABLE system privilege enables
other users to access these views. Querying the DBA_TABLES view shows the
tables owned by all the Oracle user accounts on the database.

Application

Activity 1 - Capturing requirements for application migration

Imagine you are a database administrator working within a large organisation
multinational. The Information Systems department is responsible for the in-
house development and purchase of software used throughout the organisation.
As part of your role, you require information about the planned introduction of
software that will run in the production database environment. You are required

9

to develop a form which must be completed by systems analysts six weeks before
their application is moved into production. Using a convenient word processing
package, develop a form to capture the data that you think may be required in
order for the DBA team to plan for any extra capacity that might be required
for the new application.

Activity 2 - Examining dictionary views available from your user ac-
count

Query the DICT_COLUMNS table to examine the list of tables including the
string USER visible from your own Oracle account. Remember to put USER
in upper case in the query. The output should contain quite a lot of views. To
avoid the information scrolling off the top of the screen, issue the command

Set pause on

prior to issuing the query. The information should then appear 24 lines at a
time. You can view the next 24 lines by pressing the Enter key on your PC.

Activity 3 - Examining the details of available tables

Log into your Oracle account. Issue the following command to view the details
of tables that you own:

SELECT * FROM USER_TABLES;

Examine the columns of the results that are returned.

To explore any further tables that are available to you, issue the following query:

SELECT * FROM ALL_TABLES;

To examine any of these tables further, use the DESCRIBE command, or issue
further SELECT commands on the specific tables you find.

Control of redundancy

We have seen from the chapters on database design that a good overall database
design principle is to store one fact in one place. This reduces the chances of
data inconsistency, and avoids wasted space. There are, however, situations
in which it can be appropriate to store redundant information. One major
example of this we have seen in connection with the storage of replicas or copies
of data at different sites in a truly distributed database system. Even within
a non-distributed system, data may sometimes be duplicated, or derived data
stored, in order to improve overall performance. An example of storing derived
data to improve performance, might be where a value which normally could
be calculated from base values in an SQL query is actually stored explicitly,
avoiding the need for the calculation. For example, we might store net salary
values, rather than relying on transactions to calculate the value by subtracting
various deductions (for tax, national insurance, etc) from gross pay. This reduces

10

the processing load on the system, at the expense of the extra storage space
required to hold the derived values. The issue of calculating derived values
every time from the underlying base values is generally more of a significant
problem than the provision of the extra storage space required. The DBA will
play an important role in advising developers about the use of redundant and
derived data, and will maintain control of these issues, as part of the overall
responsibility for ensuring the database runs efficiently.

Configuration control

In a modern database environment, there are usually several products which
are used to provide the range of functions required. These will typically include
the database server, and various additional products such as a GUI forms-based
interface, report writing tool, data graphing tool, software to assist the design
of new applications, utilities for migrating programs and data in and out of pro-
duction, etc. All of these different software components will be upgraded from
time to time, and it is likely that some of them will come from different vendors.
Many of the problems that occur in developing Information Systems arise when
trying to enable two or more software components to communicate effectively.
For this reason, it is essential that the DBA maintains a record of which versions
of which software components have been and are currently running. In general,
this area of work is known as configuration control. The information needed to
be maintained to carry out successful configuration control is, as a minimum,
the following:

• For currently running software components, a note of the name, exact
release number, date put into production, vendor, and the details of any
parameter values or activities that have been necessary in order to estab-
lish interfaces with other products, including the release numbers of those
products and the dates during which these changes were effective.

• For software components that have been used previously: the name, exact
release number, dates introduced and withdrawn from production, vendor,
and as above, any details required of parameter values or other activities
required to enable this component to communicate effectively with other
products, including the release numbers of those products and the dates
during which these values, etc, were in effect.

Even when all of the products have been purchased from the same vendor, proper
configuration control is extremely important to ensure the correct running of the
environment. Having this information available gives the option that, should
a problem arise involving incompatibilities of software components, it may be
possible to revert back to a previously stable configuration, maintaining a service
to users while the incompatibility problem is resolved.

11

Security

Security is a major issue in database systems, and the DBA is the foremost per-
son with responsibility for ensuring the day-to-day security of the stored data.
This process begins with the DBA working in conjunction with managers, key
users and owners of the organisations data, to establish appropriate security
mechanisms and procedures. This will be a process of determining how to make
the most appropriate use within the organisation of the security mechanisms
provided by the DBMS and other software in use, plus a clear definition and
documentation of supporting policies and processes to ensure that data and pro-
grams are properly protected. Typical issues that should be addressed include:

• Procedures for the allocation of passwords. Many database systems pro-
vide considerable flexibility in the use of passwords, enabling them to be
set from the database level right down to the individual attribute level.
Procedures need to be defined regarding how passwords are allocated, in-
cluding any rules regarding the format of passwords; e.g. whether they
should exceed a certain length, and how long they can be used for be-
fore they expire and need to be reset. The requirements for passwords
may vary hugely, from a development environment in which a number
of standard user accounts have been established requiring no password
protection, right through to highly secure production situations such as
records of bank account details, in which two passwords may be required
to access a particularly sensitive attribute. In general, a very important
consideration to keep in mind with all security mechanisms, is the set of
procedures and practices that are used within the organisation for the
use and communication of security information. For example, there is no
point in having a very sophisticated software protection system to prevent
people from discovering one another’s passwords, if it is commonplace for
people to write their passwords on their PCs or in other places in their
work area, where they can be easily read by anybody.

