Chapter 1. Introduction to IT Research

Table of Contents

Overview of a Research Project ... 1
The Research Experience .. 1
Research Teams .. 2
The Research Life Cycle ... 2
Research Products in IT ... 2
Types of Research .. 3
Research Methods in IT ... 4
Example of Different Research Methods in a Study 4

Overview of a Research Project

Research in most disciplines involves studying natural or sociological phenomena in order to understand them better. Information Technology research is concerned with developing new theories and mechanisms to improve current practice in constructing computer systems. In this respect IT is similar to engineering: while some IT research involves only ideas or theory, this is rare. It is far more often the case that ideas are validated through practical implementation and evaluation. It should not be assumed, however, that all IT research focuses on computing systems rather than on human factors. In applied or action research, projects address specific problems in the real world that can be improved through creative use of computers; much research is devoted to improving the human interface to computing; etc. In these projects, research methods used in commerce and the humanities become part of the repertoire of IT researchers as well.

Most research projects comprise four main stages. These do not occur strictly in sequence. There is considerable iteration involved, as insights gained in later stages enable earlier decisions to be revised or reconsidered. The four main stages are:

1. identify a research question to address
2. collect information on the problem and on existing knowledge relevant to it
3. explore and evaluate one or more possible answers
4. report the results and conclusions

Not all of these steps will apply to all projects. Some of the best research simply identifies a new problem, without investigating answers. No research project can omit the last stage however; if work is not published it cannot be part of the body of knowledge in the discipline.

The Research Experience

Should you embark on a research project? What can you expect from the experience? Some of the main attractions of research are the wonder and excitement invoked by building, observing or understanding something that no-one has created, seen or understood before. Research success is a major personal triumph that leads to recognition, and the privilege of adding to human knowledge. Researchers enjoy the thrills of discovery, the ability to meet and work with others who are deep thinkers and passionate about their subject, including (if not locally, then at conferences and seminars) invaluable talks with leaders in the field who will pass on their enthusiasm and their insight. In research, you have an enormous degree of freedom in choosing what you want to work on, who you want to work with,
how you will do so and how you will manage your time. Moreover, project outputs will bring about change and improvement in the lives of others. While research is mainly about innovative ideas and experimentation, most of a researchers time is spent doing things that indirectly support and contribute to this: reading, planning, talking, conducting meetings, writing, etc. Researchers have to deal with frustrations and disappointments as well, and often the cause is beyond the researchers control (failure or inaccessibility of underlying technology/tools, inadequacy or privacy of expected data, lack of resources, etc.). At other times, experiments fail, hypotheses turn out to be wrong, or ones results are considered incorrect, insignificant or a duplication of others.

Research Teams

Research should not be conducted in isolation. Where projects are tackled by a single individual who does not meet regularly with any others, the person has the extra burden of putting effort into obtaining feedback and discussing new developments in the field. Working in a team provides a network for support and shared responsibility; it enables larger projects to be tackled and makes it easier for one to specialize in specific aspects because there are others to address remaining issues; and it develops teamwork skills, which are vital both within and outside the research sphere. The downside is that the overall quality and rate of progress are highly sensitive to the performance of others, and group management overhead is introduced. Managing a research team requires that individual roles and responsibilities are made clear to all, authorship of articles fairly agreed upon from the outset and reviewed when necessary, and regular meetings held with appropriate records/minutes.

The Research Life Cycle

All research should be seen as part of a much larger quest to better understand and harness human knowledge and experience in a discipline. Each project is part of a broader process - building on what has gone before, and adding ideas, theories and artifacts that can in turn be built on by others. In IT, this development typically comprises the following phases:

1. A new problem, new constraints, new opportunity or new approach is identified
2. Initial solutions, methods, algorithms, designs, theorems, programs, architectures, hardware or models are proposed
3. These are evaluated and refined, and different improvements to many of these ideas are investigated
4. Solutions are compared
5. A framework or taxonomy of the problem and solution space is devised; theorems are proved about the limits on any solutions; the existence of an optimal solution is considered and compared with current solutions; etc.
6. The best solutions are adopted by the community, commerce, industry and researchers in other disciplines or fields

Not all of these phases occur in all research some problems are too expensive to evaluate, or too large and varied to draw any conclusions about the solution space.

Research Products in IT

IT research results or products take the following forms:

- a literature review
- programs
- architectures
• systems or prototypes
• theorems
• models
• user/expert surveys
• user/expert experiments
• system content (ontologies, knowledge bases, class libraries, graphics toolboxes, etc.)
• measurements
• hardware
• analysis of existing research in the area
• published papers and books (without this, the research remains incomplete!)

Types of Research

Research can be

• Pure or applied
• Qualitative and/or quantitative
• Empirical (experimental) and/or analytical
• Laboratory or action research

An applied research question has a clear and definite benefit in pointing to a solution or improvement for a practical problem. In contrast, when the solution to a research problem has no evident bearing on a real-life situation, but is of interest to the research community to give them better understanding, this is termed pure research. The cost of not knowing the answer to a pure research question is hard to measure as it revolves around the cost of lacking knowledge, which affects our ability to solve other, and more significant, research problems. But the cost of having no answer to an applied research problem can be measured in terms of money, health, lifestyle or the like. Whereas pure research addresses something we wish to know (or know better), applied research tackles something we wish to do (or do better). A researcher should be aware of whether they are interested in pure or applied research, and should not try to mix the two. For example, researchers should not relate their work to a practical problem if it is pure research and is not, in fact, demonstrably necessary in order to solve that practical problem.

Quantitative research is concerned with analysis done in terms of numbers; qualitative data describes artifacts and events scientifically without numbers. Qualitative research is more exploratory in nature, involving procedures such as interviews and observation. Quantitative research measures or counts pre-determined properties and phenomena; its results are easier to interpret.

Empirical methods are based on observation (surveys, case studies, experiments). These observations should be accurate and as general as possible (i.e. applicable to as many cases as possible). Such research can formulate a new theory or test an existing theory to confirm or refute it. Analytical methods involve modeling, simulation, formal proofs and analysis; they permit phenomena to be studied without building prototype systems or involving human participants.

Action research studies a social situation with a view to improving it; for example research directed at improving education or health care. It is problem-focused and context-specific, and involves a cycle of research, change and evaluation. Information gathering centres on understanding situations as ongoing processes happening in the real-world environment. Problem definition and analysis is an important aspect of action research; it aims to give a clear picture of the possible benefit of research on a practical aspect of our lives, and then studies how this might be achieved.
Laboratory research involves controlled measurement and interpretation of data in order to test hypotheses and theories. The problem with such controlled experiments is that an artificial environment is different from reality. The benefit of the scientific method of laboratory experimentation is that careful control enables accurate, reliable and repeatable studies to be done; with extraneous factors kept constant and independent variables systematically altered by the researcher.

Research Methods in IT

The main research methods that can be employed to answer a research question are listed below. More than one of these methods will be used in most research projects, in order to tackle the same problem/task from a number of different perspectives:

1. literature reviews
2. prototyping
3. modelling
4. laboratory experiments and tests
5. field studies (observation and experimentation in real environments)
6. case studies (detailed analysis of a specific application)
7. surveys (interviews and questionnaires to assess human factors in IT)
8. mathematical proofs
9. heuristic evaluation
10. usability studies
11. statistical analysis

Each of the eleven methods listed above is a skill to learn, rather than a recipe to follow. There are difficulties to overcome, choices to make, and time/resource constraints requiring simplifying assumptions. Subsequent chapters will address some of these issues.

Technical research goals are most often met through the use of models, languages, algorithms and mathematical proofs; goals involving the human side of computing are typically met using surveys, case studies and experiments.

Note that programming does not constitute research, but software prototypes play an important role in experimental IT research. They enable properties to be studied, ideas to be validated, alternatives to be compared, measurements to be made, usability analysis to be conducted and field/case studies to be done. They are also a valuable source of new problems and insight.

Study papers in your subject area to see the methods used to conduct and to present research; it is best to use the same methods if you aim to publish in that field. The chances of choosing the right methods are greater, since they have proved successful for others; it will also be easier to convince the community of your research results if the methods used are what they expected.

Example of Different Research Methods in a Study

As an example of how different research methods can be employed, consider the following situation. The research question: “How can the new technology <T> be adapted to run on very small computers?” can utilize the various methods in the following ways:
1. a literature review will familiarize you with <T>, with the properties of small computers, and with any work already done on using <T> with small machines

2. a prototype implementation of <T> on a small device can demonstrate its feasibility, evaluate and compare alternative implementations, and/or indicate what problems need to be solved in this new context

3. a model of the new technology or of small computers can be built and studied to enable current and future research to understand more about the problem

4. a prototype implementation can be tested and performance measurements recorded and analysed

5. the use of small computers in a particular real life context can be studied to determine the viability and demands on <T> in this domain, or a prototype can be used in the field and problems and limitations observed

6. a specific use of <T> on a particular device in some real world application can be studied to determine problems and potential solutions/improvements

7. an assessment of <T> by users with small machines such as mobile computers can be determined by surveying a representative sample etc.

The particular methods chosen will depend on how much or how closely existing research has already studied <T> in the context of small machines. It will also be governed by the interests of the researcher (e.g. some prefer to focus on low-level system implementation issues, others who prefer the human side may look at usability aspects, etc.), the availability of expertise and resources, the skills the researcher has and the skills s/he wishes to learn, etc. The only methods that are always essential are conducting a literature review at the outset, and publishing results on completion of the work. These first and last skills are imperative for anyone entering the research field.
Chapter 2. Ethics in Research

Table of Contents

Why does unethical research behaviour arise? ... 1
Unethical conduct in research ... 1
Plagiarism ... 2
Multiple publications ... 2
Accusations of unethical conduct ... 3
Institutional responsibilities ... 3
Three places to give credit in a publication ... 3
Who should be credited ... 4
Undeserved credit .. 4
Agreement from authors ... 4
Ethical conduct for researchers .. 4
Peer review safeguards ... 5
Research results and the general public .. 5
Data Availability ... 5
Patents and Agreements ... 6
Ethics in observations ... 6
Confidentiality .. 6
Contracts in experimentation ... 6

Why does unethical research behaviour arise?

It happens, though very rarely, that researchers are tempted to falsify results or to steal ideas because of pressure to achieve more, or better, or faster. Another reason is for monetary gain, where the researcher has a financial interest in a particular product or company that will be affected by the research results. Lastly, unethical conduct can be a result of ignorance – for example, failing to prepare participants in an experiment appropriately, failing to negotiate agreements with external bodies, etc.

Unethical conduct in research

The worst type of unethical behaviour is deliberate deception - reporting experimental results which are fabricated or altered (falsification), or reporting others work or words as one’s own (plagiarism). There are many other forms of unethical or unprofessional conduct in research, which can arise while doing the research, when performing experiments, in publishing results, or in handling misconduct. Unethical behaviour during research:

• Undertaking work despite a conflict of interest
• Ignoring proprietary rights
• Misuse of research funds
• Sexual harassment
• Incorrect reporting of publications in a curriculum vitae, funding request, etc.
• Malicious interference with the research of others
• Stealing data when permission to use it was refused

Unethical conduct in experiments:
Ethics in Research

- Compromising the privacy or confidentiality of subjects
- Secret observation or recording of the activities of others
- Risking harm to others
- Accessing confidential data in secret or otherwise breaching security
- Using inaccurate or unreliable data
- Destroying data or results so others cannot access them

Unethical publication:

- Stealing ideas
- Plagiarism
- Incorrectly attributing work/ideas to people not involved
- Claiming untrue, distorted or non-existent results
- Concealing known problems with the work reported
- Presenting work in an overly complex way
- Publishing the same idea(s) in multiple places

Inappropriate behaviour concerning accusations of misconduct:

- Failure to report unethical behaviour by others
- Malicious accusation of others
- Cover-ups of unethical practice
- Lack of due process when handling complaints of unethical behaviour
- Reprisals against those who identify unethical conduct

Plagiarism

Plagiarism is the stealing of words and ideas from others. This can take several forms - presenting research solutions, models, techniques and results as one’s own when they are taken from another source; repeating the words of others as if they were one’s own; duplicating paragraphs or sentences from another text but changing the actual words to make it appear different; etc. One way of knowing whether you are plagiarizing a document or not, is to check whether you are typing in your own text while looking at that work (rather than typing your own thoughts or your own notes); if so, you are directly or indirectly using their material and presenting it as your own. Once research has been published, it becomes part of the body of knowledge and can be used and referred to by others – who must acknowledge the source by an appropriate citation. Before that, if ideas are taken from work seen in privileged grant applications, research proposals or manuscripts, to use the idea is to steal intellectual property. Research remains private property until publicly published or disseminated.

Multiple publications

It is unethical to publish the same paper in two different places, or to publish two very similar papers. It is equally unethical to submit the same, or very similar papers, to more than one journal/conference
Ethics in Research

at a time (even if acceptance rates are low or slow). If more than one paper is published as a result of a single piece of research, each should have a unique idea not present in any of the others, and each should reference the others to make the connection explicit. Multiple publications that cover virtually identical material are unethical, and can perhaps also be attributed to pressure to build up a certain number of publications. Many funding agencies and academic institutions now focus on applicants’ best three to five recent papers, and pay less attention to the sheer volume of publications.

Accusations of unethical conduct

Unethical research practice places one’s entire research career at risk, and also the reputation of one’s institution. Such mistakes become known outside the research community, can involve the press or even civil courts, and thus adversely affect the entire discipline.

When a researcher is accused of unethical behaviour, this can potentially damage not only the individual(s) concerned but also their institution, students, team members, sponsors, collaborators and clients, as well as journals/proceedings where the work was published, and the person(s) making the accusation. The process whereby such accusations are handled needs to ensure fair treatment of all these parties. They should only be informed of the potential problem after a preliminary investigation has been conducted that indicates that a valid case may indeed exist. The outcome of the preliminary investigation should determine which parties might be affected and should be informed.

During a preliminary investigation the accused has the right to protection and due process (e.g. reviewing the evidence). The identity of the person making the accusation should be confidential, and the accused individuals should be informed in writing before any investigation, even preliminary checks, are instigated.

Since the impact of misconduct is so great, anyone who becomes aware of such behaviour has a duty to report it. This can be very difficult, as it is difficult to guarantee anonymity. It is best to discuss the issue with a colleague before putting any accusation in writing – once it is in writing, authorities are obliged to act and to act publicly. Many institutions appoint an official or committee to be in charge of research ethics, who are the best people to approach.

Institutional responsibilities

Universities and other research institutions need to frame codes of conduct for research practice, to safeguard against such situations. These must also provide protection for individuals accused of unethical conduct, to ensure they are justly able to address such accusations and avoid prejudicial treatment, with proper procedures set up to deal with complaints. This will also reduce the risk of the institution needing to resort to the courts to settle such problems.

An institution where research is undertaken needs to appoint a body to give confidential advice in cases of suspected misconduct, and an individual/group to whom formal accusations are submitted. Should the accusation be considered plausible by this group, they take over the responsibility of setting in motion appropriate procedures to handle the allegation and to safeguard the rights of all involved.

If an accusation of unethical conduct is found, after due process, to be invalid then the individuals accused should be informed immediately and their record should reflect this outcome in a way agreed to by the institution and the individuals, so as to be as satisfactorily dealt with as possible from the viewpoint of those wrongly accused. If an allegation of unethical behaviour is upheld after a fair and thorough investigation, then innocent people who have been affected should be assisted as much as possible, and financially compensated where appropriate.

Three places to give credit in a publication

In the world of research, it is crucial to give credit wherever credit is due. In a paper, credit is given in three places – the list of authors, the acknowledged contributions from others, and the list of references. It is generally accepted that the earlier a name appears in the list of authors, the more prominent the role
of that person in the research, and equal contributors are listed in alphabetical order. Where people or organisations have assisted in lesser ways, including acquisition of data or funding, their input should be stated in the acknowledgements section. This includes those paid for their contribution, such as technical officers and the like. References place a piece of research in context, by relating it to work that supports the same or alternative views, and acknowledging others’ ideas that have been used or modified. These citations are important for researchers, as citation counts have a strong influence on, for example, an individual’s access to funding, promotion, or appointment to an academic/research post.

Who should be credited

Modern research projects have grown in size and complexity, and it is common for large teams to work together, and thus for several authors to be named on a paper. Authorship of papers should be discussed by a research team early in a project, and reviewed when there are changes to the project plan, to make sure that the correct people are acknowledged as contributors for each output. If a senior researcher has defined and initiated a project in which a junior has subsequently participated, the senior researcher gets the major credit for their discoveries. At the same time, where a junior makes an important research contribution in their own right, the senior researchers with whom that person works must recognize them as major contributor in those publications.

Undeserved credit

An author should at least be involved in the conception, design, implementation or analysis of the work presented in the paper, have played a part in writing or revising the article, and have agreed to its publication in that form under their name. Participation by virtue of position alone (as group leader or supervisor for instance) is not an acceptable reason for naming someone among the authors or a paper; doing so is deliberately misleading others and falsely giving the individual recognition that is undeserved. Yet in some research groups, the leader’s name appears on every paper published by the group; and in many departments the supervisor’s name appears on every paper produced by students she supervises. Sometimes a person is added to a list of authors when they had little if any involvement with the work being reported there (but it is politic to include them for extraneous reasons).

When listing their publications in a CV, grant proposal or the like, researchers must make clear distinctions between submitted, accepted and published works; and between refereed and non-refereed publications. Similarly, correctly distinguishing between applications and grants is essential when referring to current or planned research.

Agreement from authors

When the work of a research team is reported, a primary author (sometimes called an “executive author” or “chief author”) must be selected, and given the role of ensuring that the correct authors are listed, that all authors agree to submitting the final draft under their name, and that all necessary acknowledgements are included. A letter to this effect should be signed by all authors and kept on file, to guard against possible future disputes. Some journals require all named authors to sign a form stating that they contributed substantially to the work and are (jointly) accountable for what appears in the paper. Someone who is willing to take part of the credit for a publication must also be prepared to take responsibility for the mistakes, and should not try to hide behind an excuse that they were not involved in the section at fault. If this is indeed the case, a footnote indicating involvement in different sections should have been included in the paper from the outset.

Ethical conduct for researchers

Consideration of possible ethical issues is an essential part of research. Researchers must be aware of and adhere to sound ethical practice in their work, with respect for honesty and truthfulness, privacy and confidentiality. It is assumed by all institutions conducting research that their staff are aware of
their responsibility towards the profession and the public to be ethical in their experimentation and reporting. Researchers should only participate in work which they are competent to do; they should seek out criticism and debate, should publish and present their work widely, so that the research can benefit from scrutiny and elaboration by their peers. Professional bodies like the Association for Computing Machinery and others provide a code of ethics for their members. Most institutions have policies governing such conflicts of interest, to protect their integrity and public confidence in their research.

Peer review safeguards

The process of review and revision that precedes publication is critical in preventing an individual’s subjectivity from influencing accepted knowledge. It is also a powerful way of ensuring that researchers are more thorough and careful in the conduct and presentation of their work. The use of identical or similar techniques to prove conclusions give rise to accepted standards for research methods and methodologies.

Until well into the seventeenth century, scientists were reluctant to advertise their findings because others would claim to have had the idea first. Then Henry Oldenburg, secretary of the Royal Society of London, pioneered the practice of peer review and scientific journals – he guaranteed rapid publication in the society’s Philosophical Transactions, and the support of the society if priority came into question. Irrespective of who discovers a result, idea or technique first, it is the first to publish it who is recognized as its originator, and who gets the credit in all subsequent citations.

Research results and the general public

The consequences of research are impossible to foresee. Nevertheless, the team has a duty to consider the possible social implications of their technique/results and to draw the community’s attention to these if they are cause for concern. One possibility is to arrange a public debate or discussion panel, and to use this to find a consensus view.

Research results should not be disclosed to the public via the media, on the Internet, or at gatherings before they have been accepted by peer review. It is irresponsible to broadcast findings without having them screened by some quality-control mechanism. Releasing controversial results in this way risks misinterpretation and over-reaction to results that may prove incorrect. Where issues of concern make such prior notice advisable, the unpublished nature of the results must be clearly reported at the same time; and appropriate public authorities should be approached rather than the general press. It is only where public authorities fail to react that the media should be informed of such results, and again it is imperative that the unpublished, unvetted nature of the work be indicated at that time.

Data Availability

Once research has been published, scientists are expected to make available their data and results for others to share. Someone who fails to do so should not be trusted or respected. Data used in published work should be available for other researchers to use or to discuss. It should also be kept for a suitable period (depending on the project, typically about 5 years) for examination in the event of any complaints or accusations following publication. Institutions should provide guidelines on ownership and access rights to databases, particularly where confidential information is concerned. Researchers are responsible for enforcing security.