• Procedures for the administration of database privileges, such as the grant-
ing and revocation of access to tables, query and update transactions.

• The use of encryption techniques for encoding data while it is being trans-
mitted over networks, including any intranet and the Internet.

• As discussed earlier, the establishment of procedures for transaction log-
ging and recovery from a range of different failures.

Summary of DBA functions

Documentation

We have seen that the job of the database administrator impacts on many
aspects of an organisation’s work. Depending on the geographical spread of an

12

organisation, and its size in terms of personnel, the person or people undertaking
the DBA role may be required to produce a significant amount of documentation,
in order to describe various aspects of database activity to users as a whole. This
documentation is likely to include the following elements:

Documentation for use throughout the organisation

• Security standards and procedures.

• Details of forthcoming changes to DBMSs being used or of DBMSs to be
introduced.

• Database change procedures for developers.

• Meeting documentation to clarify agreed developments and changes with
users.

• Programming and query language standards.

Documentation for use within the DBA function

• Documentation for configuration control.

• Records of changes made to the database structure and system.

• Records of test procedures and test runs after changes.

Qualities and roles of the DBA function

The DBA is clearly a key player in the success or failure of a company. The role
encompasses a wide range of technical and political/social skills. In medium to
large organisations, it is extremely likely that the job of database administration
will be split into a number of different parts, and be performed by a group of
between 3-5 people. Each of these individuals will take responsibility for specific
aspects of database administration. Among the qualities that would be required
collectively of this group of people, we would expect to see the following:

• Good communications. The DBA needs to communicate effectively with
people throughout the entire spectrum of the organisation. Communi-
cations with high-level management is required, in order that the DBA
function can be sufficiently informed about strategic directions, so that
the database strategy for the organisation can be closely aligned with the
business strategy. Frequent communications will be needed with many
other levels of the organisation, including Information Systems personnel,
end-users and their managers.

• Technical knowledge. In addition to the need to have a sound knowledge
of the various utilities and database languages being used to administer
user privileges and monitor database activity, a detailed understanding of

13

the interfaces to other database systems is often required. The knowledge
used to tune the performance of a database system ranges from the ability
to spot individual trouble spots, such as an inefficiently coded SQL trans-
action, which can be sped up by recording or the use of indexes, through
to variations of system parameters that might be used to make global
performance improvements to the DBMS.

• Good understanding of the organisation and its priorities; ability to liaise
with management.

• Good arbitrator, in situations where it is necessary to make decisions
regarding disputes over access to data or processes.

• Trustworthy - clearly a major part of the security of the organisation is in
the hands of the DBA.

• Respected by application development staff and management.

• Cool under pressure. Should disasters arise, for example at the database-
application or whole-DBMS level, it is likely that the DBA will be involved
in trying to resolve the situation, with minimum disruption to the users
and clients of the organisation.

• Flexible. It is possible that years of hard-won knowledge relating to a
specific DBMS may from time to time become obsolete, either because that
system is replaced by a substantial new release, or because for business
reasons, the organisation decides to migrate to a totally different DBMS.

In situations where the functions of database administration are to be organised
among the members of a DBA group or team, the following roles might be
identified. Depending on the level of work related to each role, one person may
adopt more than one role within the overall context of the DBA group.

• Database project leader.

• Documentation and standards developer/disseminator.

• User representative.

• Database systems manager.

• Performance tuning expert.

• Research and development specialist, perhaps looking into database tech-
nologies which are new, or new to the organisation, such as replication,
Object databases, data mining, etc.

Review question 2

• Describe an example of a situation other than that given in the content
of the chapter, in which it may be desirable to store redundant or derived
data.

• Describe the arguments for and against storing derived data.

14

• Explain what is meant by the term configuration control.

Administration of client-server systems

The job of the DBA is to decide what database system and architecture is
suitable for the company. He/she needs to be well in tune with the business
strategies and objectives, and how the database architecture impacts the devel-
opment and priorities of the organisation’s information systems. He/she is the
person to establish policies for maintaining and dealing with database systems
in the organisation. He/she is also responsible for ensuring that the system
operates with adequate performance to meet the demands of the organisation.
Faced with such great responsibility, the DBA needs to know the various issues
of client-server architecture and what impact it has on the organisation.

The advantage of client-server architecture is its potential in portability, scala-
bility and interconnectability of clients and servers using various network con-
figurations. In addition, when evaluating Relational DBMS on client-server
systems, the DBA must consider many factors besides the architectural model -
transaction control, performance, security, integrity, procedure logic and other
issues also figure prominently.

SQL has become a standard data access language between client and server
machines. We expect to find a mechanism for the server to accept SQL state-
ments and return data and status codes to the client. However, many vendors
have added their own extra extensions to standard SQL (i.e. proprietary data-
access languages). These extensions are advanced and change as strategy and
technology develops.

However, though the extra SQL features can be attractive, the portability of
the application in the future may be affected.

It should be noted that no theoretical rule says that only one server may access
the database, and there are many reasons for wanting more than one in oper-
ation. Once a server has been activated, it is called an instance. A database
without an attached instance is a lifeless collection of data and status informa-
tion; likewise, an instance that is not attached to a database is useless.