Unlike other fields, such as medicine, computer science does not have widely accepted standards for recording experiments [Zobel97]. In any science, records should include the purpose of the experiment, descriptions of the apparatus and any modifications to it before or during the experiment, the date(s) it was conducted, data collected including rough notes, analysis performed and conclusions drawn. Records are important because they are the only lasting evidence of the experiment, and because the discipline of maintaining these properly generally introduces greater rigour and reproducibility. Records will vary depending on the type of experiment, e.g. whether human factors...
are being assessed or execution timings. Recording the latter reliably for example requires knowledge of hardware, operating systems and cache behaviour. Appropriate choice of hardware and software platform, test data sets and system parameters for running such experiments can be critical and must be documented. And of course in computer science the program code is typically an essential part of the experiment - yet it is often lost, or if it exists then either it is only the final version that was kept, or else several versions exist and it is not known which was used in which experiment. In addition to researchers' notes, all code versions should be kept, as well as logs or audit trails of outputs (along with corresponding inputs) [Zobel97]. This is useful to the researcher in any event, e.g. for later writing up the work for publication or for performing new analyses.

Patents and Agreements

Research which has the potential to be financially rewarding can be safeguarded through application for patents. This enables the researchers or their institution to profit from the idea while at the same time introducing it into the public domain. Those doing patentable work can be required to take extra measures, such as having their notes validated and dated, to ensure that discoveries are timeously reported to the patent official of the institution sponsoring the work. Where research sponsored by industry or the military cannot be publicly disclosed at all, summaries may be publishable and if so should be scrutinized in privacy by visiting committees.

Where research is conducted in collaboration with an external body, agreements regarding intellectual property rights, confidentiality and any limitations on publication need to be made at the outset, and endorsed by the researcher, their university/institution, the external groups and funders.

Ethics in observations

If participants in an experiment are being observed by others, they should be informed about this beforehand. In most cases, any reticence this causes falls away once the subject becomes immersed in the task at hand. The Internet has given rise to a new form of hidden observation. There is now an increasing number of systems that log Internet activities such as user interactions, site navigation, chatroom and bulletin board conversations, etc. Individuals can be unaware that this information is being collected, which raises new problems regarding confidentiality and privacy. Such systems should notify users of the logging in advance, just as in other user studies.

Confidentiality

Since much of research involves gathering information, it is important that this activity respects the privacy of individuals. Anonymity should be assured wherever possible; i.e. no data collected that can identify individuals; however this can be impractical e.g. where studies involve tracking individuals over time. Data collected about people should never be disclosed without their prior consent. The identity of an individual should also not be deducible from reports (e.g. by referring to a personal characteristic that is unique in the sample).

Contracts in experimentation

The principle of informed consent ensures that participants understand in advance what procedures they will be involved in. Participants should be guaranteed that they will not be physically or psychologically harmed. By the principle of voluntary participation, people should not be forced into participating in research experiments, as is sometimes the case with “captive audiences” at educational institutions, prisons and the like.

Ethical research requires being clear about the agreement between researcher and participant, and then adhering to this. Contracts are useful in clarifying this and in obtaining proper consent from participants in surveys, interviews, experiments and case studies, and from those providing you with data of any kind. It is best to ensure that people participating in a research experiment first sign a consent form which states the purpose of the project, the tasks they will be performing and the
confidentiality/anonymity guaranteed. Adding that a subject can withdraw from the experiment at any time is also advisable.
Chapter 3. Conducting a literature review

Table of Contents

What is a literature review? ... 1
Outline of the literature review process ... 1
Where to start a literature review .. 2
Citations .. 2
Literature searches on the Internet .. 3
Reading throughout research .. 3
Reading Efficiently ... 4
Making notes on your reading .. 4
Structure of a literature review .. 5
How to critique a paper ... 6
Writing the literature review .. 6

What is a literature review?

A literature review summarises and evaluates published material in a subject in order to present current knowledge in a coherent and understandable way. Its purpose is to provide an integrated, organized overview of significant literature published on a topic. A literature review can be an end in itself, or a preface to primary research, or a requisite part of a research or grant proposal, or a chapter in a thesis. If it is a first step in achieving some other research goal, this research must be guided to a large extent by what you find in the literature survey – viz. what problem to tackle, how to tackle it, and how to publish your findings. A literature review is not just a description of existing work in some field – it is defined by the guiding concept of your research objective.

A literature review makes a contribution to the discipline by synthesizing existing knowledge into a framework against which a piece of research can be evaluated. It is a self-contained work, and facilitates finding out more about the ideas and results it describes by providing a good list of references to the sources from which it was compiled.

Outline of the literature review process

Reviewing the literature in a topic requires three skills: information gathering, critical appraisal and coherent writing. The first is the ability to scan the literature efficiently, read documents effectively and record relevant material; the second is the ability to analyse studies to discover precisely what they contribute to our understanding of a subject while also being able to detect bias, flaws and limitations where these exist. The third skill requires creativity in finding a framework and structure for the knowledge acquired, and the ability to present this in a clear, logical way.

A literature review requires finding some starting point(s), reading and noting what you find, and changing your list of things to read accordingly – repeating this process until you conclude that you have covered what is currently available. You then need to find an appropriate way of presenting the information you have gathered, and write the review in your own words, with references to the articles and texts you have read. Of course a literature review can never be complete, because new knowledge is continually being published. Therefore it is important to keep abreast of the field even after you move on to the subsequent steps in your research project, and to continue looking for, reading and noting new ideas as they appear in the literature. To keep reading throughout your career is particularly vital in a field such as IT which changes so rapidly. Keep up with the latest issues of the key journals in your field as they arrive, and remember that Computer Science conferences are an excellent way of tracking what others are doing. In cases where new results appear after you needed them in your
own work, it is helpful to note the date they became available and what stage you had then reached in your research.

Where to start a literature review

The best way to start any literature survey is to ask those actively doing research in the field, and also to ask a librarian. They can advise you which are the best sources to use and how to search them effectively.

If your research concerns a particular product, process or existing study, then that will clearly give you a starting point; without this, finding some good initial references can be time-consuming and frustrating. Bibliographic databases, CDs of journal abstracts, citation indexes, textbooks, journals and the Internet can lead you to many initial references. Appropriate search terms are needed to uncover the most suitable ones. Write down a list of key words and phrases describing what you are looking for, and include synonyms, alternative names and word variations. If your area of interest is broad or unclear, it is helpful to look over recent copies of journals in that field (e.g. ACM Transactions on) to get a better idea of what you are wanting and which search terms are most likely to lead to this. If you find references which appear promising but cannot be found in your library or on the Internet, contact the authors personally as well as their institutions, and try an inter-library loans service. You will be surprised how an email request for a paper can not just lead to a convenient electronic copy being sent to you, but also result in a valuable contact who will give you good insight and advice on the problem you are researching. Of course, if the author in question is a well-known expert in the field, such a relationship is far less likely – nonetheless, even experts will generally send you a paper by email.

If you are unfamiliar with the subject area, don’t begin with bibliographic databases and research articles, as such papers have a narrow focus. You must first obtain a good background in the subject; it will help you to conduct a better search as well as ensuring that you understand the material you read better than you otherwise would have. This can be done by using secondary sources, namely handbooks, textbooks, review articles and encyclopedias. Secondary sources summarise and integrate information on a subject, drawing from primary sources already published; often they also give bibliographies as well as references to major papers in the field.

Many researchers advocate using a pack of index cards (3” x 5”) to control their search, (and others use a database package). The top card contains the Main Research Question you are addressing. This question will keep changing as your search proceeds, and you may well need to clip together several such cards due to many changes (keep them, do not discard old versions). The remaining cards are headed Main Topic – each has one major topic to be addressed, and you should produce as many as you can think of. Keep these in alphabetical order. Start searching for the first topic in catalogs, journals, CDs, bibliographic databases, the Internet etc. When you find relevant documents, look at the subjects associated with them and use these to expand or contract your search. Annotate your index cards with comments such as “nothing!” or “too much”.

Explicitly-related literature is directly related to your topic; implicitly-related material is not, but concerns work that might be applicable to your study. If you use the latter in order to produce a literature review, you will have to be creative in tying together seemingly disparate pieces of work and relating them to your research problem. If you cannot find enough explicitly-related work and find yourself settling for implicitly-related papers, you should probably change your research goal. Fortunately, searching such implicitly-related work often gives you good ideas as to what you might tackle instead –starting with a good background in the area. Moreover, concrete examples of similar work show what research methods are typically used and how results are presented for publication in that field.

Citations

When paper B references paper A, this is called a citation of A by B. While the number of references that a paper like B makes is finite, easy to determine and does not change, the number of citations of a paper like A is continually growing, potentially infinite, and difficult to ascertain. The number
Conducting a literature review

of citations that an article has is an excellent indicator of its importance. The number of citations to specific journals, conference proceedings or monographs also has a strong influence on the number of libraries that stock it. Citation indexes like the Science Citation Index show the patterns of citations into and out of journals. Online citation indexes include Citebase (the Open Citations Project) [http://citebase.eprints.org]. When you are conducting a literature search, use a citation index to see how significant a work is and how long-lasting its influence; when you are publishing, use a citation index to see how important the journal is. In addition, many countries like South Africa have rating systems for journals based on their citations, and these are a good way of easily discovering the impact and importance of the different journals in your field. A study of citation indexes shows that papers generally cite papers of similar impact, and that very few papers receive a large number of citations – these are key papers which no literature survey should miss.

Literature searches on the Internet

Start with a well-known search engine such as Google or yahoo, or a well-known bibliographic database, and compile an appropriate Boolean expression involving search terms you are interested in and those you are not interested in. If you are unsuccessful and receive too many or too few results, you will need to change your search terms and expression, and possibly also the search-engine or database you are using. Ask your librarians for help with search terms and expressions.

There is an increasing number of on-line journals. Thousands of articles, abstracts, reviews, books, theses, etc. are available electronically on the Web – so you should keep your initial search as narrow as possible.

Some helpful Computer Science websites are the CiteSeer citation index [http://citeseer.nj.nec.com/cs], which has electronic copies of the vast majority of publications, bibliographies such as that at http://liinwww.ira.uka.de/bibliography/index.html, online contents pages of journals such as those of the IEEE Computer Society [http://www.computer.org/publications/dlib], technical report libraries (e.g. the Networked Computer Science Technical Reference Library [http://www.ncsrl.org]), digital libraries available at your institution (e.g. the ACM Digital Library at UCT), as well as the websites of relevant Computer Science departments and individuals.

Reading throughout research

The basis of good research is finding and reading good related work. One of your most important secondary research goals is to produce a bibliography and review of the topic you are studying. But to keep reading after this is fundamental to success as a researcher, especially in computing where many advances are continually occurring.

Even if you need to study a paper thoroughly, it is helpful to first skim the entire article to get an overview on which you can “hang” sections when you subsequently read them more carefully the second time. Many people find it easier to make notes as they read, but be careful of writing so much detail that your reading takes too long.

Some articles in Computer Science are very hard to read. It can help to read them with your supervisor, research group, or others in your department who are interested in the same piece of work. It will be much slower but will be enormously helpful in raising everyone’s understanding. Larger research groups typically find regular get-togethers to discuss papers very beneficial, not only because it facilitates keeping up with the literature but also because the group will usually look more creatively at questions raised by a paper than would a single individual.

Giving feedback to others is also an important ingredient of research. It sharpens your critical thinking skills, enhances your confidence and exposure, and increases the likelihood of others giving you feedback in turn. In addition to active involvement at research group meetings, conference talks and seminars, it is very helpful to volunteer to review papers for a journal or conference programme committee. If you are too inexperienced to do so personally, you should tell reviewers in your department that you are keen to help them. A written review or critique should be structured, preferably from high-level comments down to lowest-level “nit-picking” criticisms relating to e.g.
grammatical and typographical errors (and of course “nit-picking” should be avoided altogether unless
the paper will be considered for publication). High-level comments give one’s overall impression of
the paper, suggest improved organization and presentation of the content, mention related work that
has been omitted, and ask questions about alternative approaches, additional supporting evidence,
future extensions and the like. To be constructive, try wherever possible to suggest an improvement
rather than simply state what does not work.

Reading Efficiently

Naturally it is impossible to read all the relevant background material for your project, in all pertinent
books, journals, websites, etc. The key is selectivity, not only in choosing your sources but also in how
much of each you read. At the start of your literature search, you are likely to come across a mix of
highly relevant, less relevant and irrelevant information. At this stage it is best to read papers quickly to
get an overall picture and an idea of how your specific interest fits this. Decide whether it is worthwhile
reading the entire document, and if so in how much detail to study it. As your search progresses, you
will find yourself considering few texts that are not truly relevant, but it is still worthwhile using the
same approach.

Can you take a book relevant to your research that you have not read before, read it in 5 minutes, and
have notes covering what you want from it at the end of that time? This requires practice, focus and
discipline. A technique used by many researchers is to skim the material, looking mainly at headings
and figures, and to use this quick preview to think of questions the text is likely to answer for you -
then look for those answers. Another common approach is to look at the table of contents to identify
which chapters or sections are useful. Read the introduction and conclusion of these chapters, then
look for sub-headings indicating relevant parts and for key points highlighted in the text itself. The
first and last paragraphs of a section generally encapsulate the points that section is covering. If there
are specific systems, people, keywords etc. of interest, look for them in the index. The references are
another way of discovering very quickly what the paper or chapter is about. After the first few minutes
you will have an idea whether the book (or paper) requires more detailed reading, and of which parts.
In the case of a book you should rarely be reading more than a quarter of its contents.

Making notes on your reading

Having read a seemingly relevant paper, ask yourself whether or not you should be skeptical of its
claims. Not all papers are equally sound – the status of the source (e.g. refereed journal through to
unknown web site) and of the authors (ranging from guru in the field to completely unknown) gives
you an initial idea of how cautious you should be. The article itself should be read critically, rather
than accepting at face value what authors profess to have discovered.

When you read a document, ask yourself questions, such as:

• What is the contribution of this work to the field and how does it compare with and relate to papers
 you have already read?

• What references does it cite?

• What useful examples does it contain?

• What can I learn about writing from this paper – is it easy or hard to read and why?

• What techniques and research methods have been applied by the authors?

• What is the author’s thesis, i.e. what is s/he trying to convince you of?

• How does the author go about convincing you of this?

• Does the author succeed in convincing you?

• Does the paper explain how the work differs from other work in the field? If not, can you do so?
• Does the author suggest future work to follow on what has been reported? What new ideas are generated by the research described?

• Does the paper raise any questions in your mind that it does not answer, e.g. relating to potential problems with their idea or the ability to apply it in a different context or the possibility of generalizing the results?

Make notes of interesting answers. Summarise the main ideas and the approach taken. If the paper presents a new way of doing things or a new way of thinking about something, note and describe this too.

Notes help considerably if you return to re-read the paper later or when you come to include it in your literature review. Whereas note-taking delays reading and can seem tedious, remember that it is extremely difficult to do this well, so see it as a challenge and watch yourself improve with experience.

The amount of notes you make should be tailored according to the degree of relevance of the specific piece. You should also note any potentially useful research or presentation techniques, which you might adopt yourself. Use the article to improve your literature search itself, by altering your search terms and making a note of new references they contain (and why they might be useful to you). Take note too of references to documents you have encountered before, since the more frequently you come across references to the same paper, the more important it is to read it. If your reading raises a question to which you are unable to find an answer in the literature or in your department, it is worthwhile contacting the author(s) by email with a clear, concise question phrased in such a way that it can be answered in a single sentence. Once again, such email contact can result in a great deal of help; in other cases, even busy researchers often find the time to send you a reference where the answer to your question can be found.

With each good article that you read, you need to keep a complete reference to it for your bibliography and to make notes in your own words of its content and how it might relate to your own work. It is advisable to use bibtex to keep an electronic copy of your reference list, this is convenient for your future writing and also for sharing your bibliography with others. Many people add extra fields to their bibtex entries, such as keywords, or where they obtained the paper.

Structure of a literature review

A good review organizes material well and includes critical thought. It typically has the following structure: the introduction describes the problem area and its significance, the author’s reason for doing the review, and the organization of the review document. This is followed by a background section explaining any underlying principles, explaining criteria used to categorise, analyse and compare the works, and also defining and justifying the scope of the review. Your findings are then presented – first, a description of current knowledge, starting with general aspects and gradually focusing on specific research hypotheses, purposes or questions.

It is usually helpful to divide the material into categories, and to explain how each work differs from others in its category. Authors of academic texts often create new taxonomies to describe their research findings, but this is often embedded deeply within the document, and inexperienced readers may not be able to “stand back” sufficiently from the content to see the organization of knowledge. The author of a literature review frequently creates his/her own taxonomy of the topic, based on historical development or similarities of approach and so on. In your review you should introduce this taxonomy first, and then for each category in turn explain what it is and why it is important, before describing works in that category and showing how they fit into this category.

Conclude with a brief summary (keep it at two or three sentences), an indication of any trends, conflicts or themes detected, and preferably some conclusion reached – such as a statement of gaps identified or issues yet to be adequately addressed (ideally this in turn establishes the need for the research undertaken). Make sure that your summary is an accurate summary of what you have actually presented in the review. It should summarise major contributions of significant works and maintain the focus established in the introduction.
The review should read as an essay rather than a list of paper summaries, and focus on the findings and contributions of the works reviewed. Most initial drafts comprise a sequence of text summaries, particularly as the writer may have insufficient confidence at this stage to include his/her own opinions and knowledge. Start to improve on this in subsequent drafts by linking these summaries – e.g. comparing their differences or highlighting their similarities or simply indicating their relationship to each other. Later, when you are sufficiently familiar with the field and have done some work in the area yourself, add your own understanding and evaluation of the material. The value of a review is how it places each work in context and relates it to other work. Where applicable, it should resolve conflicts among seemingly contradictory studies and point the way forward for further research. In the end, your review should be a description of your understanding of the topic, supported by information gleaned in the papers you have read.

If you are producing an annotated bibliography, you will need to briefly summarise each item, but should still follow themes and do some critical assessment of the works. Group the items into sections, with a paragraph introducing each section, and use this to assist in comparing and relating works in the same section.

How to critique a paper

To critically analyse the literature you review, follow through a set of concepts and questions, comparing works to each other according to how they deal with these concepts and questions; and evaluate the papers you describe, discussing their strengths and weaknesses. To do so, ask the following questions about the documents you include: has the author clearly formulated a problem/issue and established its significance? Has the author evaluated the literature relevant to this problem/issue? How reliable and valid are the measurement and conclusions? How does it contribute to our understanding of the topic and how can it be useful in practice? Does it have any limitations and could it have been approached more effectively in a different way? How does it relate to my own research goal?

To assess a paper, you need to know what research question or goal it is addressing, what methods were used to do so, and what results it claims. Look at the evidence or support on which these claims are based and evaluate their soundness and completeness. Are the claims reasonable? Were the test cases all merely “toy” examples? Are significant aspects missing from the paper? Also consider how the work fits in with other work in the field, and what follow up steps are suggested. To understand a paper properly, you need to fully understand the problem, the alternatives possible and the choices made, the assumptions behind the solution selected and whether these are reasonable, the conclusions and their justification, and the potential for extending or scaling the solution.

In evaluating each document, ask yourself if the author’s arguments are supported by evidence such as case studies or statistics, if relevant information has been ignored in order to prove the author’s point, if the work contributes in any significant way to our understanding of the topic. Criticism should be balanced and justified, set forth for the sake of improved systems or understanding. Any aspect of existing work can be criticized – assumptions, arguments, methodologies, results, interpretation. To challenge an argument, one can challenge one of its premises, or challenge the fact that the premises together imply the conclusion. Examples can be challenged if they are not representative of the claim being made; the context, constraints or exceptions to a premise can be used to refute or weaken an argument; the implication that the claim follows the premises can be disputed by means of a counter-example; and so on.

Writing the literature review

It is helpful to read other literature reviews before commencing your own, to see how they organize material and manage the transition from one topic to the next. Once you have completed your review, ask as many friends and colleagues as possible to read it; their comments will help improve the review by indicating what is unclear or difficult to follow.

Avoid detailed descriptions (after all, the original paper is available to the reader of your review). In general the amount of space devoted to a single work should be proportional to its significance in the
Conducting a literature review

field. Limit the number of direct quotations, as these are often too detailed and seldom unaffected by being read out of (their original) context. Too many quotations means a variety of writing styles is being used, which is disconcerting for the reader and also raises the question of whether the authors of the review have in fact failed to understand the concept sufficiently well to explain it in their own words.

Reporting verbs are used when talking about texts Thompson and Ye (1991) distinguish between those denoting what the author has done (positive examples: points out, emphasizes, notes, subscribes to; negative examples: questions, attacks, dismisses, disputes, opposes, questions, rejects) from those denoting the review writer’s stance (factive examples: acknowledges, demonstrates, proves, throws light on, identifies; counter-factive examples: confuses, ignores, disregards, neglects); non-factive examples: believes, claims, proposes, uses). Factive verbs are used where the review writer believes the author to be correct; counter-factive verbs are used where the author is considered incorrect; non-factive express no opinion on the author’s accuracy or inaccuracy.

For a discussion on writing style and technique, see the chapter on Writing later in the course.
Chapter 4. Finding a research question/goal

Table of Contents

Three main types of research ... 1
Types of IT research product ... 1
Finding a research problem .. 2
Questions to ask yourself .. 2
Technique-driven research ... 2
Following on from an existing paper .. 3
Discovering it has already been done ... 3
Document all possibilities .. 3
Know the field .. 4
Consult others .. 4
Look inwards .. 4
Narrow your focus ... 4
Phrase your goal as a question .. 5
Establish how you will evaluate your work .. 5
Conduct an Initial study ... 5
Research question checklist ... 5

Three main types of research

There are 3 main kinds of research:

• Integrating existing knowledge into a coherent body of knowledge — here your contribution is
twofold: to be comprehensive, and to present the wealth of facts in a comprehensible manner

• Solving a problem for which no known solution exists — here originality is required, and ideally
also simplicity and generality

• Looking at existing solutions or methods in a new way to improve upon them — here your new
approach should bring benefits like making the solution/method simpler, more effective or more
widely applicable.

Types of IT research product

The outcome of IT research is generally one of the following:

• the definition of a problem

• development of a new theory, solution, model, technique, architecture or system

• improving an existing theory, solution, model, technique, architecture or system

• development of a component, aspect or part of a problem solution or task

• measurement of some properties of a solution (part) e.g. time or space requirements, usability, etc.

• identification of problems and limitations of an existing solution (part)

• a demonstration that one solution (part) is better than an alternative

• identification of factors influencing cost, performance or applicability of a solution (part)
Finding a research question/goal

• the demonstration of a tradeoff in the solution space
• analysis of a tradeoff
• a generative, explanatory theory for some problem (part)
• a demonstration of how an existing approach or technique can be used in a new context where its application is not obvious
• description and analysis of a case study that places new demands on an existing approach or technique.

When choosing a goal for your research, remember to consider all these possibilities within your field of interest.

Finding a research problem

Most research is not fundamentally original, but is original in some aspect such as topic, approach, presentation, extension, result, or application area. If the area you wish to work in is relatively new, it is often easier to make a research contribution by tackling one of many problems not yet adequately addressed; while a well-established field requires expert guidance in order to ensure that one studies suitable aspects.

Look for something that interests you and the research community, and any supervisor or collaborators you hope to work with. If your topic does not really interest you, you will make your research task much harder and slower, because you will not enjoy the work. It will be much harder to be creative and passionate about it, not only during the problem solving stage but also when writing it up so as to interest and excite others.

If you are unfamiliar with the subject area, don't begin with bibliographic databases and research articles, as such papers have a narrow focus. You must first obtain a good background in the subject; it will help you to conduct a better search as well as ensuring that you understand the material you read better than you otherwise would have. This can be done by using secondary sources, namely handbooks, textbooks, review articles and encyclopedias. Secondary sources summarise and integrate information on a subject, drawing from primary sources already published; often they also give bibliographies as well as references to major papers in the field.

Questions to ask yourself

To help you choose a research topic, ask yourself:

• What research skills you are best at and what type of research requires these? What outcome is most important to you to improve problems in society? To bring computing to new kinds of user? To make money? To master some specific application context?

• What application areas out there do you consider messy?

• What new technologies do you know of that could drive change? What new problems could they raise? How do they affect known problems or tradeoffs? How might they affect another field which interests you?

• What kinds of new users are there? What kinds of tasks do they require?

Technique-driven research

Finding an original problem solution is a daunting task. In applied research, the particular setup for which a solution is required may be so specific that no-one has tackled that particular problem before.
Other research projects finesse this problem by starting with a specific technique and studying this in a new and challenging application domain. The majority of Computer Science research is technique-driven, i.e. a technique is applied in a new way or to a new application area, rather than problem- or goal-driven. The former type of research involves learning one technique, whereas problem-driven research requires familiarizing oneself with many techniques.

Breakthroughs in one problem area can be considered as solutions to similar problems in other areas (e.g. using AI techniques in the database field, etc.) When major breakthroughs (e.g. object-orientation) occur, these can provide alternatives for a great many problems, with potentially very useful research results. Such research requires thorough knowledge of both the new idea and the new problem area, and then being creative in applying the former in the new context. For example, if a new database paradigm were developed, it would need to be studied from the viewpoints of data definition and manipulation languages, query optimization mechanisms, efficient storage and access structures, suitable data models, transactions and concurrency control protocols, distribution, etc.

Following on from an existing paper

As the research lifecycle demonstrates, many advances stem from contradiction of existing ideas and practices. Having conducted a literature review of a topic, it is worthwhile considering whether any aspects appear incorrect, flawed or incomplete; this may provide a good research project. Some examples where current work underlies a research contribution are:

- An error is identified and a new result drawn from existing data/experiments
- A taxonomy has incorrectly placed certain systems/models/techniques in the wrong category, and an improved classification is proposed
- A new way of looking at an existing system or problem is suggested
- New data or a new context is discovered which refines or replaces current thinking
- The Future Work section raises a question that interests you

Discovering it has already been done

It can happen that during the course of your research you come across a paper that has already achieved the exact research goal you had in mind. If it is a case study or applied research and your case study or environment differs from that in the paper, then you can proceed happily, and do your best to follow the approach used by those authors (unless you have reasons to believe this was inadequate). Otherwise, you can consider modifying your research goal slightly so that your work will differ sufficiently from the study you have just located without throwing you too far off your original plan. Or you can consider whether the existing research you have just discovered has any serious flaw, and change your study to focus on correcting this.

Document all possibilities

One of the hardest aspects of being a researcher is choosing a suitable project. In the beginning, see how many potential research projects you can brainstorm, and do not eliminate any even if you doubt their feasibility. Write each down so that it isn't forgotten and so that you have a full record of your ideas, rather than keeping just a few continuously changing ideas in your mind. This will also remind you that you are making progress at a time when you most need such reassurance. Group the ideas into sets of similar questions and finally select a question or group that is most appealing in terms of challenge and feasibility.

Remember one of the joys of research is that you can do what you choose, according to what interests you, so beware of others’ influence over you and don’t be too easily swayed.
Finding a research question/goal

If you cannot find anything completely satisfactory, start with the best idea you have and see where it leads you — actually tackling a problem or prototype system can lead you to appreciate more fully the importance and the challenge inherent in a research question which might otherwise seem unexciting.

Know the field

Before you can make any start on research at all, is it essential to become familiar with the literature in the subject. Read the key works, look at recent copies of the key journals in the field, and if you like what you see then continue and do a literature review. Draw a mindmap or concept map of the subject, and see if this suggests new linkages or areas to explore. Reading academic journals or even articles in the popular press dealing with the topic can sometimes raise doubts in your mind or spark off related ideas which you can investigate.

Consult others

Ask someone — supervisors, colleagues or even friends can suggest or lead you to a suitable topic if you discuss your dilemma with them. Find out what others in the department are doing and whether there are aspects or parts they would like you to tackle (and the collaboration they envisage, if any). Look at previous examples of research projects in the same field, to have an idea of scope, process, presentation and quality (ask senior researchers which examples are considered to be the best, and study them to understand why this is so).

Look inwards

Some factors influencing one's choice of topic are purely pragmatic — the availability of funding, a supervisor, equipment, software and other resources. It is also inadvisable to select a field where you do not have adequate background knowledge in the subjects underpinning the area.

It is important to choose a topic you will enjoy — both the problem area and the research methods you will need to use should appeal to you. Which skills do you particularly want to develop or improve? What are your personal strengths and weaknesses? What do you find appealing or daunting - working with people? statistics? theory? complex systems? If you have an outside interest, consider this as a potentially novel context, application area, case study or problem source. You will enjoy working on your project more, and can use your knowledge of that environment to find special challenges peculiar to that context.

Think about building on your own recent activities, whether this be previous research projects, prior reading, earlier systems or architectures you designed or built, interesting problems encountered at work or at home, advanced computing courses you enjoyed, etc. Use your own experience to find a novel perspective on a known problem (for example, if you are studying at a foreign university, you can consider your home country, its languages and its culture, and any special challenges they present).

Narrow your focus

Broadly speaking, one needs to choose a topic or subject area, narrow it down to a particular problem or aspect of interest, decide on one or more research questions or goals, and ensure that the question or goal is sufficiently interesting and significant for you to spend time tackling it and for others to spend time reading about your results. Each of these steps requires a great deal of reading, thinking and writing.

The amount of literature directly relevant to your topic is a good indicator of whether it is too broad or too narrow. Narrow down an area of interest by considering specific (types of) systems, aspects, application areas, user communities, case studies, sub-problems satisfying particular constraints, etc. One way to limit the scope of your work is to consider the major components of the system/problem, and examine the environment it resides in, and then decide which components or links to concentrate on. Alternatively, find similar systems/problems and choose some difference(s) to explore, or consider the various properties of the system/problem and choose one to study.
Having chosen a question or goal, it should not be researched and tackled without bearing in mind the framework of existing knowledge into which it must fit. Too narrow a focus, in one's reading and one's work, indicates a lack of balance and an inadequate appreciation of the contribution one wishes to make.

Phrase your goal as a question

Once you decide on a research goal, to focus on a worthwhile contribution to knowledge in your topic, it is best to formulate one or more questions to answer. If you simply analyse what exists, build or design something new, it is not clear what can be learnt from the study or why it is important. By phrasing your research goal as a question, you focus on what you want to understand, solve or test, and have a far better chance of discovering something significant that others can learn from, use and build upon.

Setting one research question is best, but two or three is also acceptable. Do not try to answer four or more questions in one project. Writing your goal as a question often makes the research methods required reasonably clear. It forces you to be clear and specific, and express the problem in a way that its solution can be confirmed and evaluated. You can be more formal later and express the question as a hypothesis you wish to prove or disprove.

After you have decided what you want to study (your topic) and written down what is not known about it (your research question), the next step three is deciding what you want to understand and use when you find out the answer (your motivation). This 3-step process is not very different from what happens in industry and government, where success also depends on finding a problem, developing a solution, and then showing how others can benefit from what you have found.

Pro forma plans for research projects are also especially useful. These comprise two sentences. The first is the requirement, goal or question the project addresses. The second is a statement of the expected outcome of the research.

Establish how you will evaluate your work

If one is unable to evaluate a research product, one cannot know if the research has succeeded in meeting its goal, and one certainly cannot convince others of this. Defining suitable evaluation criteria can be an important part of the research, and in the early phases of the research life cycle is in fact part of the problem definition (while in later phases, new criteria are identified). In addition to evaluating completed research, these criteria can be used earlier on to guide the research through feedback from tests and experiments. Experimental research requires evaluation criteria that are easy to measure, reliable (repeatable), valid (i.e. measuring the right thing) and convincing — e.g. CPU time, percentage of correct answers, etc.

Conduct an Initial study

Since choosing a topic involves thinking about the time it is likely to require, one needs to have some project plan from the very beginning when an idea is first mooted. Even when you are still deciding on a topic, you can already draw up a timetable to have an idea of what your secondary goals would be and how much time they are likely to need. It can sometimes be helpful to conduct a short preliminary investigation to make sure you are happy with your choice of research question before you invest too much time into solving it. This could involve building a very small prototype, or conducting an initial experiment, to get a feel of what this research will involve and how much you enjoy doing it. When you are confident that you have made a good choice for you and have a reasonable idea what you will be undertaking, then you can move on to the next stage of writing a formal research proposal.

Research question checklist

Having chosen a research topic, confirm that it meets the following checklist of criteria:
Finding a research question/goal

- It does not aim too high. The process of research can be as important as the goal, so do not aim for a major breakthrough or for studying and problem/task that will require more time than you can afford.

- It does not aim too low. Ensure that the question or goal is sufficiently interesting and significant for you to spend time tackling it and for others to spend time reading about your results. Check its significance by writing down in one sentence why you are asking that question and what you expect to understand once you have the answer.

- It meets expectations/regulations. If you are doing a thesis, researching for an employer or consulting company, being funded by an organization, or planning to publish in a particular journal, check their expectations — both written ones and unwritten ones (which you can only discover by talking to others in similar circumstances).

- Resource requirements are in line with what will be available. Compare the time and resources you have, or are likely to acquire, against what the topic is likely to need. The difference can indicate a change in topic/focus. Alternatively, if the discrepancy is relatively small, time for raising extra resources must be planned into the start of the project.

- There is sufficient expertise you can tap into for feedback. Find out if there is sufficient local know-how and research activity, and consider the likelihood of finding collaborators locally and further afield.

- It is not governed by your place of work. If you choose an application area relevant to your employer, or a project instigated by your employer, think carefully about the likelihood of your changing job before the research is completed.
Chapter 5. Project Management

Table of Contents

What is a project plan? ... 1
What goes into a project plan? .. 1
The Network Plan planning method ... 2
Devising the network ... 3
Adding time .. 3
The critical path ... 3
The Workpackage planning method ... 4
Using the Workpackage plan ... 5
Project Scheduling .. 6
Auditing the Time Schedule ... 6
Advantages of planning .. 7
Project Control .. 7
The Workpackage Variance Report ... 7
Variance Analysis ... 8
 Negative variances ... 9
 Positive variances .. 9
A mixture of variances .. 9
Progress Control ... 9
Conclusion .. 10

What is a project plan?

In time, researchers learn how to manage themselves, how to work under the management of another, and how to manage others. Management encompasses planning, organization and control. We start by considering project planning techniques. A plan is a summary of how one intends to carry out a particular task. A plan is a formal statement of the nature of future events and activities and how they are to be carried out to achieve specific goals. A project plan, therefore, includes answers to the following three fundamental questions:

1. What is going to be done? A statement of the final goal of the project and a series of well defined intermediate tasks needed to achieve that goal. Each of these intermediate tasks should provide some tangible output or deliverable.

2. When is it going to be done? The completion date of each intermediate task, including the completion date of the final project.

3. Who is going to do it? The need for human resources as a function of time, including the possible need for resources available from outside the organisation or from other departments within the organization.

What goes into a project plan?

The skeleton of your plan is derived from the research methods you choose for your project. For example, if you are doing a case study, you will need to include the following stages:

1. Literature review

2. Selection of one or more groups to study (i.e. choice of environment, people, task)

3. Case study design
4. Questionnaire and interview design

5. Pilot study

6. Design refinement

7. Case study execution: observation and survey

8. Information analysis

9. Writing up results

This skeleton should then be fleshed out to be as detailed and specific as possible, and documented as clearly as possible, using charts like those described below. In addition to activities, make sure you are aware of the appropriate programming tools that can reduce your work, and plan which software to use. Plan collaboration with others, work out the roles of team members and plan regular meetings (or other forms of contact, in the case of remote partners). Decide which resources you will use for managing distributed projects, such as coding standards and version control systems. Ensure that resources are available when needed. Research resources can take many forms - finance, equipment, software, literature sources, data sources, research/laboratory assistants, experts/consultants, documents, testers, and so forth. A research plan should be annotated with resource needs, and acquisition of resources included in the schedule where a need is manifested. In order to control a project, account has to be kept, not only of financial expenditure, but also of time spent. This implies that every person involved in the project keeps a personal time record, something which the majority of people abhor and some professional persons do as a rule. Without such a record of time spent on the project by each individual, it is impossible to exercise control.

The Network Plan planning method

The Network Plan approach to project planning interprets a project plan as consisting of a collection of events interconnected by activities. The term "event" is used to merely indicate the starting and terminating points for one or more activities or a block of activities. The various events are interconnected to form a graphic project Network Plan.

The logical interconnections between activities, or events, express technical, organisational and other conditions. For example, before starting an activity or block of activities, certain other activities have to be completed, certain activities or sequence of activities can be executed in parallel, and so on. There are occasions when the completion of an activity must coincide with or precede the start of an activity in a parallel branch of activities. This dependency is indicated by a broken arrow, indicating an activity which requires no time.

An example of a Network Plan, with events identified by 3-digit numbers and activities labelled with expected number of person-hours, can be seen below.

Figure 5.1. An example Network Plan
Software packages exist for building and analyzing Network Plans. The features offered differ slightly across tools, and also differ slightly from those discussed here.

Devising the network

There is seldom a single completely natural way in which to partition the work into constituent activities, and in which to connect them. The knowledge about an activity is never complete until the work has been done. Rather than use this as an excuse to avoid planning, a conscious decision has to be made on what activities leading to which events have to be performed, which of the activities are independent and can thus be executed in parallel, and in which sequence to perform the activities.

If several levels of the network chart are necessary, an event on the network chart at level i will expand to a network chart at level i+1. This is a natural process, the amount of detail increasing from the lower levels upwards. Developing a project plan is often a trial--and--error, iterative process, working back and forth between a very general chart, and highly detailed lower-level charts.

Adding time

After drawing the chart, extend it by estimating the time required for each activity. A network chart extended in this way, is often called a Programme Evaluation and Review Technique (PERT) chart or Critical Path Method (CPM) chart. The difference between CPM and PERT is not fundamental, but rather one of viewpoint. In a PERT type of network chart, events are designated explicitly and emphasized by their placement in boxes. In a CPM plan the events would not be shown; activities would follow directly upon one another. In general, CPM is used by industries like the construction business, where the project includes well defined subtasks, with a low level of uncertainty. PERT charts are more likely to be used in research, where uncertainties abound and responsibilities are seldom well defined.

The first step in introducing time to the chart is to prepare a list of realistic activity times, in consultation with the people allotted the work. A frequent mistake is to assume that the work can always be done during overtime or late at night if the estimate is too low. Make sure that nothing has been overlooked and pay attention to things that may potentially go wrong. Programmers invariably underestimate the time required to perform a task by a factor of 2 or more.

The critical path

In the Network Plan project planning method, the critical path is the sequence of activities which determines the earliest time at which the project can be completed. Once the critical path is known, one looks for those paths which are not critical but near critical. Such a subcritical path may, due to a missed delivery date, suddenly become the critical path. Or, if the activities along the critical path are expedited, the earliest project completion time may become a function of a subcritical path.

The second step in the chart analysis is to go through the Network Plan and determine for each event the following three times:

- The earliest completion time is recorded in the lower lefthand quadrant of each event: the time, assuming that the start is at time zero, when (all its predecessors and) the event can be regarded as completed.
- The latest completion time is indicated in the lower righthand quadrant of each event. This is the latest time that an event can be completed without delaying the completion time of the project. Latest completion times are calculated backwards, starting at the end and tracing backwards through all possible paths.
- Slack time, the difference between the latest completion time and the earliest completion time, is indicated in the upper righthand quadrant. This is the length of time for which the event could be delayed without holding up the project. The sequence of events for which there is no slack time is the critical path.
The earlier example of a Network Plan is shown here with completion and slack times included.

Figure 5.2. Network Plan with added times

The Workpackage planning method.

This technique is different from the Network Plan planning technique only insofar as that it does not stress the interdependence between project activities as explicitly. In this case the work to be done is structured into four hierarchical levels to facilitate scheduling and control, aided by a set of forms designed for the purpose. This breakdown is illustrated below.

Figure 5.3. The breakdown

The Project Work Structure starts with a division of the entire project into a number of smaller identifiable work units called elements”. Elements in turn are divided into tasks”. The smallest unit of work in this hierarchical structure is called an activity” and appears on the lowest level.

The Element Level: The project is split into the various work units or elements each identified by a two digit number, e.g. 27.

The Task Level: A task normally corresponds to a development phase within the element concerned. Writing the syntax analyzer for a project which has the writing of a compiler as one of its elements,
would be an example of a task. Every task is identified by a three character code of which the first two are the code of the element to which the task belongs and the last is an alphabetical character, e.g. 27A.

The Activity Level: Each task is split into its constituent activities. The work required to write the symbol-table-handler for the syntax analyzer mentioned above would be a typical activity. An activity is identified by a four character code of which the first three characters are the code of the corresponding task and the last is again an alphabetical character e.g. 27AC.

Using the Workpackage plan

Ensure that each task is finite and well defined. Some kind of goal needs to be set, if only to know when it is achieved. In a team effort, bear in mind that each person has to be assigned a part of the project as their responsibility. Each activity should have a deliverable” associated with it, i.e. literally something that can be delivered” in the physical sense. A report or a completely documented and tested software procedure is an example of a deliverable.

A Workpackage Work Detail form is completed for each project, element and task. The form contains a description, input requirement(s), deliverable(s), cost (where applicable), name(s) of the individual(s) responsible, Issue (Version) No. and estimated Man (Person) Hours. An example can be seen here.

Figure 5.4. A Work Detail form

<table>
<thead>
<tr>
<th>WORKPACKAGE WORK DETAIL</th>
<th>Project 1</th>
<th>Element 10</th>
<th>Task -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Issue No.</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>Model Description Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manager</td>
<td>Start Date</td>
<td>Finish Date</td>
<td></td>
</tr>
<tr>
<td>PSK</td>
<td>02/01/2005</td>
<td>28/02/2005</td>
<td></td>
</tr>
<tr>
<td>Man Hours</td>
<td>255</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brief Description

Development of a "compiler" to set up and initialize the data structures employed by the DVI from the model description.