Tools used in DBA administration

Tools that are of value to the DBA in supporting client-server systems are as
follows:

Data dictionary

The data dictionary is, as we have seen, itself a set of tables and views. When
responding to a client request, the server can find any data required about the

15

data it needs in the data dictionary. It can use the same mechanisms it employs
on behalf of clients to read its own data. These are commonly known as recursive
requests because the server generates them automatically.

Stored procedures

(These are used by the DBA and programmers, briefly encountered in the chap-
ters on distributed database systems.) Stored procedures are groups of SQL
statements which are stored in the server. They can be run like procedures
written in standard programming languages, and allow portions of application
code (normally commonly executed tasks or transactions) to move from client
to server. The server checks the syntax of these stored procedures, The exis-
tence, accessibility and data type of each object mentioned in each statement
must then be verified. The database engine’s SQL optimiser is usually invoked
at this point to choose the best access path to the referenced data. Advantages
of stored procedures are that they reduce network traffic (fewer SQL statements
are sent from client to server), and they improve server performance as they are
compiled prior to execution on the server.

Data buffering

During execution of statements that query or update the database, certain data
(sent from or requested by the client) is placed in memory. The server tries to
keep the data in memory to save disk input/output (I/O) should the next request
require data that’s still in the buffer. The buffer size should be configured so
the DBA can optimise the memory-versus-speed trade-off.

Most servers provide shared buffering, in which data brought into the buffer for
one client will be later used by all others. When data is regularly shared by
many users, server buffering is a necessity.

Asynchronous data writing

This feature is used to try to smooth out peaks in I/O that may arise during
database processing. If I/O slows down, the server starts writing data blocks
from the buffers to disk. Since this write activity is scheduled during periods of
otherwise low I/O, there is no degradation in performance, even if the data in
the buffer is changed later. If an urgent need for buffer space develops, the disk
write is already done; the new request can be serviced without a time-consuming
disk wait.

Data integrity enforcement on a server

With the client-server architecture, all database processing can be consolidated
on a server machine. Such consolidation provides an opportunity to achieve

16

a high degree of data integrity. Since every database request is processed by
a server, if database constraints are defined at the server level, they can be
consistently applied. Server-based enforcement of data integrity guarantees data
correctness and integrity by having the server enforce constraints on any changes
or updates to the database. As such constraints are held centrally, they cannot
be bypassed as the data can only be accessed through the server software.

Concurrency control features

One of the challenges in the development of client-server applications is to gain
the maximum degree of parallelism on the client computers while providing
protection against problems such as lost updates and inconsistent reads. Con-
currency control allows multiple clients to access the server and still preserve
the integrity of shared data. Updates by users are controlled and isolated to pre-
vent one’s changes disrupting or overwriting another’s. This is usually enforced
by using various automatic locking mechanisms, multiversioning techniques or
rollback of partially completed transactions.

Some server implementations provide consistency by blocking writers from ac-
cessing the data being read. Others offer snapshots showing the state of data
when the read began. Changes are ignored until the next read statement begins.

Communications and connectivity

A characteristic of client-server architecture is that a client application and
server software are on different computers. The protocol used to pass messages,
SQL and data between them is therefore of crucial importance. As there is no
single standard protocol for computer networks, the server has to offer tools
to handle the complexities of multivendor networks (i.e. to enable any appli-
cation to be able to run on any network supported by the server without the
application developer needing to be concerned with handling the hardware and
network-specific communications issues). However, the connection between PCs
and minicomputers is much more complex to implement than a conventional
terminal-to-host implementation.

Client-server security

Server security

The built-in security mechanism of the database server provides central data
access control, thereby reducing the need for security measures in the client
applications. The server normally provides three basic levels of security:

1. User enrolment. This involves granting a user access to the database server
itself.

17

2. Access privileges. This grants users access and privileges to individual
database objects.

3. Resource allocation. This controls the amount of disk space allocated on
the server to each user’s database objects.

Client security

As the general administration of security in a client-server system is handled by
the DBA at the server end, the client needs only to be concerned with errors
returned from the server when an unauthorised operation is detected.

Network security

The distribution of a system, be it as a client-server or truly distributed database
system, requires the additional issues associated with the protection of the data
as it is transmitted across the network to be handled. This is most often dealt
with by encryption algorithms, which encode the data, rendering it useless if it
is intercepted during transmission. Following reception of encrypted data, the
receiver of the data will run the decryption algorithm to re-establish the original
data values.

Checking of security violations

Journal logging and other facilities are used to locate security breaches or vio-
lations in the server. The reason for a user failing action should also be logged
so that the DBA can distinguish between a simple human error and attempted
security violations.

Review question 3

Within the context of client-server systems, explain the meaning of the following
terms:

1. Shared data buffering

2. Asynchronous data writing

Database tuning

Providing an efficient service to users of the database system is an ongoing
responsibility of the DBA. In the following sections we shall examine some of
the major considerations involved in the tuning of a database system. Most
of the examples we shall give are somewhat specific to the Oracle DBMS, but
certainly have analogies in any of the other major database systems of today.

18

Tuning SQL

The optimisation of SQL transactions is a major topic in its own right. There
are a number of guidelines which can be followed, which in general will lead to
more efficient SQL. In general, the DBA activity in tuning specific transactions
should be focused on those which:

• are run sufficiently often to have a noticeable impact on performance;

• access sufficient numbers of records (including intermediate results ob-
tained during the evaluation of the query) to provide scope for transaction
tuning.