Detail Description (Activities, Inputs, Outputs, Responsibilities)

TASK 10A
- Design a parser for the model description language.
- Document the design.

TASK 10B
- Develop data structures based upon the DVI design.
- Document the design.

TASK 10C
- Design the program to set up and initialize the data structures from the input model description.
- Code the program.
- Document the program.

TASK 10D
- Preliminary testing of the system using sample model descriptions.

INPUT: Model Description Language specification

OUTPUT: Preliminary tested and documented MDL "compiler"

STAFF: PSK, MB, JvD

The Workpackage and the Network Plan approach are not mutually exclusive; in fact a proper Network Plan may well require a detailed analysis such as that of a Workpackage, although neither is essential to the other. Both will lead to a time schedule expressed in the form of a Barchart” or Gantt chart”, described next.
Project Scheduling

Using either the Network Plan or the Workpackage planning method, it is common and convenient to construct some form of barchart or simplified Gantt chart to graphically illustrate the development of a project with time.

Drawing the Schedule

A barchart has time along the horizontal axis, increasing from left to right. Each activity is briefly described along the vertical axis or rows. The expected start of an activity is indicated by a circle and the expected completion time by a triangle pointing downwards. Once the work on a particular activity has started, the actual start time is indicated by a solid circle; once done, the actual completion time is indicated by a solid triangle. In the event that an activity is rescheduled, the version number is written above the symbols. An example where one activity has been completed, a second started, and two more planned for the future, can be seen here.

Figure 5.5. An example time schedule

<table>
<thead>
<tr>
<th>WORKPACKAGE TIME SCHEDULE</th>
<th>Project 1</th>
<th>Element 10</th>
<th>Task 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue No.</td>
<td>1</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Date</td>
<td>28/12/2004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Title

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Language</th>
<th>Start Date</th>
<th>Finish Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td></td>
<td>02/01/2005</td>
<td>28/02/2005</td>
</tr>
<tr>
<td>Expected</td>
<td></td>
<td>02/01/2005</td>
<td>28/02/2005</td>
</tr>
</tbody>
</table>

Monitor by

| KMakG |

Description

Development of a "compiler" to set up and initialize the data structures employed by the DVI from the model description.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>JAN</th>
<th>FEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>Language Parser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10B</td>
<td>Data structure definition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>Design and Coding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10D</td>
<td>Testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activities on the critical path can be transferred directly from the Network Plan or the Workpackage Work Detail to the the time schedule. For other activities, a decision as to start time is made, based on the availability of people and other resources. Scheduling is an iterative and a team effort. A skillful manager creates an environment in which the workers feel that the manager is helping them to protect themselves against the consequences of a poor estimate.

Auditing the Time Schedule

Once the schedule is complete, the project manager should determine whether it is realistic, using the following typical set of guidelines:

- Is the estimated time for each activity realistic?
• Are all assumptions mentioned and valid? It is common to receive underestimated times based upon the existence of resources that have never been explicitly specified and will be unavailable when needed.

• The impossible always happens. An estimate based upon the 100 percent availability of equipment or personnel is inviting trouble.

• Refer back to the records of previous projects to learn from the mistakes or estimates made there.

Advantages of planning

If it turns out that the resource or time requirements exceed what is available, the project then has to be scrapped or re-planned, or additional resources motivated for. In the latter case the carefully prepared plan serves as an excellent basis for such a motivation. Even where there are no evident problems, plans put one in an excellent position to ask under what conditions the schedule, cost or requirements can be improved. And when you plan your time upfront in a realistic way, you will not be discouraged during stages of lower productivity, as these will have been recognized and anticipated from the outset.

Project Control

A plan is of no use unless control is exercised to ensure the plan is adhered to, or that action is taken timeously when this is not the case. Project control thus involves regular checking of progress against the current project schedule, and taking appropriate action wherever tasks are delayed or postponed or producing inferior outputs. If scheduled tasks have not been started as planned, or are taking significantly longer than anticipated, this needs to be carefully considered to identify the cause of the problem and the best remedy. This can mean giving the individual concerned greater assistance, support, encouragement and incentive; it can mean revising the plan in the light of new knowledge or problems; it can mean changing the allocation of people to tasks; etc. It is the nature of research that the process cannot be spelt out in detail at the outset and then simply executed as plan change is to be expected, and plans revised accordingly as the research proceeds and you learn more about the problem. If tasks are being completed on time, project management requires checking that they have been adequately done this can involve using appropriate software testing procedures, obtaining feedback from others through user testing or seminar presentation, etc.

The documents produced during the project planning and scheduling phases form the input to project control. Overall control is guided by regular reports of the variance between actual times spent versus budgeted time (and of financial expenditure vs budget, where applicable). Although these variance reports do not indicate whether the project is on schedule or not, they do indicate whether human resources are being used at the rate predicted. Depending on the reason for a variance, it may serve as a warning of impending problems.

The Workpackage Variance Report

This form must be completed at the end of the planning phase and for each subsequent reporting period for every task, element and complete project (or, in the case of the Network Plan, for each activity). This report comprises the following fields, as can be seen in the example below:
Figure 5.6. A Variance Report

<table>
<thead>
<tr>
<th>WORKPACKAGE MANHOURS</th>
<th>Project</th>
<th>Element</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIANCE REPORT</td>
<td>1</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Issue No.</td>
<td>1</td>
<td>Date</td>
<td>28/12/2004</td>
</tr>
</tbody>
</table>

PERCENTAGES

- Actually Completed : 15%
 (Cumulative - WIP) / Expected
- Completed + WIP : 27%
 Cumulative / Expected
- Over Target : 2%
 (Expected - Target) / Target

<table>
<thead>
<tr>
<th>Item</th>
<th>Reporting Period</th>
<th>Work in Progress (WIP)</th>
<th>Cumulative</th>
<th>Target</th>
<th>Expected</th>
<th>Variance</th>
<th>A/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>10A</td>
<td>20</td>
<td>40</td>
<td>45</td>
<td>40</td>
<td>-5</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>10B</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>+10</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>0</td>
<td>0</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>10D</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

| Totals | 20 | 30 | 70 | 235 | 200 | - | - |

- **Item**: The code of the element, task or activity to which the row refers.
- **Reporting Period**: The number of actual hours spent on the item during the current reporting period.
- **Work in Progress (WIP)**: The total number of hours spent to date on an item on which work has started but has not yet been completed. This includes the time spent during the current period.
- **Cumulative**: The total number of hours spent to date on the item. Once work on an item has been completed, this number will remain the same from one reporting period to the next. Otherwise it will be the same figure as that in the column marked WIP.
- **Target**: This column contains the original hour estimate for the item at the time of planning or replanning.
- **Expected**: The current estimate of the number of hours required to complete the work on the item. This number may vary from one reporting period to the next as work progresses and new information comes to hand. Such new information may also effect the time estimates for items on which work has not yet started.
- **Variance**: This is the field which contains the difference between the target and expected number of hours.

A/E. If the work on the item is still in progress, an E for expected will be filled in; otherwise A for actual.

Variance Analysis

The variance report discussed above is the primary source of information concerning the status of the project and how that status was reached. Depending upon the number of person-hours expended per day, a variance report should be completed every one to four weeks.
Negative variances

Negative variances on almost every item of the project imply that work expended is in excess of the target total. If the manager knows that an intense effort has been made to advance the project, the negative variances are a confirmation of this decision. If the increased rate of work was not a conscious decision, it is clearly necessary to determine whether the project is on schedule and not experiencing technical difficulties. If there are severe technical difficulties, another planning iteration is obviously called for. On the other hand, if all items are behind schedule, the negative variances are early warning signals of an important problem. If the project is on schedule and there is a continual pattern of negative variances, the original time estimates may have been too low. Again a new iteration of the planning process is required. A careful audit of the personal time reports of those working on the project may on the other hand reveal a typical human problem. Because the project appeared to be running well, there may have been a tendency to free load on the project, i.e. idle time could be charged to it without arousing suspicion. Equally, the unjustified time charges against the project may have been made by individuals on another project which is in trouble. A manager who uncovers either type of dishonesty should make this discovery known without embarrassing the individuals concerned. The same is true when anyone consistently underestimates the time required for an activity in an attempt to reflect favourably on their own capabilities.

Positive variances

Variances consistently positive indicate that less manpower is being used than originally estimated. If the project is on schedule, all is well. However, little time spent on a project indicates people failing to work on the project at the planned times. This may be because they are stuck with technical problems, lack resources or have been assigned other work. If the job is on schedule and no technical difficulties are reported, then it could be one of those rare situations where things go better than predicted. On the other hand, the original estimates may all be too high. Overestimates are generally troublesome in that more resources may be kept available than are needed. This has direct implications for the productivity of the team which ultimately will effect everyone concerned.

A mixture of variances

A mix of relatively minor positive and negative variances, in a project that is on schedule, is a cause for rejoicing. But be wary of a natural human tendency to make the actual time expended agree with the estimate. This kind of dishonesty will only become evident in one of two ways: either the original time estimates were close, and the project schedule will eventually suffer; or the original time estimates were too high and will adversely affect productivity of the team.

Progress Control

The basic data used to plot project progress with time are two percentages -Actually completed and Completed + WIP. As an approximation of the status of the project, these are a valuable management tool. Models do not have to be exact analytical representations of the real world; they need only be close enough to be useful as a control tool.

The following are typical patterns which should reveal trouble:

• **Going nowhere**: reporting period after reporting period elapses, but the Actually Completed percentage changes very little.

• **Forever 95% complete**: some tasks, elements or projects move very well up to a high level in terms of Actually Completed percentage and then they just remain there. The Completed + WIP percentage would soon show that the project is behind schedule however, since some activities always seem to be 85% or 95% complete, but never 100%.

• **Too good to be true**: a continual, remarkable high level of agreement between Actually Completed percentage and elapsed estimated time is a clue to dishonest reporting. If allowed to continue, this
situation usually degenerates to the forever 95% complete case, since the reported percentages bear little relation to work progress.

- **Sudden surprises**: an activity is making progress as expected in terms of Actually Completed percentages when suddenly a dip occurs. This is quite acceptable as a single occurrence, but it may nevertheless be wise to establish the reason for the sudden lack of progress.

- **Lack of cooperation**: one may occasionally find someone who refuses to give their estimate of the percentage of work completed on an activity. This can be an indication of trouble with the activity or, worse yet, with the individual. Failure to keep or obtain the records discussed leads to a crisis management approach which only compounds the problems in out-of-control situations.

Conclusion

Most creative people have an inherent bias against paper work, and resent the record keeping and analysis required for project control. For this reason those activities should be kept minimal and the reporting processes as simple as possible.
Chapter 6. Research Proposals

Table of Contents

When are you ready to write a research proposal? ... 1
Research proposal structure ... 1
Additional material .. 2
Grant/funding proposals .. 2
Help in writing a proposal .. 2

When are you ready to write a research proposal?

It is not wise to rush into writing a proposal unless you are sure that you have a research goal that is feasible and suitable for your interests and background. To check this, make sure that the following statements are true for you:

• I am familiar with related research in this area
• I have a good understanding of the steps that will be involved in achieving these goals
• I have the ability to successfully conduct each of these steps
• I am sufficiently motivated and enthusiastic about all the steps in this project
• I am convinced that the results of this research will be useful to others

Research proposal structure

A research, thesis, or grant proposal usually comprises the following sections:

1. **Title.** Give a meaningful title that summarises your planned research project.

2. **Executive summary.** Describe the project and its importance in about 250 words.

3. **Research goals.** Give short- and long-term goals, and their significance, explaining what difference your research output will make to current theory and practice. List the main research questions you are asking, and if anyone else has said the problem/task is important to study, then say so. While you cannot know what your research outcomes will be, give an indication of what outputs and results you envisage.

4. **Existing research.** Review the current knowledge in the field, and include your own past research to show your familiarity and competence in the subject. Make sure it is clear how your research differs from what already exists, and how it relates to this.

5. **Methods and experiments.** These should be outlined in sufficient detail to show that they are feasible and suitable. Assess the difficulty of your goals and describe previous experience you have with similar goals, methods or experiments. Consider what risks exist and how you will minimize these. Show that you already have a plan for evaluating your research outputs your work will be wasted if you do not know how you can evaluate your success or goal achievement.

6. **Timetable.** List major tasks and their expected completion dates.

7. **References.** In a thesis proposal, this should include papers you plan to read and an annotated bibliography for those you have already read, showing that you can group these papers into suitable categories and are aware of the key articles in the field.
Additional material

If the financing of the research is an issue, a budget must be included. Itemise what will be required, with cost estimates and motivation. Every such item must be essential to the viability of the work, and you must explain clearly why this is so. (Note: this section is omitted in a thesis proposal)

Where applicable, attach CVs of researchers and supporting documents from your own or any other institution wishing to be involved as collaborator or funder.

Depending on the type of proposal, a draft table of contents for the final report can be a concise yet detailed outline of what is envisaged. This is more suitable for projects of fixed, short-to-medium scope - a Masters thesis is a good example.

Grant/funding proposals

In order to convince funding bodies that your research proposal deserves an appropriate research grant, you will need to show that

• the problem being addressed is important
• you have the experience and ability to solve it within time and budget

This can be done in the following way:

1. Your research problem can be shown to be important by showing that it is likely to lead to new discoveries within its field or to have substantial impact on other fields. Show that it has the potential to contribute to better understanding of the field, and where applicable, that it can help to achieve an extrinsic industrial or sociological goal through improved technology. If your research is capable of facilitating the distribution or effectiveness of science education, this should also be explained.

2. Your suitability for the work will be rated according to your recent research performance, the soundness of your research proposal (including the methods and approach you plan to follow) and the adequacy of resources you will have at your disposal (according to equipment and people available and budget requested).

Help in writing a proposal

To help you write a research proposal (or any other research article), first work out how you would explain your project to someone who is not a Computer Scientist, or at the very least to a Computer Scientist who has no knowledge of your area of specialization (e.g. AI or databases). This will bring to light any hidden uncertainties or fuzziness in your own thinking; it will make it easier to explain complex aspects of the work in a more understandable way; and it will prepare you for those occasions in the future when you will indeed be required to discuss the work with people outside your discipline (potential clients, sponsors, employers, end-users, sources of useful data, etc.) Some general guidelines on describing research ideas can be found in the section on Research Writing.
Chapter 7. Experimentation

Table of Contents

Most IT research is experimental ... 1
Planning the experiment .. 1
Criteria for successful experiments ... 2
Example .. 2
Hypothesis testing ... 2
Experiments with human subjects ... 3
Finding a representative sample .. 3
Dividing subjects into groups .. 3
A single group repeating a task .. 3

Most IT research is experimental

Experiments are at the heart of the scientific method, where hypotheses are confirmed or refuted through carefully controlled artificial test situations. One of the differences between system development in industry and in research, is the quest for new knowledge and for evidence to support such claims. Therefore, with the exception of formal or theoretical studies, IT research requires conducting experiments to backup claims about new computing techniques, systems, models, architectures, etc. A major difference between a software/hardware development project and a research project is that the latter involves a hypothesis (new knowledge whose truth we want to evaluate), the design and execution of experiments to test this hypothesis, and the careful and rigorous analysis of data from these experiments to see whether they support the hypothesis. In this way new knowledge is gained by building systems or models, and observing and analysing their usage. A computer science research publication that does not include experiment results contributes ideas only, without any evaluation of these ideas. Experiments can be exploratory, or can be structured so as to answer specific question(s) or to test hypotheses. The kind of experiment most common in IT is an experiment which sets out to validate a new model/system/architecture/approach by implementing a prototype that shows it is feasible and practical, or that it behaves as was predicted. Another type of experiment in computing is that which compares a new model/system/architecture/approach proposed by the researcher with current practice; while others are designed to establish optimum parameter values or resource needs. Experiments should also be conducted when a critical decision is made, to avoid proceeding further without confirmation that a good choice was made. This is crucial particularly when working in the context of safety critical systems.

Any research should state a hypothesis at the outset and end with a conclusion as to whether the hypothesis was supported or refuted. In some cases where the research focuses on building a system, this hypothesis may be stated along the lines of "System P is good for task X" or "System P is better than rival systems Q and R for task X", or similar sentences with the word system replaced by model, technique or theory [Bundy97]. The context in which P is better also needs to be stated. It is seldom possible to test all types of task X, so the range of such tasks must be classified so that a representative sample can be used in the experiments. At the same time the meaning of "better" needs to be precisely defined (for example P may be more widely applicable, easier to use, faster, consuming less resources, or the like), and in a way which is explicit and measurable. A useful check that a hypothesis is acceptable is to imagine a scenario in which the hypothesis is refuted.

Planning the experiment

When an experiment is designed, researchers should document their goal/hypothesis and experimental procedure, and then scrutinize this from an outsiders viewpoint to see what criticisms could be leveled at their proposal. As ever, it is preferable to also seek such feedback from colleagues and friends. The experiment can then be modified to take these criticisms into account; or where this is not possible, the goal/hypothesis can be altered or limited accordingly.
A pro forma plan is a brief indication of the requirement being tested and the finding we hope to reach in an experiment. Its first sentence states the requirement and its second sentence summarizes the anticipated result. A pro forma report is written after the experiment, and also comprises a first sentence giving the requirement and a second giving the findings of the experiment. Here is an example:

Pro forma plan: It is required of the ticket machine that first-time users should be able to operate it successfully without prior training. We intend to carry out laboratory tests of the machine to confirm that at least 95 per cent of users can complete normal purchases without difficulty.

Pro forma record: It is required of the ticket machine that first-time users should be able to operate it successfully without prior training. We have carried out laboratory tests of the machine in which over 97 per cent of users completed normal purchases in less than 60 seconds. [Newman and Lamming]

Criteria for successful experiments

The purpose of a laboratory experiment is to obtain precise measurements for a system (measures of performance, reliability, usability, or whatever criteria are of interest). To achieve this requires tight control over experimental conditions so that extraneous influences are factored out.

For a prototyping experiment to demonstrate an idea is valid requires some measure by which feasibility can be established (e.g. response time). To compare two systems or approaches to determine which is better requires suitable performance indicator/s (e.g. resource utilization, time, or error rate). To test a hypothesis, at least two measurable variables are needed, in order to study the relationship between them. Experimental research thus requires finding performance criteria that are convincing, verifiable, easy to measure, and measuring the right thing.

The aim of experimental techniques is to minimize the effect of bias in research and facilitate independent verification of observations. If experiments are repeatable and use well-known methods, then others can more readily accept research results. An experiment succeeds if it measures only the effect that it sets out to measure, without interference from other influences, and if its results can be generalized to other cases (or to other cases satisfying assumptions underlying the experiment).

An experiment should be designed so as to learn something that is generally applicable, and not just true for the particular instances involved in the research. To generalize from experiments requires that an adequate number of experiments is performed, which in turn depends on the number of extraneous factors that are possibly affecting results. If a researcher wants to demonstrate that an idea is feasible and implementable, only one experiment is necessary. To show that one system/approach is better than another, requires running two experiments - one with each alternative - and comparing results. It is best to use well-known benchmarks for such experiments, where these exist. Showing a relationship between variables or testing a hypothesis will require more experiments, so that any influence from extraneous factors can be counteracted.

Example

As an example, consider experiments conducted to evaluate MYCIN, the medical diagnosis expert system. Initially, experts were given MYCINs diagnoses and recommended treatments and asked to rate them. Later experiments used improved measures: experts were given diagnoses and treatments, some of which had been done by other experts and some of which were done by MYCIN, and asked to rate these without knowing which were which. This removed bias, and also showed up that expert opinions were not always reliable and needed to be averaged out.

Hypothesis testing

The hypothesis being tested in an experiment is one that predicts a relationship between two events or characteristics, called variables. The variable that is systematically manipulated by the researcher
in an experiment is called the independent variable because the conditions to test this variable are set up independently beforehand. The variable being measured to see how it is affected is called the dependent variable because its value depends on the setting of the other variable.

If there is a control and an experimental test, and only one variable is different for the two, then it can be argued that differences between the two tests are a result of the differences in that variable. But this means that extraneous variables need to be kept constant in an experiment, with only the experimental variable changing so that its effect (alone) can be determined. Experimental research involves varying one or more independent variables to assess their effect, controlling extraneous variables to prevent their influencing results, and creating different experimental conditions to study.

A graph or bar chart helps in comparing two sets of results easily. Statistical tests like the student t-test can be used to test if differences are significant, and hence if the hypothesis has been confirmed (or not).

Experiments with human subjects

If an IT experiment is concerned with system behaviour or performance, it is easier to control the effects of extraneous factors; if it involves humans (e.g. usability studies), then a number of participants will be needed to balance out the effect of the many extraneous characteristics of the individuals themselves.