Guidelines

The following guidelines can be applied when tuning SQL transactions:

• Use indexes on primary and foreign keys, and consider their use on other
attributes that are frequently referenced in the WHERE clause of queries.

• Corollary to the above, indexes improve performance for queries that re-
turn fewer than approximately 20% of the rows in a table; otherwise it is
faster to use a full table scan. For update transactions, indexes can actu-
ally make things slower, because of the need to update the index structure.

• Unique indexes are faster than non-unique indexes.

• Several SQL constructs, such as use of the keywords like ‘%string’, distinct,
group by, order by, max, etc, lead a query not to use an index. The reason
for this is that either the data to use the index is not available (as with
‘%string’), or the operation implies a sort of the data, in which case all of
the rows need to be accessed.

• Compressed indexes save space, but do not provide as substantial an im-
provement in response time.

• In general, joins are executed more efficiently than nested queries. This
may provide scope for recasting an existing nested query in the form of a
join.

• Use of short table aliases in queries can improve performance.

Activity 4 - Examining the time response of queries

To examine the times associated with the execution of an SQL command in
Oracle, we can use the sql*plus command

Set timing on

Log in to the Oracle system and issue the above command. Experiment then
by running several queries to examine the time values returned. For example,
experiment for queries that return a single row, that perform a full table scan,

19

and for JOIN queries. The value returned for each query appears after the rows
displayed in the result of the query.

Tuning disk I/O

No matter how much money you spend on high-speed disk technology, there
is still no getting away from the fact that disks are slow when compared with
solid-state devices. For this reason, most data structures and design options are
geared around minimising disk input and output. As long as we are limited to
disks as the main medium for storing our data, then researchers will continue
to search for methods to improve the efficiency of storing and retrieving data
from these devices. The following guidelines are useful when trying to minimise
the impact of relatively slow disk I/O processes:

• Reduce disk contention. Contention occurs when several users try to access
the same disk, at the same time. If contention is noticeable on a particular
disk and queues are visible, then distribute the I/O by moving heavily
accessed files onto a less active disk. Distribute tables and indexes on
different disks if resources are available.

• Allocate free space in data blocks (i.e. space in a block is used by INSERTS
and also UPDATES which increase the size of a row).

• Allow for block chaining by using PCTFREE (Oracle specific, i.e. the per-
centage of blocks reserved for row expansion) parameter to control/limit
chaining. Chaining can be examined using the ANALYZE command.
(Chaining occurs when data in a block grows beyond the size that can
be contained within the block, and so some of the data must be stored
in a further block, to which the original block must have a pointer. We
describe this dynamic expansion of data into additional blocks as chaining.
Its overall effect is to reduce performance, as the system must follow the
series of pointers to retrieve requested data.)

• Seek to minimise dynamic expansion. For example, with Oracle, set up
storage parameters in the CREATE table and CREATE tablespace state-
ments so that Oracle will allocate enough space for the maximum size of
the object. Hence space will not need to be extended later.

• Tune the database writer DBWR (an Oracle-specific process which writes
out data from the buffer cache to the database files).

Note: If the hardware is changed in the future, then it is quite likely that
the system will need re-tuning, because many of the settings will be hardware
specific.

20

Tuning memory

As previously mentioned, accessing disk is very expensive in terms of perfor-
mance, whereas access to memory is much faster. Hence, we want to make the
majority of accesses to be to memory rather than to disk. In an ideal world(!),
it would be nice if we could load the whole of the database into memory so that
all accesses are then to memory, rather than disk. Obviously this is not possible
in the real world, so instead the system needs to be tuned to make the best use
of the limited amount of memory available.

Oracle’s memory can be broken down as follows:

• System Global Area (SGA): This block of memory is used for storing
data for use by Oracle processes. It is a shared portion of memory for all
Oracle processes.

• Caches: Blocks of memory used for keeping copies of data that is also
on disk, but which can be accessed much quicker here. Hence it makes
sense to keep frequently accessed data in cache. The two main caches of
concern are:

• Data dictionary cache: Requires only a small amount of memory in
comparison to the buffer cache, but can have a dramatic effect on perfor-
mance. The actual size of this will depend on the different types of objects
used by applications.

• Buffer cache: It is here where tables and indexes can be stored. The most
frequently accessed tables and indexes should be stored here to minimise
disk I/O as much as possible.

• Program global area (PGA): A PGA is a non-shared memory region
that contains data and control information exclusively for use by an Oracle
process. The PGA is created by Oracle Database when an Oracle process
is started.

• User Global Area (UGA): The UGA is memory associated with a user
session.

• Software code areas: Software code areas are portions of memory used
to store code that is being run or can be run. Oracle Database code is
stored in a software area that is typically at a different location from user
programs — a more exclusive or protected location.

Note

Memory is also required for operating system use, hence other factors need to be
taken into account, such as memory allocation for paging and virtual memory.
For example, if the system is multi-user, then an increase in the number of users
currently online could alter the performance on the machine quite dramatically.

21

Tuning contention

The term ‘contention’ refers to a problem which can arise in most areas of
computing. It occurs when several processes make an attempt to gain access to
the same resource at the same time. This will obviously result in a performance
degradation, as one or more processes will need to wait until the resource is
available. There are three main areas concerning memory contention in Oracle:

• Data blocks. Usually occurs when users attempt to update the same block.