If two systems compared in an experiment turn out to be very similar in performance (or error rate, or whatever is being measured), it can be due to a poor selection of test tasks or to extraneous differences between control and experimental groups.

Finding a representative sample

For an experiment to give a good indication of what will occur in the real world, we require a realistic group of users tackling realistic tasks. The small fraction of future users and tasks that are involved in an experiment is called the sample, and it is important to obtain a representative sample. If we have a sufficiently large sample that is representative of the target population, then the mean performance measured in the experiment should be very close to the real mean (for the population as a whole).

Dividing subjects into groups

To limit the effect of extraneous characteristics of human subjects, participants should be divided into a control and an experimental group, without being told the difference between the two groups. (Ideally, researchers observing them should not know which group they are looking at either. Such double-blind experiments are seldom possible in computing however). One approach is to randomly divide participants into two groups, on the assumption that the groups will thus be equivalent/comparable. It is best to test this assumption by interviewing, questioning or testing the two groups before the experiment starts, and then forming two balanced groups accordingly. The technique known as matched-participants creates pairs of subjects having matching characteristics; the group is then divided into two equivalent halves by splitting each pair. This will also enable you to do before-vs-after comparisons on each group, by repeating the test, interview or questionnaire afterwards.

A single group repeating a task

A problem with dividing subjects into two groups is that, unless there are enough subjects available, the groups can be very small and so the effect of any individual differences can be pronounced. As an alternative, all participants can do the control case first and then do the experiment afterwards (or vice versa). This removes the possibility of extraneous factors affecting different results shown by the two groups (since it is the same group of people every time), but it is only applicable if subjects do not learn or change during the first experiment, thus affecting their performance in the second one. This approach is certainly best when systems and not humans are involved. Otherwise, the order effect can
be reduced by halving the group of subjects, so that one half does A and then B, while the other does B and then A (called counterbalancing).
Chapter 8. Prototypes

Table of Contents

What is a prototype? ... 1
The role of prototypes in research .. 1
Why build a prototype? ... 1
When to build a prototype .. 2
Low- and high-fidelity prototypes .. 2
Prototyping steps ... 2
Problems with prototyping .. 2

What is a prototype?

A prototype is a simplified system, designed and built to focus on certain aspects while ignoring others. For example, a prototype might ignore user interface issues entirely, or it may be built solely for ease of development without concern for efficiency, or it may implement only some parts of a system and omit others entirely, etc. A prototype is easier to study and reason about than an abstract model, and quicker to produce than a complete working system. It can also be easier to analyse than a full system because unimportant aspects have been factored out. A prototype is never the major contribution of research, but it is often a helpful tool for achieving some other research goal.

The role of prototypes in research

Prototypes are mainly used in the following ways in IT research:

• To demonstrate that an idea is practical and feasible, by implementing it in some prototypical form

• To enhance an idea/model/system/architecture/approach, and develop it in more detail - by discovering problems, solutions and alternative opportunities in the course of prototype construction

• As a vehicle for conducting an experiment, to test some property of a system or approach — e.g. performance, usability, integration etc.

• To study the use of some technique in a particular application context, one which has characteristics different from other environments where the technique has so far been applied

Why build a prototype?

Constructing prototypes enables us to study, test and improve on ideas and designs. The more prototype systems developed and explored, the more we will learn and the more our research will benefit. The longer a research project proceeds without constructing a prototype, the more time is being invested in an untested concept; and the more choices are being made without verification. Researchers run the risk of developing in more and more detail an idea that is unsound, flawed or inferior.

Building a prototype to test an idea is a type of formative evaluation, so-called because it is being tested in order to help form the solution to the research problem. A prototype facilitates testing decisions already made (are there any problems with what has already been done?) and assists in future decision-making (what is the best alternative for the next step?). Prototypes are particularly useful for checking system performance, but partial systems can also be built to answer specific questions about certain components or aspects of a system.
When to build a prototype

Prototyping is used extensively in engineering. Where there is an accepted theory, model or method of analytical testing this is used initially and prototyping is left until a design is almost complete; otherwise prototypes are built early in the project.

To build a prototype to evaluate an idea, that idea must first be developed in sufficient detail to make implementation possible. You need to identify the components (including hardware, users and external software) and the interactions of interest, what information they require, and how to represent this. Overall system requirements need to be decomposed into tasks and operations, which must then be allocated to individual components. Relationships between components and operations must be decided, for example the temporal ordering of operations and the information passed between components.

Low- and high-fidelity prototypes

Low-fidelity prototypes do not look very much like the system envisaged, but are quick and cheap to construct and test, and are useful particularly in the early stages of the research project. A Wizard of Oz prototype is an example of a low-fidelity prototype used in HCI, where an interface design is evaluated by having a (hidden) human respond to inputs in the place of software components which have not been built. User interface prototypes can even involve hand drawings and story boarding in the beginning, to check usability before any software is produced.

Initial prototyping should be fast and simple as possible, to get an idea whether or not the system is on the right track as quickly as possible. Focus on key aspects only, and keep the number of tests and amount of analysis down to a minimum, since only significant benefits and problems are a concern at this stage.

High fidelity prototyping creates systems that are much closer to the final product envisaged. Besides taking longer to develop and having a higher chance of containing hidden bugs, they can cause researchers to be distracted by less important details instead of focusing on the issues that the prototype was intended to explore.

Prototyping steps

1. identify the question(s) to be answered by the prototyping exercise
2. design a prototype specifically for answering those questions
3. design an experiment using that prototype to answer the questions
4. implement the prototype
5. conduct the experiment using the prototype
6. process and analyse the results from testing the prototype
7. use the results to answer the questions and direct future research accordingly

Problems with prototyping

The main problems with prototyping are that it is very time-consuming, and researchers find it difficult to throw away prototype code when drawbacks or problems are identified because of the time they have already invested in that prototype. To avoid these problems it is best to build partial solutions, and gradually extend (or, when necessary, replace) them to test new aspects as they are considered.
Chapter 9. Case Studies

Table of Contents

What is a case study? ... 1
How many cases are needed? .. 1
Research techniques used in case studies 1
Preparing for a case study .. 1

What is a case study?

A case study attempts to understand an issue within the restricted context of a real-life situation. It
is not created for research purposes, but is taking place independently, though it can be modified if
necessary to fit the research project. A case study can be relatively easily organized at a place where
the researcher has some connection — their work, community or sports organization, a local business
or school, etc. A case study should be conducted in good faith — participants must agree beforehand
to their involvement, which should be clearly defined and agreed upon at the outset. Some case studies
are exploratory, others are structured from the outset to obtain answers to specific questions or test
a particular hypothesis. The best way to get an appreciation of what a case study involves is to read
some examples.

How many cases are needed?

Where possible, it is better to conduct two or three case studies so that comparisons and generalizations
become feasible. These should be selected according to the hypothesis being tested. For example if
the hypothesis is that X causes Y, then cases having X as well as cases not having X
must be chosen, and also cases where Y does not hold, in addition to one or more randomly
selected cases. A single case study is most useful if it is an extreme case, or has one or more unique
characteristics that are interesting in their own right.

Research techniques used in case studies

A case study enables far more detailed and customized data and observations to be obtained than
surveys, interviews and experiments involving a sizeable number of participants. A range of techniques
can be applied to the same situation — system measurements, questionnaires, interviews, audio/video
recordings, and observations — and each can be geared to the specific case rather than the topic
in general. Furthermore, the researcher can vary over time from being a hidden observer to being a
direct participant, and thus gain first-hand experience of the phenomenon being studied in a real-life
situation. The research output should be available for participants to scrutinize as it is developed, and
discussion of any problems should be encouraged.

Using a case study in research requires accurate presentation of events, behaviour and perceptions;
and obtaining a good understanding of the case as a whole, without omitting any aspects, in order to
gain a proper and complete grasp of the reality. The findings of a case study are highly subjective, and
researchers should be open about their views when they present their work.

Preparing for a case study

Case studies tend to generate question after question, in an unpredictable way, and hence some sort
of framework is needed to control this phenomenon. This can be done by considering basic questions
about the case: what is it about, how does it work, why does it work like this?
A project plan should be drawn up at the start of a case study, to indicate precisely what is being studied and how it will be measured.

The project plan should document the questions being investigated or hypothesis being tested, the processes involved, the observations needed, the qualitative and quantitative data to be collected, the analysis to be performed [Yin]. Predicted outcomes should be documented for subsequent comparison against actual results and observations; preferably a number of different predictions should be recorded — those fitting the theory, model or argument being advanced by the research, and those fitting existing theories and beliefs. It makes no sense to devise a theory, model or argument after the case study is complete, since hindsight is an exact science — naturally your “predictions” will then fit observations, and nothing will be learnt. If results do not match expectations, or only in part, then consider revising the theory/model/argument and conducting a second/additional study.

For an exploratory study, the aspects of the system being investigated, and the events and behaviour of interest must be decided beforehand, but researchers must prepare to change focus as issues emerge.

Chapter 10. Surveys

Table of Contents

What is a survey? ... 1
Survey design ... 1
Interviews vs questionnaires ... 2
Designing the questions .. 2
Using clear language .. 3
Questionnaires .. 3
 Kinds of data gathered from questionnaires 3
 Simple questions .. 3
 Other types of question .. 4
 Preparing a questionnaire ... 5
 Maximising response rate ... 5
 Analysing questionnaires ... 5
Interviews .. 6
 Conducting interviews .. 6
 Analysing interviews .. 6

What is a survey?

Surveys involve the collection and analysis of information from a group of people drawn from a specifically targeted group of interest. Surveys of inanimate objects can also be conducted; but where people are the subjects a questionnaire of sorts is usually employed, although interviews are also common. Interviews and sequenced questioning can of course also be employed in action research, case studies and experiments. "Survey research is the method of collecting information by asking a set of pre-formulated questions in a predetermined sequence in a structured questionnaire to a sample of individuals drawn so as to be representative of a defined population" (Hutton 1990, Blaxter book).

A survey is the planned collection of information in a standardized form that aims to give an overall perspective to a field. It permits a number of variables to be examined, which can be used to test several hypotheses and can be analysed in a number of different ways. Surveys are easily replicated when standardized sampling and analysis techniques are used. The accuracy of responses will vary according to how well respondents understand the questions and the issues, how much bias exists, and whether extraneous variables are distorting results.

A survey is typically used in the following standard way: a hypothesis is proposed, a questionnaire and/or interview designed to test the hypothesis, a group of interest ("population") chosen, a sample selected from the target population, the data collected and analysed, the hypothesis tested.

Survey design

To conduct a survey one needs to know what one is testing for and how to obtain measures of this. Having a topic, the characteristic to be studied should be determined first (e.g. knowledge of query optimization); then the indicators to measure this decided upon (e.g. questions relating to specific optimization techniques, questions about the query optimizer manual, etc.) and their relative weightings established. The more indicators one has for measuring a characteristic, the greater the accuracy with which that characteristic can be determined. The weightings help in the case where different indicators for the same characteristic give different measures for that characteristic (e.g. questions relating to optimization techniques would carry more weight than questions relating to knowledge of that part of the manual).

In framing questionnaires and interviews, one should beware of one's own opinions influencing the research. Your personality and views have an impact on the questions you select, how you ask them...
Surveys

and whom you ask; care must be taken to minimize this impact on your work. Usually more than one iteration is needed, with the questions and/or the hypothesis improved each time. The first iteration (or if this goes badly, the first few) serves as a pilot study; a small sample used for the express purpose of finding problems with the survey. Since the results are not of interest, it is best to target as diverse a group of participants as possible in the pilot study, rather than a random sample.

Interviews vs questionnaires

Questionnaires, being pre-determined, limit the scope and amount of feedback compared to interviews which, even if highly structured, offer far more flexibility and typically more lengthy responses. It is useful to follow up the use of questionnaires with some interviews to give more detailed perspective. It can also be helpful to conduct interviews before drawing up a questionnaire, in order to better understand the issues and how to approach them.

A questionnaire is most useful for asking a large number of respondents a highly structured set of unambiguous questions without their being influenced by an interviewer or the sensitivity of the questions. If these are sent by mail or e-mail, they enable a geographically distributed population to be sampled in a limited time, and can be answered at leisure and anonymously by respondents. Interviews are more useful for in-depth probing, for following up on any interesting remarks, for collecting information on more complex issues (since questions and answers can be clarified where necessary), for open-ended questions, for eliciting a large amount of data from individuals, for making certain that only one person’s views are given, and for ensuring that respondents do not ignore some or all of the questions, nor answer them in the wrong order. A skilled interviewer can also provide some of the benefits of questionnaires - by adhering to a set question structure, and by taking care not to influence, bias or distort results through their own reactions and comments. However, unlike the use of questionnaires, large numbers of individuals from diverse locations cannot be interviewed without considerable resources; hence a survey may need to incorporate both interviews and questionnaires.

Designing the questions

In a well-designed questionnaire/interview

• only pertinent questions should be asked

• introductory sentences, polite phrasing and non-antagonistic language are needed to maintain a good rapport

• the correct choice between nominal, ordinal, interval or ratio measurements must be made and categories must be appropriately chosen

• for category, multiple choice, scale, LPC scale, ranking and grid/tabular questions, the rule of “seven plus or minus two” should be adhered to - i.e. the number of options that most people can correctly distinguish and choose between is 7; some can only handle 5 choices and 9 is an upper limit

• with LPC scales, consecutive questions should not have all the good extremes on one side and all the bad extremes on the other - this should vary from question to question. For example:

Place a cross at the point which best describes the query page:

<table>
<thead>
<tr>
<th>Easy to Use</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Difficult to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confusing</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Clear</td>
</tr>
<tr>
<td>Quick to Use</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Tedious</td>
</tr>
</tbody>
</table>
Using clear language

Careful, unambiguous wording of questions and of answers (in the case of category, multiple choice, scale, LPC scale, ranking and grid/tabular questions) is essential for clarity and accuracy in a questionnaire or interview.

A checklist for the phrasing of questions is given below:

- use simple language
- have concise questions
- elicit information that is suitable for analysis
- a question should cover exactly one aspect and no more
- avoid leading questions and beware of your personal opinions and biases inadvertently showing through
- phrase potentially sensitive questions as harmlessly as possible
- use precise questions that are as specific as possible
- clarify whether you want a fact or an opinion
- if time is part of a question (e.g. "currently", "in the past", "regularly") be specific about the period of interest
- use legible, uncluttered questions attractively laid out for easy completion
- leave sufficient space for legible replies to open-ended questions
- do not have too many questions or questions that are difficult to answer
- avoid jargon, buzzwords or any terms subjects may not know or may misinterpret (when it comes to IT in particular, people are loath to admit ignorance)

Questionnaires

Kinds of data gathered from questionnaires

Questionnaires gather some qualitative data (where respondents can comment freely), but the vast majority of information collected is quantitative. This data can be of four kinds: interval, nominal, ordinal and ratio data. Interval data is measured on a scale with a set difference between points but with any base/starting point (e.g. dates). With nominal data a coding system assigns a number to represent a particular response but the number has no significance (e.g. coding gender as 0 or 1). In contrast, ordinal data permits qualitative responses to be coded in numeric sequence to reflect ordering e.g. "useless", "poor", "average", "good", "excellent" could be coded as 1, 2, 3, 4, 5 respectively. Ratio data comprises measurements on a scale where there is a true zero e.g. distances, incomes, etc.

Simple questions

There are 8 main types of survey question. The first four simple kinds of question are illustrated by example below (preceded by the question type in brackets):

1. (quantity or information)
 In which year did you matriculate? ___________
2. (category)

Have you ever undertaken part-time study?
[] Yes, currently
[] Yes, in the past
[] No, never

3. (list or multiple choice)

To which of the following Faculties did you apply first?
[] Commerce
[] Engineering
[] Health
[] Humanities
[] Science
[] None of the above

4. (scale)

How do you feel about your chances of completing this degree?
[] Very confident
[] Somewhat/fairly confident
[] Neutral
[] Somewhat concerned
[] Very worried
[] Not sure how I feel about this

Other types of question

The four other types of question are somewhat more difficult to answer. They are illustrated by example below (preceded by the question type in brackets):

1. (LPC scale or "semantic differential scale")

Do you prefer command-line interfaces or graphical user interfaces?
Command-Line 1 2 3 4 5 6 7 Gui

2. (ranking)

What IT fields are you most interested in? Rank those of interest in order from 1 downwards:

[] Artificial Intelligence
[] Computer Architecture and Hardware
[] Databases
[] Distributed Computing
[] Graphics
[] Human-computer interaction
[] Networks and telecommunications
[] Programming Languages
[] Other (please state) ______________________

3. (complex grid or table)

How would you rank your skills in the following?
Preparing a questionnaire

The layout of a questionnaire should be inviting and the text legible. Questions should be precise and unambiguous; use two simple questions rather than one complex one. Before conducting a survey, try to find different interpretations of the questions and then re-word them to clarify which interpretation is required. Ask friends or colleagues to do likewise. Avoid phrasing that is negative or presumptive of a particular response. Limit the use of open-ended questions as they are time-consuming to answer and to analyse, and end by thanking the respondent and asking for any additional comments. As with most research methods, it is best to conduct a pilot study to detect problems with your questionnaire so that you can improve it; (Blaxter book) reports that as many as 8 attempts at a single question have sometimes been necessary! Once a questionnaire has been drafted, it is advisable to show it to an individual or unit that provides consultancy services for surveys, or else to statisticians who can comment on any potential problems they foresee in analysing responses.

Once a questionnaire has been finalized, researchers must decide which method(s) will be used to distribute it. The post, e-mail, a Web-site and direct visitation are possibilities to consider. Care must be taken in using the Web, e-mail, telephonic or postal surveys if a random sample is required - Web site questionnaires can be completed by almost anyone who is online, including people who are not part of the population of interest; the Internet itself is not accessible to everyone (particularly in developing countries); many young people have only cellphones and are excluded if the telephone directory is used; material posted to a household will not be opened by children; etc.

Maximising response rate

Candidates are more likely to complete a questionnaire if they know that it is part of a study being conducted by a reputable organization and they understand significance and usefulness of the research, so include this in the introduction. Careful timing of the exercise can make a big difference to the response rate, so check when is most and least convenient for your population. Another useful incentive is offering participants access to the results of the survey. This can be relatively easily done via the Web; where resources permit, a hardcopy can be offered to those who have Internet access problems. Response rate is highest if the researcher is present when the questionnaire is completed, or asks the questions over the telephone; otherwise, some chasing up should be scheduled into the project plan.

Analysing questionnaires

Questionnaire analysis is mainly quantitative rather than qualitative in nature, because of the discrete nature of answers to most questions and the volume of questionnaires to be processed. Some form
of statistical analysis is therefore used. This can be fairly simple - e.g. indicating which proportion of respondents gave specific answers, and which answers to specific questions appear to be related. Here straightforward measures of tendencies (e.g. mean (average), median (middle value) and mode (most common response)) and diversity (e.g. range and standard deviation) can be used. To go beyond this, e.g. to compare one sample/population with another in order to determine how similar or how different they are, inferential statistics or multivariate analysis is required. The Chi-square test is used to compare sets of values and the Student's T-test to test means. Using these statistical tests it is important to check that the assumptions under which they apply are true for your data, otherwise they must not be used. For example, the Student's T-test assumes random sampling of interval data with a normal distribution.

If two variables you have measured appear related, this may be due to the effect of some third variable. To demonstrate causality you have to find or suggest a mechanism linking the variables together. Multivariate analysis - e.g. cluster analysis, multiple regression, factor analysis - examines relationships among three or more variables. These can be performed easily by using the appropriate computer package, but it is important to understand their purpose and foundation in order to use such software.

If the number of responses to a questionnaire is small (e.g. less than 10), results showing the actual number of respondents choosing each answer are more honest and clearer than those giving percentages. For medium to large surveys, i.e. where the sample size exceeds 20, percentages are easier to understand and compare.

Interviews

Conducting interviews

An interview can be recorded either by taking notes or by using a tape/video recorder. Audio/video-taping is intimidating and likely to cause anxiety and reticence in the interviewee. Note-taking is cheapest and saves considerable time compared with transcribing from tape, but it distracts both interviewer and interviewee (who can become concerned at how much importance is being attached to what they say/do according to when things are written down). One solution is for the interviewer to bring an assistant - someone with knowledge of the project and subject area who is skilled at taking notes; if this person remains in the background, neither interviewer nor interviewee/participant need be distracted by the process.

Analysing interviews

Analysis of interviews should move from the specific (e.g. enumerations) to the more general (e.g. categorizations and detection of common themes). In order to analyse interview transcripts and notes it is best to compare different interviews, looking for similarities and for significant remarks. Since interview statements are made within a specific context, they must not be quoted without knowledge of that context, or in the wrong sequence.
Chapter 11. Conducting observations

The observation process

Observation involves watching, recording and then analyzing events and behaviour. Observation occurs in laboratory experiments and field studies, where users are watched while executing pre-set tasks, or real-life activities, respectively. While observing users, researchers should record what is done, how long tasks take, and reactions to events (verbal, facial and body language responses). Written logs, audio and video recordings are the most common methods of capturing what occurs in a usability test.