• Rollback segments. All transactions use the rollback segments, so if there
is only a small number of segments, contention is quite likely. A guideline
given by Oracle is to use one rollback segment per five active users.

• Redo log buffers. Any block modification will write data to this buffer.
The ‘redo space waits’ statistic can be used to provide information on
contention for this buffer.

Tools to assist performance tuning

Having looked at the various factors that can affect performance in a system,
what tools are available to aid the tuning process? Depending on the type
of database, there will be a selection of tools available to monitor the system,
allowing the DBA (or similar) to see the effects of tweaking the system.

Monitors can be broken down into two types:

• Software monitors

• Hardware monitors

Software monitors

These are programs which can be called up when necessary to provide statistics
on the state of the system. These tools are flexible and may even be specially
written by the DBA, although most vendors now supply these. Unfortunately,
as these tools actually run on the system, they themselves apply an additional
performance overhead, requiring CPU time, etc, in order to execute.

Hardware monitors

Hardware monitors consist of electronic devices which record data collected
by probes, where each probe is connected to circuitry in the machine and/or
peripherals. A major advantage of these, is that they do not interfere with the
operation of the system.

As well as monitors, tools are available which aid database set up, loading,
checking, back-up, and recovery and general database maintenance.

22

Other performance tools

An overview of some of the performance tools which are commercially available
are as follows:

• Explain facility. This excellent facility allows the user to obtain informa-
tion regarding the optimiser’s choice of access strategy for a particular
SQL statement. It is available for both Oracle and DB2. It works by
examining the access paths that would have been chosen for the execution
of a particular query. Note that it doesn’t actually execute the query,
which is a major bonus if trying to analyse the processing of a lengthy
transaction.

• SQL*DBA monitor facilities. This Oracle utility allows the DBA to mon-
itor database activity, which is grouped into areas such as Locking, File
I/O, Statistics and Tables. This utility allows most bottlenecks which are
causing performance degradation to be discovered.

• RUNSTATS utility. A DB2 utility which calculates statistics based on
data stored. It is usually run after data is loaded or after a significant
amount of updating has taken place.

Concluding remarks on database tuning

The subject of database performance tuning continues to receive a great deal of
attention in both academic and industrial establishments. As databases become
more complex, they place an even greater load on available resources, hence
improved techniques for getting the best performance out of the system will
always be in demand.

Discussion topics

1. Evaluating database systems

Database administrators require from time to time to evaluate database
systems in order to assess whether they will meet the needs of their organi-
sation. This process will involve discussing requirements and features with
the vendors of the database systems being considered, viewing of demon-
strations, and finding out the opinions of other users of the systems. Some
of the requirements for the system may be very specific to the organisation,
but there are many characteristics which are generic to the evaluation of
database systems. In discussion, identify the factors that you consider to
be important in evaluating a DBMS. You may wish to start by making
a personalised list of factors, and proceed by exchanging and discussing
the lists prepared by other people on the course. In particular, given the
fact that no DBMS is likely to fulfil all the requirements stated, it may

23

be interesting to seek agreement on a prioritised list of your top 10 or so
requirements. There may be a few cases where it is not possible to place
a higher priority on one factor than another, but these situation should
be kept to a minimum, to sharpen the selectivity of your prioritised list.

2. Distribution of the DBA function

In an organisation using a truly distributed database system, it would
be possible to allocate aspects of the database administration function
to individuals based at sites where significant amounts of data are to
be stored. Consider in discussion what may be the possible benefits of
distributing the database administration function in this way, and whether
anything might be lost in distributing the function, when compared with
a more centralised approach.

24

1

Answers to the chapter review questions

Chapter 1

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Review Question 8

Chapter 2

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Review Question 8

Review Question 9

Chapter 3

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Chapter 4

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Chapter 5

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Review Question 8

Review Question 9

Chapter 6

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Chapter 7

Review Question 1

Review Question 2

Review Question 3

Chapter 8

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Review Question 8

Chapter 9

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Review Question 8

Review Question 9

Review Question 10

Review Question 11

Chapter 10

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Review Question 8

Chapter 11

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Review Question 8

Chapter 12

Review Question 1

Review Question 2

Chapter 13

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Chapter 14

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Chapter 15

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Chapter 16

Review Question 1

Review Question 2

Chapter 17

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Review Question 8

Chapter 18

Review Question 1

Review Question 2

Chapter 19

Review Question 1

Review Question 2

Review Question 3

Review Question 4

Review Question 5

Review Question 6

Review Question 7

Chapter 20

Review Question 1

Review Question 2

Review Question 3

2

	chp01
	Chapter 1. Introduction to the Module
	Module objectives
	Chapter objectives
	Introduction
	Motivation for data storage
	Traditional file-based approach
	The shared file approach
	The database approach
	ANSI/SPARC three-level architecture
	Components of a DBMS
	Benefits of the database approach
	Risks of the database approach

	Data and database administration
	The role of the data administrator
	The role of the database administrator

	Introduction to the Relational model
	Entities, attributes and relationships
	Relation: Stationery

	Discussion topic
	Additional content and activities

	chp02
	Chapter 2. The Relational Model
	Objectives
	Introduction
	Context
	Structure of the Relational model
	Theoretical foundations
	Uniform representation of data
	Relation
	Attribute
	Domain
	Tuple
	Degree
	Cardinality
	Primary key
	Foreign keys
	Integrity constraints

	Data manipulation: The Relational Algebra
	Restrict
	Project
	Union
	Intersection
	Difference
	Cartesian product
	Division
	Join
	Activities

	Review questions
	Discussion topics
	Additional content and activities

	chp03
	Chapter 3. Introduction to SQL
	Objectives
	Introduction to SQL
	Context
	SQL overview
	The example company database
	The EMP table
	The DEPT table
	The data contained in the EMP and DEPT tables

	SQL SELECT statement
	Simple example queries
	Calculating values and naming query columns

	The WHERE clause
	Basic syntax of the WHERE clause
	Examples of using the WHERE clause
	The use of NOT
	The use of !=
	Retrieving from a list of values
	Querying over a range of values
	Searching for partial matches

	Sorting data
	Descending order
	A sort within a sort

	Handling NULL values in query results (the NVL function)
	WHERE clauses using IS NULL and IS NOT NULL
	The NVL function

	REFERENCE MATERIAL: SQL functions
	Arithmetic functions
	Character functions
	Date functions
	Aggregate functions

	Activity - EMPLOYEE AND DEPARTMENT QUERIES
	Review questions
	Discussion topics

	chp04
	Chapter 4. Intermediate SQL
	Objectives
	Introduction
	Context
	Grouping and summarising information
	A very common error with GROUP BY
	The HAVING clause

	Writing queries on more than one table - JOIN
	Avoiding ambiguously named columns
	Outer JOINs
	Using table aliases
	SELF JOINS
	Summary of JOINs

	Nested queries
	The depth and breadth of nested queries

	The UNION operator
	The INTERSECT operator
	The MINUS operator
	ANY or ALL operator
	Correlated sub-queries
	Interactive queries
	Activities
	Activity 1: JOINs
	Activity 2: GROUP BY
	Activity 3: Nested queries

	Review questions
	Discussion topic
	Additional content

	chp05
	Chapter 5. Advanced SQL
	Objectives
	Introduction
	Context
	Creating tables in SQL
	Data types
	Defining primary keys
	Defining foreign keys
	Copying data by combining CREATE TABLE and SELECT
	Copying table structures without data

	The ALTER TABLE statement
	Using ALTER TABLE to add columns
	Modifying columns with ALTER TABLE

	Removing tables using the DROP TABLE statement
	Using DROP TABLE when creating tables

	Adding new rows to table with INSERT
	Changing column values with UPDATE
	Removing rows with DELETE
	Creating views in SQL
	Views and updates

	Renaming tables
	Creating and deleting a database
	Using SQL scripts
	Activities
	Activity 1: Data definition language
	Activity 2: Manipulating rows in tables
	Activity 3: Creating and removing views

	Review questions
	Discussion topic
	Additional content and activities

	chp06
	Chapter 6. Entity-Relationship Modelling
	Objectives
	Introduction
	Context
	Entities, attributes and values
	Entities
	Attributes
	Values
	Primary key data elements
	Key
	Candidate keys
	Foreign keys

	Entity-Relationship Modelling
	Entity representation
	One-to-one relationships between two entities
	One-to-many relationships between two entities
	Many-to-many relationships between two entities
	Recursive relationships

	Relationship participation condition (membership class)
	Mandatory and optional relationships
	One-to-one relationships and participation conditions
	One-to-many relationships and participation conditions
	Many-to-many relationships and participation conditions

	Weak and strong entities
	Problems with entity-relationship (ER) models
	Fan traps
	Chasm traps

	Converting entity relationships into relations
	Converting one-to-one relationships into relations
	Converting one-to-many relationships into relations
	Converting many-to-many relationships into relations
	Summary of conversion rules

	Review questions

	chp07
	Chapter 7. Enhanced Entity-Relationship Modelling
	Objectives
	Introduction
	Context
	Recap on previous concepts
	Entities
	Relationship types
	Relationship participation

	Specialization/generalization
	Representation of specialization/generalization in ER diagrams
	Constraints on specialization/generalization
	Mapping specialization/generalization to relational tables

	Aggregation
	Representation of aggregation in ER diagrams

	Composition
	Representation of composition in ER diagrams

	Additional content - XML
	What is XML?
	Document type definition
	Namespaces
	XQuery

	chp08
	Chapter 8. Data Normalisation
	Objectives
	Introduction
	Context
	Determinacy diagrams
	Determinants and determinacy diagrams
	Direct dependencies
	Transitive (indirect) dependencies
	Composite determinants and partial dependencies
	Multiple determinants
	Overlapping determinants
	Exploring the determinant of fee further

	Finding keys using functional dependency
	Normalisation
	Un-normalised data
	First normal form
	Second normal form
	Third normal form

	Review questions
	Discussion topic
	Application and further work

	chp09
	Chapter 9. Advanced Data Normalisation
	Objectives
	Context
	Recap
	Introduction
	Before starting work on this chapter
	Summary of the first three normal forms
	Third normal form determinacy diagrams and relations of Performer

	Motivation for normalising beyond third normal form
	Why go beyond third normal form?
	Insertion anomalies of third normal form
	Amendment anomalies of third normal form
	Deletion anomalies of third normal form

	Boyce-Codd and fourth normal form
	Beyond third normal form
	Boyce-Codd normal form
	Fourth normal form
	Summary of normalisation rules

	Fully normalised relations
	Entity-relationship diagram
	Further issues in decomposing relations
	Resolution of the problem