As with interviews, observations can be highly structured to fit a pre-determined framework, or adaptable to situations as they arise. When observations are highly structured and prior categorisations of behaviour are used, the process is really just a type of experimentation; the more flexible approach where the participants behaviour determines what is studied, is akin to action research.

Interaction with participants can be non-existent (e.g. if observers are simply counting and timing events), marginal (e.g. if observers talk to participants to capture qualitative data), complete (if the observer joins the group as a fully-fledged member working on the task at hand) or partial (somewhere in between the extremes of non-existent and complete participation, depending on the evaluation).

Observation in Field studies

Observation in a field study is similar to observation in a controlled environment, except that there is generally a greater emphasis on observing interaction between people in the field. Field studies are important because computers are not used in isolation but within a particular leisure or work environment; so complexities and cultural nuances introduced by the real-life environment should be included in observation records.

Recording devices

Since writing is slow and distracts the observer, some backup recording equipment is advisable. Audio tapes are a comparatively unobtrusive backup, but take long to transcribe, particularly if the person doing the transcribing is not a researcher able to distinguish noteworthy points from insignificant comments. If a visual record is also required, photographs are usually adequate, and are cheaper and
easier to process than video recordings. Particularly in a field study, photographs of artifacts produced (sketches, notes, etc.) are a useful adjunct to mere recording of activities. The presence of a video camera can be intimidating to subjects, and make researchers too focused on the specific scene being filmed while neglecting other aspects. Of course, video is the most complete and indisputable form of recording a particular scene that the camera is focused on. Tools such as Observer Video-Pro (Noldus 2000) record time on video tape, allow marked parts to be copied to an edit list, and can synchronise keyboard entries and other observational data with the video.

Computer-generated logs

Computer-generated logs of activities and associated times also give wholly objective evidence. They provide useful backup data which can be easily analysed by appropriate software, and can also be used in large studies involving a great many participants (e.g. on the Web). Since computer logs can be completely indiscernible, professionalism requires that researchers inform subjects what is being recorded and why.

Arranging practicalities

In theory, observers can participate fully in the process being observed, or they can play no part in the process at all and remain strictly observers only; but in practice something between these two extremes will often occur. It is worthwhile considering beforehand whether seeing the observer is likely to affect the behaviour of subjects, and whether a natural or artificial environment is most appropriate. This can be established by first conducting a short pilot study.

The location of equipment users will employ, of observers, and of cameras and microphones, needs to be decided and tested in advance. For example, one camera may point to the keyboard and another to the subject. Equipment must be checked to ensure it is functional and correctly used (with appropriate focus, volume, etc.) Users need to be found, a convenient time arranged, and consent forms produced and signed. Initial instructions need to be written out and checked. Find out a little about participants so that you can make them comfortable when they arrive by knowing something of what interests them. In the case of a field study, observers should acquaint themselves with the environment and task being studied beforehand; this will give them greater credibility in the community and also enable them to keep better records from the outset.

Documenting the observation plan

Once the task has been designed and the behaviour to monitor decided, a detailed report is needed, describing the purpose of each step in the process being observed, what to look for at each such step, and how to record this. This is especially important if a team of observers is employed, to ensure that they operate in the same way.

When there is a team of observers, they need to decide what and who each team member will observe. The fewer people or events one is watching, the more accurate and detailed ones notes can be, but it is also helpful to have more than one person observing the same thing so that they can compare notes. If there are enough people, the job can be divided up, not by the number of observers, but by the number of observer-pairs. Then each part of the observation job is done by a pair of observers and can thus benefit from having two perspectives and from observers having someone to discuss events/problems with. By varying the pairing over time, each observer ends up doing a good cross-section of the work and has shared experiences with a number of fellow-observers. The assignment of tasks to an observation team needs to be carefully documented in advance.

Preparation for a field study

Since field studies do not have the benefit of structure, a framework is useful in keeping observers focused and providing some way of organizing their records. This comprises a checklist to adhere
Conducting observations

to, containing reminds such as: actors, goals/tasks tackled, activities, events, feelings [Goetz and LeCompte 84, Robson 93]. Such a framework guides researchers to know what and whom they should observe when, and what questions/aspects should be addressed in their notes. This framework should take into account the real-world context and include both detail points and observations of the bigger picture.

References:

Being Unobtrusive

Observers can be present in the test environment, or can observe through a one-way glass or via a remote screen. Observers should cause as little disruption as possible, even if they are marginally, partially or fully participating in what the subjects are doing. Audio, photographic and video equipment should also be located and handled as unobtrusively as possible.

Collecting observation data

The main source of information recorded during an observation is the notes and sketches observers make by hand (or perhaps using a laptop, but remember that battery charge does not last very long). In the course of observing subjects, it can be helpful to both parties if the observer shows the participant their notes at a convenient time during the study. Software tools such as NUDIST can sort and search field notes for words, phrases and categories, and perform content analysis of large bodies of text.

Quantitative observations are easily recorded as counts in a diagram or table (for example with separate rows for different characteristics/behaviours, and columns for different conditions under which they were observed). Qualitative information is harder to capture, and requires a judicious mix of adhering to the prepared plan and being guided by interesting developments that occur during the observation. When making notes, observers should flag uncertainties or issues they want to come back to. After processing observations and synthesizing them, it is best to go over this with the subjects, to detect any misconceptions. In a field study, this should be done daily to check that observers are interpreting correctly what they see happening.

Subjects can aid the recording process

Thinking aloud

Since it is impossible for any observer or observation equipment to know what a subject is thinking, a useful technique is to ask them to keep up a running commentary (spoken out loud) on what they are doing (including what they are looking at) and what they are thinking. The problem is that people will become silent sooner or later, typically just when the task becomes interesting or difficult. A request by the observer to keep talking is obtrusive. One helpful technique for limiting silences is to have subjects working in pairs, as it is more natural to talk to another person than to oneself.

Subject diaries

In some user studies, participants are asked to keep diaries as a record of their activities and feelings, possibly supplemented by photographs of what they have done, if cameras can be supplied. A template for the diary helps to structure this information, which, particularly if it is electronic, can be relatively easily transferred into a text database.
When to stop

In a field study it can be difficult to know when to stop if there are neither time constraints nor a need to observe until a specific task is completed. In these situations observers should be guided by the amount they learn each day; they can stop when this becomes insignificant.

Processing qualitative information

It is best to process notes and recordings as soon as possible after the observations are made. Details can be checked, and observers can consult each other in sorting out ambiguities. Facts should be distinguished from opinions. Interesting and unanticipated events or trends should be identified and the possibility of exploring them further discussed. A multimedia database should be constructed to collect and protect all the different types of information.

Qualitative information is best handled by a team of researchers who discuss what they saw and what the observed behaviour says to them. Researchers should first skim through observation data - looking for what stands out, for patterns, for answers to research questions, and for interesting or unexpected events. Such situations are typically when people are at a loss, or have made a mistake, or have reached a conflict situation, etc. If researchers are aware of body language, facial expression, silence, inactivity, voice tone and so forth they are more likely to detect such incidents in audio/video material.

Another type of analysis of qualitative data that is sometimes performed is conversational analysis (e.g. in chat rooms, bulletin boards and the like). This is highly subjective as it relies on interpreting how people use language, and studying conversations in fine detail.

The interpretation of qualitative observation data is best reported in written form but supplemented with statistical analysis, photos, audio or video footage where appropriate. This involves collecting sets of evidence illustrating each specific pattern, theme, trend, fact or opinion. Software tools such as NUDIST can sort and search field notes for words, phrases and categories, and perform content analysis of large bodies of text.

Quantitative analysis of observation data

The written report documenting an observation project should combine quantitative and qualitative feedback, both for formative studies (done during development, to guide improvements) and summative studies (done at the end of a project, to evaluate its success or test a hypothesis).

It is possible to convert qualitative information obtained from notes, cameras and tapes into quantitative data by categorizing and counting events. Categorisation of qualitative information makes it possible to analyse such data, as long as the categories are clear and non-overlapping. The inter-research reliability rating of a categorization scheme measures the percentage of cases categorized in the same way by two researchers. This should be measured in a pilot study with a small number of subjects, to test if a practical categorization scheme has been defined. If this rating is too low, either the researchers were not adequately trained in categorizing what they observe, or else (more usually) the categorization is poor and needs to be revised. Discussion of pilot study cases can help identify problems with a proposed categorization.

Tools such as Observer Video-Pro (Noldus 2000) record time on video tape, allow marked parts to be copied to an edit list, and can synchronise keyboard entries and other observational data with the video. If observers use packages to mark videos when specific kinds of event occur, then this information, as well as computer-generated logs, can be used to analyse duration and frequency of events of interest. Occurrence counts are also useful (taken from such video packages or by counting observer marks in hand-written notes or audio tapes).

Quantitative data can be analysed using simple statistics to find maxima, means, standard deviations, T-tests, etc.
Chapter 12. Testing in IT research

Table of Contents

Conducting tests in IT .. 1
What to measure .. 1
Testing as scientific experiment ... 1
Differences between testing and scientific experiments ... 2

Conducting tests in IT

Testing software and hardware is an important part of most IT research projects. It enables new ideas to be validated, alternatives to be compared against each other, problems to be identified and lessons to be learned for unanticipated behaviour or system properties.

The goals/questions tested should not be too broad (e.g. Is the system easy to learn? or is this algorithm faster?) specific issues should be addressed and then the test scenario can be easily formulated accordingly (eg. Are users able to discover < X > in less than < Y > minutes? or under conditions < C >, does algorithm < A > complete task < T > faster than algorithm < B >?)

What to measure

The measurements for evaluating the success of a software or hardware design will depend on the system and research question or goal. Speed, error rate, disk utilization, accuracy, scalability, reliability, usability and resource requirements are typical candidates for evaluation.

User testing is the most important technique for usability analysis. This is a type of experiment in which users are set specific tasks, and then their times are measured and errors they make are recorded. Other notes of interest may also be taken, possibly with the aid of observation, questionnaires or follow-up interviews noting for example the manner in which users perform a task when there are several possibilities.

It is important for user testing to measure performance, error rates and user satisfaction, since a user-friendly system is one which achieves a good balance between these three key factors. Data collected during user testing generally includes time to complete a task, number and types of errors made, number of errors made per unit time, number of times online help/documentation is used, percentage of users able to perform a task successfully.

Testing as scientific experiment

An experiment involves changing one variable and measuring its effect on another variable or property, while attempting to control all other variables/influences so they remain constant. In most cases, systems testing is performed in artificial laboratory situations, where system parameters, data and usage characteristics can all be controlled by the researcher. Software/hardware testing in the field tends to be confined to case studies; although field studies of safety-critical systems or of systems with major financial impact do also take place.

The human factor in usability analysis makes control more difficult, and researchers must take precautions to limit the impact of extraneous factors when designing and performing user testing. The following controls are typical of a usability study:

• The welcome, introduction and task questions are written out beforehand and are hence identical for all participants
• All subjects are given the same amount of time to explore the system freely at the outset (typically 5 to 10 minutes)

• All participants are given the tasks in the same sequence (usually from easiest to hardest, to build up confidence, and an easy one to end off with)

• Participants are limited to a maximum amount of time on a task, and are made to start the next task at that point

• Participants to not have contact with the outside world during the experiment

• All participants complete the same questionnaire after the experiment

• They are all asked their opinion of the system after the test is over

Differences between testing and scientific experiments

While usability/system testing is much like scientific experiment, it does not try to discover new knowledge, but rather to inform and improve system development. An experiment should be based on a theoretical foundation and targeted at solving a practical problem; its results should help to refine the theory and alleviate or solve the problem. The procedure should be documented and repeatable, and statistical analysis should be used to determine if results are significant in order to confirm a hypothesis.

In contrast, user testing is about finding problems and comparing alternatives in order to improve a product. Usability testing has relatively few participants (quick-and-dirty tests sometimes involve only one or two subjects, otherwise 6 to 12 users is the sample size recommended [Dumas and Redish 99]). The statistical analysis of usability test data also tends to be simpler than for other scientific experiments usually nothing more than calculating minimum, maximum, mean and standard deviation.

Chapter 13. Modelling

Table of Contents

What is a model? ... 1
Advantages of models .. 1
Modelling lifecycle ... 1
Proposing a new model ... 2
How to devise a new model ... 2

What is a model?

A model captures the essential aspects of a system or process while suppressing details. It should be clear and concise. It need not cover all aspects of that system or process, but provide different views of it. Examples in IT are the relational model of data, the ANSI/SPARC Database Architecture, the waterfall model in software engineering, the ISO OSI model for network protocols, etc. A model can be used as a blueprint for developing new systems/processes, or for studying, evaluating and improving existing ones.

Models, like prototypes, make it easier to reason about ideas and communicate them more clearly to others. A model deals with the conceptual behaviour and function of a system whereas a prototype is concerned with lower-level details such as structure, components, methods and operations. A model is a simplified, abstract representation of an idea/design; while a prototype is a simplified, concrete implementation of (aspects of) an idea/design.

Advantages of models

A model can be used early in your research to help you design a system, case study, process or experiment, or to formulate a hypothesis. It can also be used at the end of your research to clarify what the product of your research is, or to prove some properties it exhibits.

It is commonly accepted that humans can only keep seven (plus or minus two) concepts in mind at a time, and hence the simplification provided by a good model facilitates understanding and reasoning about a complex system/process. Models can address all aspects of a problem in different modeling views, because detail is hidden in each view and only relevant aspects highlighted. This is useful for implementers to ensure that they comprehensively cover all the necessary issues and facets of the system/process.

Studying a model can lead to insights that would be harder to gain from consideration of the system/process itself — e.g. if the model is based on a real-world analogy which is familiar and well understood, then new ideas often arise from considering how the real-world metaphor is used. The formal semantics of the model clarifies the system/process components, flows and requirements compared with other types of system/process descriptions which are often incomplete, ambiguous or unnecessarily constraining.

Modelling lifecycle

When a researcher realizes or suspects that s/he has discovered a new problem, a model can help to express this clearly and concisely and in so doing clarify the problem (and confirm or deny its existence). This model can be studied to determine what assumptions it is based on, and then alternative models devised based on different assumptions. The assumptions underlying these models are made explicit, and the models compared and the implications of different assumptions investigated. Once several models for the system/process have been proposed, more general models can be developed.
that cater for most or all of these initial models. This typically is repeated when new models, not covered by the general model, are proposed and the general model extended to cater for them, and this is possibly repeated several times over.

Proposing a new model

If your primary research aim is to propose a model, you must start by making sure that you are familiar with all existing models for this situation/problem. If models already exist, you will need to show how yours differs and why it is needed (is it simpler? applicable in some cases where existing models are inadequate? more precise and thus more suitable for analysis?)

The more models already exist, the less interesting it becomes to propose a new one and the more important it is to show significant improvements of using the new model. One way is to show that it is more general — it can support everything provided by existing models (and possibly still more that is not supported by any known model). Simplicity is desirable in a model, a model that can be shown to be simpler than existing models and as expressive (or more) can be argued to be better than existing models.

Sometimes a new paradigm is introduced in one field of Computer Science (e.g. AI) which you believe might be usable in another field (e.g. databases), so you can attempt to create such a model for using the new concept in this other field. If this has already been done, you could consider different aspects within the other field (e.g. query processing, concurrency control, distribution, etc.) and find one which requires a new model if the new paradigm is used.

It is sometimes unclear if a new problem, process or paradigm requires a new model. If you manage to propose a new model which reveals some interesting new facet of the problem/process/paradigm, or offers some benefit in that context, then your work will be interesting and useful to the research community.

How to devise a new model

A model can be derived from a prototype design and/or implementation of the system you wish to model — capturing its components, flows and essential properties after completing your design or implementation. Another way to develop a model is to find a suitable real-world analogy (just think e.g. of such well-known models as windows, files, folders, objects, agents, etc.). Using a real-world analog can often give you greater insight into the system you are modeling, but thinking of the components and processes typically associated with the real-world metaphor. For this approach, you need to know what you want to model well enough to understand its essence, to think creatively and to look at your system with an open mind. Alternatively, you can use well known formal models such as logic, sets, formal languages, automata theory and the like.
Chapter 14. Usability Analysis

Table of Contents

The Role of Usability Analysis .. 1
Usability analysis in the development lifecycle .. 1
Analytical techniques .. 1
Predictive Modelling .. 2
The GOMS model .. 2
The Keystroke level model .. 2
Cognitive walkthroughs ... 3
Empirical Analysis ... 3
User Testing .. 3
Field Studies .. 3
Heuristic Evaluation ... 4

The Role of Usability Analysis

Analysis aims at assessing how well an idea, design, solution or approach does its job. For most IT research, this cannot easily be done with a few simple calculations, but requires designing, developing and testing an experimental system, and then interpreting the results. The aim of an interface evaluation (or usability analysis) is to understand user needs better, to get feedback for improving a design, to compare alternatives in order to choose between them, or to determine how well a design meets users needs and how much they like it.

Usability analysis can be qualitative or quantitative, and most often encompasses both kinds of assessment. The main qualitative products of usability evaluation are descriptive reports, quotes, lists of problems (possibly with suggested solutions) and anecdotes; quantitative results are performance measures and error rates associated with tasks (or calculated from theoretical models, in the case of predictive evaluation).

Usability analysis in the development lifecycle

Evaluations done during design are known as formative evaluations; those done on the finished product are called summative evaluations. Typically a small number of users comment on early prototypes; this is fed into subsequent redesign and followed by more formal evaluation. Effective research and development requires knowing how to evaluate systems at different stages of the design-evaluate-redesign cycle. With each evaluation, both designers and users obtain a better grasp of what is required. Evaluation is a good way of ensuring that users are involved in system design; it is also cheaper to fix problems then, rather than after deployment.

Quick-and-dirty evaluations are relatively informal and give rapid feedback of a qualitative nature from users or usability consultants. They are useful initially as a short pilot study, followed by one or more iterations of a more thorough design-evaluate-redesign cycle involving modelling, walkthroughs, expert evaluation, user testing, interviews, questionnaires and/or observations. Quick-and-dirty evaluations are also useful in later iterations to check out specific details like the suitability of a particular icon.

Analytical techniques

Two main types of assessment are analytical (through modeling or simulation) and empirical (by building and testing a prototype). Analytical evaluation methods in user studies are:
1. predictive evaluation using a specific model of interaction
2. cognitive walkthroughs, analysing a task step by step

Empirical methods are:
1. user testing in the laboratory
2. field studies
3. heuristic evaluation by experts

Predictive Modelling

In predictive evaluation, a model of the actions required to perform some task is developed first, and then these individual actions are analysed to evaluate the task as a whole. A task to be analysed is called a benchmark, and forms the basis of comparisons between systems, or between alternative versions of a system. A few models of human-computer interaction exist which can be used to predict effectiveness. The most well-known is the GOMS model, and a particular variant of it called the keystroke-level model.

The GOMS model

The GOMS model [Card 83] of predictive user modelling stands for Goals Operators Methods Selection rules. It is a model of the knowledge, thinking and actions employed by users of a system.

• Goals are states a user wants to achieve. They are often decomposed into sub-goals.
• Operators are the thinking and actions needed to achieve those goals.
• Methods are a series of steps to accomplish a goal, i.e. a procedure or recipe.
• Selection rules are used to choose between different ways of achieving the same goal.

With this approach, a set task is modelled in terms of sub-goals, selection rules, methods and their operators. This breakdown is then used to analyse that task. The GOMS model is most effective for predicting performance times. It is also useful for comparing alternative methods of performing the same task, since different methods can be enumerated along with their predicted performance times.

There are several reports where using the GOMS model was very successful, as the detail breakdown of tasks showed where problems would arise and also precisely what was causing them (e.g. in [Gray 93]). Shortcomings of the GOMS model however include its inability to model anything but expert users in laboratory situations working on a limited set of tasks. Tasks that are complex, take a long time or have a wide variety of options are not suited to GOMS modeling. It also does not take into account the real-world environment in which the system will be used, where distractions, pauses and changes frequently occur. GOMS models are thus very helpful in predicting performance of experienced users do routine tasks, but are limited in scope where other kinds of systems and users are involved.

References:

The Keystroke level model

This model is based on the average amount of time taken to perform common user tasks such as pressing a key or deciding what to do. The predicted time of accomplishing some task is computed by listing the actions it requires, and adding up the times for each of those steps. This enables systems to
be compared with each other, new designs to be compared against existing ones, alternative methods within a single system to be compared, etc.

A problem with this model is that thinking and decision-making times can vary greatly depending on the individual and the situation. Another is that it is not always clear where such mental activities need to be factored in (where will users need to think or spend time choosing between options?) and it is important to be consistent if comparisons are to be correct. In keystroke-level analysis, mental preparation steps should generally be inserted before user operations, but this depends on the operations involved; experience with the method is needed to introduce mental operations in an appropriate way. Some rules for doing so are proposed in [Card 83].