	Denormalisation and over-normalisation
	Denormalisation
	Over-normalisation

	Review questions
	Discussion topic

	chp10
	Chapter 10. Declarative Constraints and Database Triggers
	Objectives
	Introduction
	Context
	Declarative constraints
	The PRIMARY KEY constraint
	The NOT NULL constraint
	The UNIQUE constraint
	The CHECK constraint
	The FOREIGN KEY constraint

	Changing the definition of a table
	Add a new column
	Modify an existing column's type
	Modify an existing column's constraint definition
	Add a new constraint
	Drop an existing constraint

	Database triggers
	Types of triggers
	Valid trigger types

	Creating triggers
	Statement-level trigger
	Row-level triggers
	Removing triggers
	Using triggers to maintain referential integrity
	Using triggers to maintain business rules

	Additional features of Oracle
	Stored procedures
	Function and packages
	Creating procedures
	Creating functions
	Calling a procedure from within a function and vice versa

	Discussion topics
	Additional content and activities

	chp11
	Chapter 11. File Organisation and Indexes
	Objectives
	Introduction
	Context
	Organising files and records on disk
	Record and record type
	Fixed-length and variable-length records in files
	Allocating records to blocks
	File headers
	Operations on files

	File organisations - organising records in files
	Heap file organisation
	Sorted sequential file organisation
	Hash file organisation

	Single-level ordered indexes
	Primary indexes
	Clustering indexes
	Secondary indexes
	Summary of single-level ordered indexes

	Multilevel indexes
	The principle
	The structure
	Performance issues

	Dynamic multilevel indexes using B-trees and B+ trees
	The tree data structure
	Search trees
	B-trees: Balanced trees
	B+ trees
	B* tree: A variation of B-tree and B+ tree
	Summary

	chp12
	Chapter 12. Database Security
	Objectives
	Introduction
	The scope of database security
	Overview
	Threats to the database
	Principles of database security

	Security models
	Access control
	Authentication and authorisation
	Access philosophies and management

	Database security issues
	Access to key fields
	Access to surrogate information
	Problems with data extraction
	Access control in SQL
	Discretionary security in SQL
	Schema level
	Authentication
	SQL system tables
	Mandatory security in SQL
	Data protection

	Computer misuse
	Security plan
	Authentication and authorisation schematic
	Authentication and authorisation
	Access control activities
	Overview
	The problem
	Activity 1 – Creating the database schema
	Activity 2 – Populating the database
	Activity 3 – Analysing the problem
	Activity 4 – Executing the security script (if you have a DBMS that permits this)
	Activity 5 – Testing the access control (if you have a DBMS that permits this)
	Activity 6 – Conclusion
	Activity 7 – Postscript

	chp13
	Chapter 13. Concurrency Control
	Objectives
	Introduction
	Context
	Concurrent access to data
	Concept of transaction
	Transaction states and additional operations
	Interleaved concurrency
	Read and write operations

	Need for concurrency control
	The lost update problem
	Uncommitted dependency (or dirty read / temporary update)
	Inconsistent analysis
	Other problems

	Need for recovery
	Transaction problems
	Desirable properties of transactions (ACID)

	Serialisability
	Schedules of transactions
	Serial schedules
	Non-serial schedules
	Serialisable schedule

	Locking techniques for concurrency control
	Types of locks
	Use of the locking scheme
	Guaranteeing serialisability by two-phase locking (2PL)

	Dealing with deadlock and livelock
	Deadlock detection with wait-for graph
	Ordering data items deadlock prevention protocol
	Wait-die or wound-wait deadlock prevention protocol
	Livelock

	Discussion topics
	Discussion topic 1
	Discussion topic 2
	Discussion topic 3

	Additional content and exercises
	Additional content
	Additional exercises

	chp14
	Chapter 14. Backup and Recovery
	Objectives
	Relationship to other chapters
	Context
	Introduction
	A typical recovery problem
	Transaction logging
	System log
	Committing transactions and force-writing
	Checkpoints
	Undoing
	Redoing
	Activity 1 - Looking up glossary entries

	Recovery outline
	Recovery from catastrophic failures
	Recovery from non-catastrophic failures
	Transaction rollback

	Recovery techniques based on deferred update
	Deferred update
	Deferred update in a single-user environment
	Deferred update in a multi-user environment
	Transaction actions that do not affect the database

	Recovery techniques based on immediate update
	Immediate update
	Immediate update in a single-user environment
	Immediate update in a multi-user environment

	Recovery in multidatabase transactions
	Additional content and exercise
	Shadow paging
	Page management
	Shadow paging scheme in a single-user environment
	Extension exercise 1: Shadow paging

	chp15
	Chapter 15. Distributed Database Systems
	Objectives
	Introduction
	Context
	Client-server databases
	The 2-tier model
	Variants of the 2-tier model
	The 3-tier architecture

	Distributed database systems
	Background to distributed systems
	Motivation for distributed database systems

	Fragmentation independence
	Replication independence
	Update strategies for replicated and non-replicated data
	Eager (synchronous) replication
	Lazy or asynchronous replication

	Reference architecture of a distributed DBMS
	Discussion topics

	chp16
	Chapter 16. Object-Oriented Database Systems
	Objectives
	Introduction
	Motivation
	What is Object database technology?
	Capturing semantics