Cognitive walkthroughs

Cognitive walkthroughs are used to model how usable a system will be to inexperienced or new users. That is, they provide a means of evaluating how successfully exploratory learning can be done on that system. They are therefore complementary to GOMS models, which focus on experienced usage.

In a walkthrough method, designers walk through a task using the interface, and analyse the process step by step. Where there are many alternative ways of executing the task, it is sometimes adequate to choose one and sometimes necessary to model a few of these possibilities. In some application areas it is necessary to study users in the field in order to understand the tasks they perform, before walkthroughs can be attempted.

Walkthroughs are concerned mostly with error handling what errors are possible, how discernible are they, how easy is error recovery, what are the chances of novice users successfully completing a task, etc. - rather than with performance issues. Cognitive walkthroughs are time-consuming, as all common tasks need to be stepped through and each analysed for a range of different usage conditions.

Empirical Analysis

Empirical user studies involve testing a prototype system using real users in a laboratory experiment, or by conducting a field study, or through experts applying heuristic evaluation.

It is essential to have at least one pilot study before conducting a test, so that problems with instructions, questionnaires and data analysis can be detected - before time and money is wasted on a full-scale experiment. Pilot studies also enable researchers to improve their skills in observing, interviewing and conducting field studies, and to enhance the prototype itself - all of which can lead to substantial improvements in the quality of the final evaluation.

User Testing

In usability testing, researchers construct a set of tasks for users to perform; measure the speed and accuracy of the people who execute these, count the number of problems they encounter, and note problems encountered, navigation paths used and any interesting or unanticipated events. The test is conducted as a scientific experiment under strictly controlled conditions. Sometimes performance is evaluated against optimal and minimally acceptable times, at other times the experiment is exploratory in order to improve understanding of user needs and behaviour. Most commonly, two systems are compared to each other by comparing the performance of a group using the one against that of a group using the other. Interviews and/or questionnaires typically follow the test.

Field Studies

There is a growing trend towards evaluating software in the environment in which it will be used, rather than in the laboratory. This enables its usage in natural settings to be observed, recorded and analysed.
Field studies are essential for critical applications involving health, security or business success, and are strongly recommended for collaborative systems. They are far lengthier than laboratory experiments because time is needed for the users to be trained and to adapt to the system in their environment, for databases to be loaded, and for evaluators to obtain sufficient data.

In a field study the aspects to investigate are often finalised only after the system is deployed, once the characteristics of usage in that application context become clear. The system should be complete or nearly so, in contrast with laboratory experiments where simplified prototypes are best in the early stages of the project. Analysis of field studies should emphasise comparison of performance before and after the introduction of the system. One of the most valuable results of a field study is often the insight that the research team gains into the application environment and its demands on the system.

Heuristic Evaluation

In heuristic evaluation one or more user interface experts evaluate a design to identify problems. A collection of design rules or heuristics is used to guide them. In the sense that expert opinions are obtained, they are the usability equivalent of software inspections and code reviews.

Usability heuristics proposed by Nielson and Molich [Nielsen & Molich 89] include:

- Simple, natural language
- Consistency
- Short cuts provided
- Exits provided
- Feedback provided
- Good error messages
- Minimal memory load

It is best to complement user testing in the field or laboratory with studies that are not dependant on having a representative sample of the user population. Heuristic evaluation can be applied in situations where cognitive walkthroughs and GOMS analyses are impractical (i.e. for studying situations other than the two extreme cases of novice and of routine, experienced usage respectively). Another advantage of heuristic evaluation is that it is performed by outsiders, not the system developers themselves. Unlike other methods, it requires no advance planning. On the other hand, it is less repeatable than other analysis methods, which is why it is preferable to have a number of expert evaluators and to then aggregate the problems identified.

Chapter 15. Introduction to Statistics

Table of Contents

What and Why Statistics ... 1
Basic Parlance and Ideas ... 2
Information Gathering: Correlations and Controlled Experiments 3
Simple Experimental Design: the two-sample experiment 3
Surety in the Face of Variability: Confidence Levels 4
The Basics: means, distributions and formula 4
 The Mean .. 4
 Normal Distributions ... 5
 Calculation of Variance and Standard Deviations 6
The t test ... 8
 Comparison of two samples ... 8
 Calculation of confidence intervals ... 10

What and Why Statistics

As software engineers, we need to make informed decisions. The whole process of creating a software product, from the initial analysis of both the software’s context and its requirements through to design, implementation and finally testing, requires the software development team to make decisions.

However, these decisions should not be ad hoc: software engineering, as its name implies, is currently striving to become an engineering discipline. As a field, it is working towards finding techniques and principles that will help to create both reliable and usable software, and to do so in a repeatable, predictable manner.

This underlies the need for our decisions to be informed decisions.

Now, to make informed decisions we need to have information. Sometimes the needed information is relatively easy to come by, other times not. Even when we have the information we want we can often be unsure of its value. To help solve these problems we can use methods from the field of statistics, an area of scientific enquiry meant for information gathering and analysis. Statistics is the mathematical field that concerns itself with decision making, and excels itself with the measurement and quantification of uncertainty.

Statistics is the science of decision making when dealing with uncertainty.

Statistics is useful when the information we need is not straight forward to obtain. For a simple example, consider software meant to replace an existing product, with the goal of reducing the number of errors being performed, both by the software itself, and by the end users of the software. Statistics supplies us with tools for the measurement of the error rates associated with both the original and new systems, as well as for the analysis of the final results. It supplies a firm, mathematical basis for deciding whether the new software reduces the amount of errors, or for concluding that any changes between the systems are artefacts of our testing, with the actual error rates between the two systems being identical.

Although statistics is fundamentally a mathematical discipline, its use does not necessarily demand any deep mathematical knowledge. These notes do not concern themselves with the mathematical underpinnings of the field. You will not need to be capable of doing more than follow a handful of simple formula, each of which use nothing more complicated than simple arithmetic.

Statistics is a large field, and these notes are nowhere near long enough to do anything more than briefly introduce the field, giving a hint as to the depth and flavour of statistical analysis. For further information, the interested reader is pointed to one of the following introductory books on the subject:

Basic Parlance and Ideas

Statistics is a tool for dealing with information. We gain information by making observations, by taking measurements. These 'things' that we measure are called variables. Examples of variables are error rates or response times in user testing, number of errors per lines of code for software metrics, number of simultaneous connections that a database can carry, etc.

An individual observation is the actual measurement (or observation) of a variable. For example, if 'error rate' is the variable that we are measuring, the actual rate that each person achieves is an individual observation of that variable. All of the individual observations taken together make up the sample of observations (also known as the sample). In other words, the sample of observations is the set of values obtained when measuring the variable of interest.

There is a special set of observations that needs to be mentioned: the population. The population is the set of all individual observations about which inferences are to be made. It is the largest sample of observations that could ever be taken. How does this differ from a sample of observations? A sample of observations is defined as being a set of individual observations. The population is the set of all individual observations. This means that a sample of observations can be a subset of the population. This distinction is necessary because of a problematic fact that occurs in research: it is often extremely difficult, if not impossible, to obtain all of the individual observations of a variable. Consider this extended example:

If Microsoft wanted to perform usability testing on their next release of Word, they would first need to identify the variables that they wish to measure, for example the error rates, or perhaps the average number of mouse clicks to perform an operation.

Next, Microsoft needs to obtain individual observations of these variables. The collection of these observations is their sample.

Ideally, Microsoft would want to obtain individual observations of each variable from each and every potential user. However, considering how many people use Word, this is not something easily done. Microsoft would need to satisfy itself with testing only a small portion of Word's potential users.

Because they are not testing all of their potential users, their sample of observations is going to be smaller than it ideally should be: instead of testing everyone, they are only testing some of them. Hence they would only have a subset of the total number of individual observations, a sample of
observations from the population of observations. Naturally, it is the population that one would want to make inferences about, and one of the goals of statistical analysis is to have our inferences which are based on a sample of observations remain valid once applied to the population.

Information Gathering: Correlations and Controlled Experiments

There are two general methods of determining information about the world:

1. we can either observe the world, noting the relationships that occur between the variables we are interested in
2. or we can try to manipulate the variables, and then determine what changes these manipulations have caused

The first method is a 'weaker' form of information gathering than the second, although it is easier to perform and also convenient for the exploratory analysis of data. This method is concerned with *correlations* and *regressions*, asking questions such as:

- Is there a relationship of some form between the variables we are interested in, and how strong is this relationship (*correlations*)?
- If we have values for certain variables, can we predict the values of other variables, and with what accuracy can this be done (this is known as *regression*)?

Although extremely useful, correlations (and regression analysis) have one flaw that often means that we need to make use of techniques from method two: they fail to make statements concerning the causality between two variables. Consider:

It can be shown that there is a relationship between users that feel 'stupid' concerning their computer skills, and software that is difficult to use. In other words, there is a correlation between perceived levels of one's own 'stupidity' and how 'usable' a software product is. Now, from knowing only that a relationship exists, can one show, whether the system is difficult to use because the users are lacking in computer skills, or that the users perceive themselves as lacking these skills because the system is difficult to use? This is an illustration of the problem associated with correlations and regression analyses: they do not offer a sense of direction in terms of cause and effect. They only state that there is a relationship between variables, and not what the relationship is.

The techniques of method two are those concerned with *controlled experiments*. These experiments control all the important factors concerning the variables that we are interested in, and then manipulate some of these factors in order to determine how they relate to other variables.

Note that experiments differ in two important ways to methods in group one above:

1. Experiments are active: they manipulate variables taking part in the experiment
2. Experiments determine directionality: they can answer questions of cause and effect

There are two types of variables involved in experimental research: variables that we manipulate, and variables we only observe, and that depend in some way on the manipulated variables. The first group of variables are known as *independent* variables, meaning that they do not rely on any other variables present in the experiment. The latter set of variables are called the *dependant* variables, since they depend on the independent variables.

Simple Experimental Design: the two-sample experiment

One of the simplest experimental designs consists of obtaining two samples of the variables that we are interested in. One can see the need for having two samples by thinking about the properties of a
controlled experiment: experiments want to manipulate the independent variables so as to determine the change that doing so brings about in the dependent variables. This can only be done if we have a 'baseline': we need to know what the individual observations for the dependent variables would be if the independent variables were not manipulated. Otherwise how can we tell how they have changed?

The sample taken where the independent variables are not manipulated is known as the control group. The sample obtained by manipulating the independent variables is known as the experimental group.

These two samples are then statistically compared to each other to determine if there is a difference that occurs between the dependent variables of the two experiments. Without the presence of the control group we could not begin thinking of answering questions of cause and effect.

Note that for a two-sample experiment to work correctly, the only changes between the control and the experimental samples should occur to the independent variables, otherwise other changes, not being properly noted by the experimenters, might influence the dependent variables and corrupt the results.

Not all experiments consist of only two sample groups, there being some that deal with three or more samples. However, performing and analysing experiments of this kind is beyond the scope of these notes.

Surety in the Face of Variability: Confidence Levels

When dealing with experiments we often need to know how much confidence we can place in their results. This implies that we need to know how well our sample represents the population. In other words, we need to know the degree to which our experiment is externally valid.

For example, imagine that we have been hired to replace a company's existing software with a product that needs to reduce error rates by 15 percent. On testing our new software, we discover that our product reduces error rates by 20 percent. We need to know if our tests hold for all possible individual observations of the error rates, i.e. for the population of error rates.

It could happen that once we install the software we see only a small reduction in the error rate, or perhaps even an increase. With money at stake, what assurances do we have that the results of our testing will hold up in the work environment?

To gain a degree of certainty in our results, statistical analyses are performed on the samples of our experiment in order to determine a confidence level that can be attached to the result. A confidence level gives us a probability that our results are not within some certain range. For example, a confidence level for the above example will give a probability that the new error rate is below 15 percent. The smaller the confidence level, the more likely it is that our experiment has valid results.

Often we know what confidence level we are attempting to achieve, and we can then design our experiments in attempt to achieve these confidence levels. This 'target' for our confidence levels we call our significance levels. Note that the only difference between the confidence and significance level is that the significance level is target created before the statistical analysis begins, while the confidence level is the true, calculated level.

If the confidence levels reach the target set by our significance levels, then we say that our results are significant.

The Basics: means, distributions and formula

The Mean

Perhaps the simplest 'statistic' that is calculated from the sample is the mean, which, as its name implies, is the average of the sample:
Figure 15.1. The average

\[
\bar{X} = \frac{\sum_{i=1}^{N} X_i}{N}
\]

Here \(N\) is the number of observations (i.e. the size of the sample), and \(X_i\) is an individual observation from the sample. The mean is usually represented by:

\(\bar{X}\)

pronounced X-bar.

We would hope that if the sample was large enough, and constructed randomly enough, that the sample mean would approximate the population mean. Because we usually do not know the population mean, we use confidence levels to give us assurances that the sample mean lies within some distance from the true population mean.

The mean is one of the basic units that more complicated statistical analyses are built upon, and will be used later when performing t-tests.

Normal Distributions

The end goal of performing statistical research is to learn about the population after only seeing the sample. One of the assumptions made to simplify this process concerns how the individual observations are 'spread' through the population. This is known as a *distribution.*

Figure 15.2. A normal distribution

For example, many populations will tend to have a normal distribution. A *normal distribution* occurs when most of the individual observations lie around the population's mean. Fewer observations occur the more their values diverge from the mean.

If we can assume that the population we are studying has a normal distribution, then we can make useful estimates of certain probabilities based on this. For example, it is less likely that the sample mean would lie far away from the true population mean than it is for it to lie close to the mean.
Even though normal distributions each have the same general shape, they can differ from each other in how quickly their values 'taper off' as you move away from the mean. This 'spread' is measured by a value known as the variance, usually represented as s^2. The smaller the variance, the narrower the distribution. The larger the variance, the broader. The variance needs to be taken into account when considering how close the sample mean could lie to the population mean. Consider two populations P1 and P2, each, respectively, with a sample S1 and S2. Also assume that P1 and P2 have the same mean, as do S1 and S2, and that P2 has a greater variance than P1. This would allow the sample mean of S2 to lie farther away from the true population mean.

Associated with the variance is the standard deviation, usually denoted as s. Like the variance, the standard deviation is also a measure of a normal distribution's spread, although in a more readable form: the units associated with the s are the same units associated with the individual observations. The standard deviation defines a range around the distribution's mean (between -1 and +1 standard deviations around the mean) in which approximately 68.2% of the individual observations lie. The region of the distribution laying between +3 and -3 standard deviations of from the mean contain approximately 99.8% of all the individual observations.

Just as we cannot directly calculate the population mean, only the sample mean, we cannot directly calculate either the population variance or the population standard deviation.

Figure 15.3. The effect of variance

This shows the effect of changing the variance of the distribution. Note how the base has been stretched out. Also note how the distribution has shrunk in size. This is because the y-axis, dealing with the number of individual observations, is measured in percentages (and since there can only ever be 100%, if the base is wider then the distribution needs to be shorter.

Calculation of Variance and Standard Deviations

Along with the mean, the variance and the standard deviations form the basic building blocks to statistical analysis. We have already seen how to calculate the mean, and now we will have a look at calculating both the variance and the standard deviation.

The first two steps are to calculate the mean, as we have done above, and then to calculate the \textit{sums of squares of differences from the mean}:

$$SS = \sum_{i=1}^{N} (X_i - \bar{X})^2$$

The squared value is a measure of the distance of X_i (where X_i is an individual observation) to the mean, and SS is the sum of these distances. There is an alternative 'shortcut' formula for calculating the same value, but which requires less work. It is:
Note that \(N \) is, once again, the sample size.

Calculating the Sums of Squares of Differences

We have the following sample of observations

\[
3, \ 6, \ 3, \ 8, \ 9, \ 23
\]

First we calculate the mean:

\[
\overline{X} = \frac{3 + 6 + 3 + 8 + 9 + 23}{6} = 8.6666
\]

Now we will use the 'shortcut' formula to calculate \(SS \). First we calculate the squared values of the sample:

\[
\begin{array}{c|c}
X & X^2 \\
3 & 9 \\
6 & 36 \\
3 & 9 \\
8 & 64 \\
9 & 81 \\
23 & 529 \\
\end{array}
\]

Next we sum these values:

\[
\sum_{i=1}^{N} X_i^2 = 728
\]

And then square the mean and divide by \(N \):

\[
\frac{\overline{X}^2}{N} = 12.5185
\]

And now we perform the final subtraction:

\[
SS = 728 - 12.5185 = 715.4815
\]

And you can check this value by calculating \(SS \) using the other formula.

Now that we have \(SS \) defined, we can easily define the both the variance and the standard deviation. The variance is simply:

\[
s^2 = \frac{SS}{N - 1}
\]
If we consider the first equation given for \(SS \), we can see that the variance is almost the average of the squared differences of the individual observations and the mean. If one thinks of the definition of the mean, the variance should have been divided by \(N \) instead of \(N - 1 \) for it to be a mean. In fact, the definition of variance as it stands is expected to be that average, but corrected for an effect called bias. Bias affects the ability of an average sample value to recreate the average population value.

The standard deviation is easily defined from the variance:

\[
s = \sqrt{s^2}
\]

Calculating the Variance and Standard Deviations

Using the same sample as the \(SS \) sample above, we can calculate the variance as:

\[
s^2 = \frac{715.4815}{6-1} = 143.0963
\]

And the standard deviation is:

\[
s = \sqrt{143.0963} = 11.9623
\]

Hypothesis Testing

For all experiments there are two possible ways of interpreting the results. For example, imagine our experiments have shown that our new application takes a user 5% less time than previous tests. This could be interpreted in two ways: this improvement in time could be due to our application, or this improvement in time could be due to sampling error. Every controlled experiment could have these two possible outcomes, and they are given names:

\[H_0: \] Our manipulations of the independent variable has had no effect. Any changes observed in the dependent variables are due to incorrect sampling of the population.

\[H_1: \] Our manipulations of the independent variable has had a significant effect on the dependent variables.

We call \(H_0 \) the null hypothesis. Our goal when performing the experimental research is to show that the null hypothesis is false, and we do so for some significance level.

The t test

Comparison of two samples

This section shows how we can compare two samples to each other in order to determine if there is a significant difference between them (in other words, if these two samples are from two different populations).

This comparison is done between the averages of the samples, and takes the variance into account. Note that one of the assumptions made when using the t test is that the populations the samples are from are normally distributed. If they are not normally distributed, then the t tests will give incorrect results.
Figure 15.4. t test comparison

<table>
<thead>
<tr>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
<th>(two tailed)</th>
<th>(single tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.314</td>
<td>2.776</td>
<td>1.960</td>
<td>1.645</td>
<td>1.282</td>
<td>1.250</td>
</tr>
<tr>
<td>2</td>
<td>2.920</td>
<td>2.306</td>
<td>1.880</td>
<td>1.671</td>
<td>1.406</td>
<td>1.383</td>
</tr>
<tr>
<td>3</td>
<td>2.353</td>
<td>2.015</td>
<td>1.746</td>
<td>1.615</td>
<td>1.479</td>
<td>1.455</td>
</tr>
<tr>
<td>4</td>
<td>2.132</td>
<td>1.944</td>
<td>1.638</td>
<td>1.533</td>
<td>1.439</td>
<td>1.415</td>
</tr>
<tr>
<td>5</td>
<td>2.015</td>
<td>1.833</td>
<td>1.583</td>
<td>1.475</td>
<td>1.397</td>
<td>1.372</td>
</tr>
<tr>
<td>6</td>
<td>1.944</td>
<td>1.746</td>
<td>1.500</td>
<td>1.383</td>
<td>1.321</td>
<td>1.300</td>
</tr>
<tr>
<td>7</td>
<td>1.880</td>
<td>1.638</td>
<td>1.415</td>
<td>1.271</td>
<td>1.220</td>
<td>1.201</td>
</tr>
<tr>
<td>8</td>
<td>1.812</td>
<td>1.583</td>
<td>1.372</td>
<td>1.233</td>
<td>1.178</td>
<td>1.160</td>
</tr>
<tr>
<td>9</td>
<td>1.746</td>
<td>1.475</td>
<td>1.271</td>
<td>1.134</td>
<td>1.086</td>
<td>1.073</td>
</tr>
</tbody>
</table>

The t test involves calculating a value, let us call it t, and then comparing this value to a critical t value. This critical value is calculated from a normal distribution, and takes into account your required significance levels. The critical t value is usually looked up from a table, such as this one.

The t test begins by calculating a combined variance for the two samples, using the following equation:

\[s^2 = \frac{SS_1 + SS_2}{N_1 + N_2 - 2} \]

The value \(N_1 + N_2 - 2 \) is called the degrees of freedom (actually, this is a combined degrees of freedom, where the degrees of freedom for a single sample is merely \(N - 1 \)).