	Object-oriented concepts
	Combining structure and behaviour
	Messages
	Methods
	Defining objects - Class definitions
	Inheritance
	Encapsulation

	Implementing an application of Object databases
	Implementing Object databases
	Applications for OO databases
	Problems with the OO model
	The future of OO databases

	The Object-Relational model
	DB2 Relational Extenders
	IBM Informix DataBlades
	Object-Relational features in Oracle 11

	Summary
	Discussion topic
	Further work
	Polymorphism

	chp17
	Chapter 17. Web Database Connectivity
	Objectives
	Introduction
	Context
	Basic concepts
	Web-based client-server applications
	Context summary

	Web database architectures
	Components of a database application
	2-tier client-server architecture
	3-tier client-server architecture

	Database gateways
	Client-side solutions
	Server-side solutions

	Client-side Web database programming
	Browser extensions
	External applications

	Server-side Web database programming
	CGI (Common Gateway Interface)
	Extended CGI
	HTTP server APIs and server modules
	Important issues
	Comparison of CGI, server APIs and modules, and FastCGI
	Proprietary HTTP servers

	Connecting to the database
	Database API libraries
	Template-driven packages
	GUI application builders

	Managing state and persistence in Web applications
	Technical options
	The URL approach
	URL QUERY_STRING
	HTTP cookies
	Important considerations

	Security Issues in Web Database Applications
	Proxy servers
	Firewalls
	Digital signatures
	Digital certificates
	Kerberos
	Secure sockets layer (SSL) and secure HTTP (S-HTTP)
	Java security
	ActiveX security

	Performance issues in Web database applications
	Discussion topics

	chp18
	Chapter 18. Temporal Databases
	Objectives
	Introduction
	Temporal databases: The complexities of time
	Concepts of time
	The important temporal work of Allen (1983)
	Unary intervals
	Relative and absolute times
	Temporal data behaviour

	Temporal database concepts
	Some important concepts

	Database representation and reasoning with time
	Snapshot databases
	Rollback databases
	Historical databases
	Temporal databases

	Incorporating time in Relational databases
	Recording changes to databases
	Tuple timestamping
	Attribute timestamping
	UNFOLD and COALESCE: Two useful temporal Relational operators
	Further work and application

	Additional content and activities
	Temporal database design
	The ERT-SQL language

	chp19
	Chapter 19. Data Warehousing and Data Mining
	Objectives
	Context
	General introduction to data warehousing
	What is a data warehouse?
	Operational systems vs. data warehousing systems
	Differences between operational and data warehousing systems
	Benefits of data warehousing systems

	Data warehouse architecture
	Overall architecture
	The data warehouse
	Data transformation
	Metadata
	Access tools
	Data visualisation
	Data marts
	Information delivery system

	Data Warehouse Development
	Data warehouse blueprint
	Data architecture
	Application architecture
	Technology architecture

	Star schema design
	Entities within a data warehouse
	Translating information into a star schema

	Data extraction and cleansing
	Extraction specifications
	Loading data
	Multiple passes of data
	Staging area
	Checkpoint restart logic
	Data loading

	Data warehousing and data mining
	General introduction to data mining
	Data mining concepts
	Benefits of data mining

	Comparing data mining with other techniques
	Query tools vs. data mining tools
	OLAP tools vs. data mining tools
	Website analysis tools vs. data mining tools
	Data mining tasks
	Techniques for data mining
	Data mining directions and trends

	Data mining process
	The process overview
	The process in detail

	Data mining algorithms
	From application to algorithm
	Popular data mining techniques

	Discussion topics

	chp20
	Chapter 20. Database Administration and Tuning
	Objectives
	Introduction
	Functions of the DBA
	Management of data activity
	Management of database structure
	Tables and tablespaces
	Data fragmentation
	Designing for the future
	Information dissemination
	Supporting application developers
	Use of the data dictionary
	Control of redundancy
	Configuration control
	Security
	Summary of DBA functions

	Administration of client-server systems
	Tools used in DBA administration
	Client-server security

	Database tuning
	Tuning SQL
	Tuning disk I/O
	Tuning memory
	Tuning contention
	Tools to assist performance tuning
	Other performance tools
	Concluding remarks on database tuning

	Discussion topics

	answersToReviewQuestions
	Answers to the chapter review questions
	Chapter 1
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7
	Review Question 8

	Chapter 2
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7
	Review Question 8
	Review Question 9

	Chapter 3
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6

	Chapter 4
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7

	Chapter 5
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7
	Review Question 8
	Review Question 9

	Chapter 6
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6

	Chapter 7
	Review Question 1
	Review Question 2
	Review Question 3

	Chapter 8
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7
	Review Question 8

	Chapter 9
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7
	Review Question 8
	Review Question 9
	Review Question 10
	Review Question 11

	Chapter 10
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7
	Review Question 8

	Chapter 11
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7
	Review Question 8

	Chapter 12
	Review Question 1
	Review Question 2

	Chapter 13
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5

	Chapter 14
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5

	Chapter 15
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4

	Chapter 16
	Review Question 1
	Review Question 2

	Chapter 17
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7
	Review Question 8

	Chapter 18
	Review Question 1
	Review Question 2

	Chapter 19
	Review Question 1
	Review Question 2
	Review Question 3
	Review Question 4
	Review Question 5
	Review Question 6
	Review Question 7

	Chapter 20
	Review Question 1
	Review Question 2
	Review Question 3