Next, we calculate the standard error of difference:

\[s_{ed} = \sqrt{\frac{s^2}{N_1} + \frac{1}{N_2}} \]

Finally, we calculate t:

\[t = \frac{\bar{X}_1 - \bar{X}_2}{s_{ed}} \]

To complete the test requires a table lookup. Note that the table has values for both a 'two-tailed' and a 'single-tailed' significance level. This is named after where in the normal distribution we are looking for the null hypothesis to lie: the null hypothesis can only be true around the population mean of distribution. If we seek to reject the null hypothesis, we need our sample mean (in this case, the combined means) to lie far enough away from the population mean in order for us to consider the null hypothesis as false. This means that we reject the null hypothesis if our sample mean lies at the tails of the distribution. If we are not concerned in the 'direction' that the sample differs (i.e. whether it is greater or smaller than the population mean), we use the two-tailed test. Otherwise we use the single-tailed test. We look up a value for the degrees of freedom and required level of significance. If our calculated t value exceeds the t value from the tables, then we may reject the null hypothesis.

Note that if we are using a two tailed test, we must ignore the sign of our calculated t value (i.e. if our calculated t value is negative, ignore the negative sign).

Using the t test

Suppose that we have two samples
First we calculate SS_1 and SS_2. SS_1 has been previously calculated, and is 715.4815.

Similarly, SS_2 is 908.9583 (the reader can confirm this using one of the equations given for calculating SS). Next, we calculate the combined variance:

\[
s^2 = \frac{715.4815 + 908.9583}{10} = 162.444
\]

We now calculate t:

\[
t = \frac{8.6666 - 11.5}{7.3585} = -0.385
\]

Now we use the table above to look up a two tailed critical t value (two tailed because we are looking to reject a null hypothesis that could occur at either end of the distribution). Our degrees of difference is 10, and our chosen significance level is 0.05 (i.e. there is a 5% chance of the null hypothesis being true). Looking in the table, we see that our critical t is 2.228.

Ignoring signs, we see that our calculated t is less than our critical t, and so we cannot reject the null hypothesis, and must conclude that the two samples came from the same population.

Calculation of confidence intervals

Sometimes it will be necessary to compare the mean of a sample to some value. For instance, perhaps we would like to know if the number of user errors is less than a certain upper limit. Although this comparison can be easily made (you just compare the mean to this value), we would still like to know the confidence levels associated with this. We can use the t test to do this.

In the case where we only have one sample, the t test is still calculated in a similar manner to the above, with the only exception being that the formulas are now simply changed to reflect the fact that only one sample is being tests.

Figure 15.5. The tails of a distribution

The grey areas show the 'tails' of the distribution. It is if the sample mean falls within either of these areas that we may reject the null hypothesis, and conclude that the sample is not from the population this distribution represents, but another. Note that the actual size of the tails is determined by our chosen significance levels.
This method of comparison is performed by constructing an interval from the two extreme positions in which the population mean may lie. This interval is called a confidence interval. This interval should either lie completely above or below the stated limiting value. For example, if we need the number of user errors to be below 10 per day, then this whole interval must lay below 10 per day. On the other hand, if we wanted to show that the error rates where now above 10 per day, then the whole interval would have to lie above this value.

The simplified version of the t test is as follows:

\[s^2 = \frac{SS}{N - 1} \]
\[s_{em} = \sqrt{\frac{s^2}{N}} \]

Note that the standard error of differences is now called the standard error of the mean. Now, instead of calculating a value for \(t \), we calculate the interval:

\[X_{\text{min}} = \bar{X} - (c \times s_{em}) \]
\[X_{\text{max}} = \bar{X} - (c \times s_{em}) \]

Where \(c \) is a value looked up in the above t test table. It is looked up for a given significance level and degrees of freedom (which in this case is \(N - 1 \)). In other words, we can choose the maximum significance level, and compute the corresponding confidence level from that. Note that for any given degree of freedom, smaller significance levels give larger values of \(c \), forcing our confidence intervals to become larger and larger.

For this test we use the one-tailed values. This is because we are interested in our sample mean being either larger or smaller than a given value, but not both.

Confidence Intervals

For the sample

\[3, 6, 3, 8, 9, 23 \]
determine if the mean of the population that this was drawn from is below 10.

We first begin by calculating \(SS \), as has been done previously. The relevant information is repeated here:

\[\bar{X} = 8.6666 \]
\[SS = 715.4815 \]

Note that the sample mean is below the value 10. Calculating the confidence intervals (note that from the formula for determining the interval we can see that this interval always lays around the mean) for a given significance level, and seeing that this interval is below the value 10, will allow us to conclude that the population mean is below the value 10 at the given significance levels.

Now we calculate the variance, which is:

\[s^2 = \frac{715.4815}{6 - 1} = 143.0963 \]
We now calculate:

\[s_{em} = \sqrt{\frac{143.0963}{6}} = 4.8836 \]

Let us choose a significance level of 0.05. We need to remember to use a single-tailed value. Our \(c \) is 1.943.

Next we calculate the intervals:

\[X_{\text{min}} = 8.6666 - 1.943 \times 4.8836 = -0.8222 \]

So our interval lies from -0.8222 to 18.1554. Comparing this with 10, we see that the interval does not lie completely below this interval: 10 lies within the interval. Hence, at a significance level of 0.05, we must conclude that the population mean is not below the value 10.
Chapter 16. The writing process

Table of Contents

The role of writing in research ... 1
 Writing up throughout research ... 1
 The Research Diary ... 2
 Follow-up notes ... 2
 Meeting minutes ... 2
 Writing to get feedback .. 2
 Giving feedback to others .. 3
 Getting started .. 3
 Overcoming writers block .. 3
 Overcoming fears when it is done .. 4
 Writing as a team ... 4
 Obtaining assistance ... 4

Sections and Kinds of document ... 4
 Document structure ... 4
 The Introduction ... 5
 The Conclusion .. 5
 References ... 5
 The Abstract .. 6
 The extended abstract .. 6
 The thesis ... 6

How to write well .. 6
 Preparatory steps before writing .. 6
 The three types of IT publication ... 7
 What to cover .. 7
 Writing Style ... 8
 Visual presentation ... 8
 Tables ... 8
 Charts .. 8
 Graphs ... 9
 Preparing to submit a paper ... 9
 Timing your submission .. 9

Presenting evidence and argument .. 10
 Convincing readers of your results .. 10
 Claims and evidence .. 10
 The place of argument in research ... 11
 The structure of an argument .. 11
 Arguing your case .. 11

Criteria for publishable work .. 12
 Is your work publishable? ... 12
 Focus ... 12
 Originality ... 12
 Significance ... 12
 Concerns about your contribution ... 12

The role of writing in research

Writing up throughout research

The most important and lasting output of any research are the publications that document the ideas and results. Despite its vital nature, both novice and experienced researchers frequently delay writing
up their work because they find writing difficult, and because they lack confidence and are afraid to expose their work to critical review.

It is best to make writing up an integral part of any research activity from the very beginning. Not only will this mean that style improves with practice, but equally importantly, it also gives important deliverables along the way. By documenting what is done and what is learnt throughout the research process, you ensure that no work is ever wasted. Much time spent in writing is in fact time spent tackling a problem away from the computer. This is not tedious at all it is extremely valuable. When writing up research one often discovers improvements, alternatives or problems which were not apparent before. This new vision is fed right back into the system/solution being described, and the final product substantially better as a result of reporting on the work.

The Research Diary

A diary keeping track of your actions, questions, problems, attempts that failed and solutions that worked is an invaluable tool for organizing yourself, recording your progress and helping you subsequently write articles on your work. Write down speculations, problems, possible solutions, random ideas, references to follow up, notes on your readings, interesting quotes, paper outlines, and so forth in the same diary as they occur to you. Read through this regularly to see what occurs frequently and how such ideas are evolving, to avoid solving the same or a similar problem more than once over (and avoid repeating what proved fruitless), and to have encouraging evidence that you have not been idle and are indeed making progress.

Benefits of keeping a research diary:

- it provides a reminder of ideas, experiences and actions which would otherwise be forgotten later when you come to report your research
- it gives practice in writing and makes writing a natural part of the research process, rather than something seen as a hurdle to avoid as long as possible
- it is a source of comfort and support, particularly if you write down not only problems and solutions but also your feelings of frustration, fear or lethargy
- it is encouraging evidence that progress is being made, and that you have not been idle

Follow-up notes

You should also keep a collection of follow-up notes each describes a problem or idea that occurred to you while focused on some other task, which could not be considered at the time but which someone could investigate in the future. If you do not jot these down (about a page or two on each) they will be forgotten altogether or remembered incorrectly.

Meeting minutes

Another form of ongoing writing involves note-taking at research meetings. Ideally, you should have regular meetings with your supervisor as well as regular meeting with the entire research group working in your field of interest. These notes document progress and decisions taken, and provide a quick way of remembering the context from one meeting to the next. Meetings themselves are important, to make sure you are on the right track, to discover any problems or relevant research of which you were unaware, and to share ideas with others to learn from their feedback so don’t be afraid to speak out, even when you are unsure if your thinking is sound (in fact, especially then!)

Writing to get feedback

A successful researcher should actively seek criticism. This is hard for us all, and particularly so if your personality is not suited to this, but remember that it is a part of the research process, and a key one at that. You will learn resilience to destructive comments and how to listen carefully to constructive, valid
criticisms. In order to invite criticism, you must present your ideas to others. Much of this will be verbal make a point of attending conferences, seminars and other events where academics or practitioners get together, and talking to people about your work. Give presentations yourself wherever you can, and if necessary ask your supervisor to arrange a forum where you can do so.

You can also write pre-publication-stage papers to show people in order to gain feedback. Take the same care with writing these as you would if you were submitting the paper for publication, as it is just as important to make your points clearly to the reader. You should therefore write papers regularly during your research, either to give to others directly or as preparation for a presentation. You will see that explaining your work often leads you to detect where your own thinking is faulty or incomplete. Feedback and criticism naturally can result in finding better ways of solving problems, can show up errors early and so reduce wasted time, and can point out aspects which you have failed to notice yourself. It also shows up which parts of your research are the most interesting or innovative, and which are the hardest to convince people of, and as a result you will be better focused thereafter. Feedback from readers of pre-publication writing will also improve the quality of your subsequent written and oral presentation.

Giving feedback to others

Giving feedback to others is also an important ingredient of research. It sharpens your critical thinking skills, enhances your confidence and exposure, and increases the likelihood of others giving you feedback in turn. In addition to active involvement at research group meetings, conference talks and seminars, it is very helpful to volunteer to review papers for a journal or conference programme committee. If you are too inexperienced to do so personally, you should tell reviewers in your department that you are keen to help them. A written review or critique should be structured, preferably from high-level comments down to lowest-level nit-picking criticisms relating to e.g. grammatical and typographical errors (and of course nit-picking should be avoided altogether unless the paper will be considered for publication). High-level comments give ones overall impression of the paper, suggest improved organization and presentation of the content, mention related work that has been omitted, and ask questions about alternative approaches, additional supporting evidence, future extensions and the like. To be constructive, try wherever possible to suggest an improvement rather than simply state what does not work.

Getting started

The best way to get started is to simply aim to get it written down, without regard for style or level of detail. Later on, you can improve the structure and language, add details, figures, discussion, examples and so on the important part is to get over the hurdles where you cannot face starting or fail to make progress because you are overly concerned about writing perfectly. Start with the part you consider easiest, to help you get going. If you encounter parts where you struggle to explain the work, jot down rough notes to yourself about what should be covered and keep going. The more you write the easier it becomes, and you will find it less difficult to tackle those sections when you return to them.

Overcoming writers block

Procrastination is common, particularly at the start of a writing task. Generally, once the process is set in motion, it is much easier to continue, to extend and refine what already exists. Some activities to get you going at the outset or when struggling to proceed, are:

• make notes on interviews, observations, experiments being performed
• make notes from your research diary
• make notes on any recent discussions with colleagues, team members and others
• draft the outline of a chapter or section, or produce a mindmap
• talk to someone about something that needs to be written
The writing process

- work on a diagram, table, reference list or bibliography
- talk to a tape recorder or Dictaphone
- imagine you have to teach a class of students what you have done
- describe the work in the simplest possible way, as if you were talking to a lay person

If you can, enlist the help of friends and colleagues who can offer support, chart your progress and give feedback on rough drafts. The best such helper is a fellow student who is writing their dissertation at the same time you can reciprocate, and indeed benefit from seeing how they present their work (identifying through reading their thesis both techniques that work well and mistakes that you should guard against yourself).

Overcoming fears when it is done

When you reach the stage of writing your final report, it is often the case that your work seems obvious and insignificant, and this diffidence can cause you to delay the writing unnecessarily. Remember that your perspective arises from your familiarity and experience with the piece of research (which has increased enormously since you started), and your work will be more interesting to others than to yourself because of this. Cast your mind back to your original plans and ideas, and this will usually show clearly that the work you are now presenting is not obvious at all.

Writing is hard work, but it is the most important product of your research, and its rewards are substantial.

Writing as a team

If you are writing as part of a team, it is important to decide on a team leader from the outset. The group should write side-by-side, taking turns to write and revise different sections, and discuss the task as much as possible. With this approach, differences of opinion can be accommodated by agreeing to disagree for the present and return to the issue later in the process.

Obtaining assistance

Many universities have units or individuals who help students with writing. If you are unhappy about the writing you are doing, or if you are not writing in your home language, then you should visit such a facility to get help and advice. If there is more than one such person, try to make an appointment with the one whose background is most suited to your research field. Before arriving, prepare an outline of the document and two copies of the current draft. One copy should be kept clean, the other used to highlight the key phrase of each major section, and to annotate where there are concerns about specific pieces of writing that seem unsatisfactory. It is important to take notes when meeting with the helper, particularly about what needs to be done next, otherwise it can be very difficult to remember specific points raised after the visit, when writing is resumed. A similar approach should be used when students meet with their supervisors during the writing-up stage of the research.

Sections and Kinds of document

Document structure

A report, thesis or paper must include:

- the context in which the research was done (the study area/problem, motivation behind the project, assumptions made, and how the work relates to existing literature)

- the key issues, ideas or questions (introduced at the outset, forming the thread that ties together everything that follows, and addressed in the conclusion to demonstrate what has been learnt)
• the approach used, any experiments conducted and an honest evaluation of results

• a good structure and adequate linkages to make it easy for readers to find their way through the document, understand how sections relate to each other, and be able to start reading at any section and still understand the material.

The broad structure of the document follows from the above skeleton context, questions addressed, approach, experimentation, results. In addition, an abstract upfront summarises the work; the key points are presented in the introduction before being developed in the body; and the main results are brought together in the conclusion.

The Introduction

The introduction is the most important part of any writing, as few readers will read more than this, particularly if you don't grab their attention here. This means you should get to the point directly at the very start of your introduction. Many papers will instead start with grand sentences describing the topic or research context. To those who are knowledgeable in the field, this is a waste; to the rest, it is partly or completely incomprehensible. Even if you manage to briefly define the field in a way that researchers outside this field can understand it, this will not help if the rest of the paper is such that these readers cannot follow the material anyway.

Make it clear from the outset whether or not the system you describe has been implemented and used. The reader has a right to know from the beginning, and certainly this information must not be omitted entirely. If the work has been implemented, describe its usage as precisely as possible in what follows: who has been using it, for what purpose, and with what results. If this usage shows that the idea has not worked out as expected, this is generally just as publishable readers can learn from such an experience; negative results also contribute knowledge to the field.

Establish carefully, from the start, the assumptions and constraints on which the work is based, and how sensitive it is to these. Discuss why these assumptions are realistic. For example, if the paper describes a design which has not been implemented, convince the reader that it has taken into account the true characteristics of components used; a theoretical paper must similarly show its assumptions reflect reality.

The Conclusion

Conclusions should integrate the results of a paper and bring out the most significant ideas or results of the work. Be careful not to repeat much of your introduction in the conclusion rather give perspective that was not possible until the paper had been read, and focus on what lessons your readers should take away with them. This is the reason the work is published, so state this clearly to ensure that people benefit from the paper, and don't repeat what you have done. Give the context or scope in which these lessons can be applied, by explaining to what extent your ideas are generalisable, and making clear what assumptions or constraints you have incorporated. The conclusion is also a good place to mention or discuss conjectures, wish lists and open problems.

References

When you develop the content of your paper, you will naturally cite papers you describe or mention along the way. These are then gathered together and form the first draft of your References section, most of which probably come from that part of the paper where you compare your research with related work. Remember that your references are there to ensure that any reader, including one less knowledgeable in the field, is able to fully understand your work without you having to describe everything in detail. Papers with ideas that you have built on, should be added to your references for this reason; it also enables you to briefly acknowledge your debt in the body of your article.

Make sure that you reference the most accessible paper on the work you are citing journal or conference papers rather than departmental technical reports - and avoid personal communication or unpublished
paper references wherever possible. Researchers should read and cite authoritative and recent sources, and avoid unreliable sources such as unrefereed articles or Internet publications.

Some documents require references, others a bibliography and, more rarely, there are still others that require both. References provide details of the works you have mentioned in your text; bibliographies list all relevant material you have consulted during your research (and are hence a super-set of the References).

The Abstract

The abstract should be a summary of the technical content of the paper, not a prose table of contents as is often the case (e.g. This paper reviews and presents a solution based on . We describe how this has been implemented, and give performance results for the system, concluding with several directions for future work). State the assumptions on which the work is based, the idea/approach used, and the results. Focus only on this; leave out discussion and argument, and avoid the passive voice. As many people read only abstracts, these should be as specific and precise as possible. Write the abstract first, so that this focus is there from the beginning, to keep you from straying into irrelevant descriptions in the rest of the paper.

The extended abstract

An extended abstract is not a lengthy abstract, but a very short paper. Its purpose is to communicate your ideas clearly and concisely so that others can quickly understand the essentials of your research; it is also often used to judge your work (e.g. by funding bodies, conference organizers, potential supervisors or collaborators, etc.)

The extended abstract should thus summarize the research, its context, how it was executed, and the results. It should motivate and explain your contribution, comparing it to related work and showing key results in a way that is easy to assimilate, such as graphs and figures. Do not cover anything that isn’t essential to understanding the main ideas that you wish to convey (e.g. future work or insignificant implementation details).

The thesis

Every institution has standards and conventions expected of their Masters and PhD theses, and it is naturally important to obtain these guidelines early on, and also to look at examples of (good) theses completed in the recent past. Generally a thesis comprises at least the following sections: Abstract (an executive summary), Introduction (research goals/questions, with motivation, and an outline of the thesis content that follows), Literature review, Project description (covering some or all of the following: theory, algorithms, designs, implementation, experiments, results), Conclusion (a summary relating back to the goals/questions set in the introduction, giving your main findings and an indication of future work).

How to write well

Preparatory steps before writing

Most research is part of a pipeline building on what others have done before, and in turn hopefully being built upon by researchers in the future. As such you have a duty and a responsibility to document your work well.

When making a presentation it is important to know your audience and tailor your talk accordingly; it is equally important to know your community of readers when you are writing. This is established from what you know of the book, journal or conference where you are submitting your work, and can require some extra effort to discover, if you are not familiar with that publication or forum. To write appropriately for your readers, you must know how much knowledge they are likely to have of the
general subject area as well as the specific topic you are addressing, and whether they have a special interest in it (e.g. some journals emphasise theory and others practice/experience). At the very least, authors must take into account how well the problem they are tackling is known to their readers, and if it is considered important (if only a few have this opinion, the document will have to convince the others early on).

It is helpful to look at review forms when writing your own papers, particularly if you (or your supervisor or colleague) have in the past conducted reviews for the very journal or conference series where you are hoping to publish. Naturally you should also carefully study the guidelines for that particular journal or the call for papers of the conference you are interested in.

Re-read papers which you noted as being easy to follow, particularly if you are finding some material difficult to put across clearly and concisely yourself.

Both the research and the writing tasks are greatly facilitated if these highly daunting objectives are broken down into smaller task of more manageable size. The sub-tasks should not be the same size or level of difficulty, so that one is more likely to find the best thing to tackle according to the time and energy of the moment. If you are feeling tired or demotivated, you can have the satisfaction of getting all or some of a simple part out of the way choosing a straight-forward section to write; when you are energetic and enthusiastic you can choose to tackle the more challenging sections.

The three types of IT publication

There are three basic types of Computer Science paper:

1. engineering papers describing an implemented system in its entirety, or parts of such a system, to illustrate a specific theme or idea
2. concept papers describing an unimplemented system that uses a novel technique or idea
3. theoretical papers covering formal aspects of computing, performance modeling, security verification and the like

Implementations are extremely expensive, so an engineering paper reporting on an implementation of an existing- and still unproven - concept paper is very valuable and deserving of publication. This is equally true if the implementation confirms or refutes the claims of the concept paper. Reviewers are more skeptical of concept papers, so the standard expected of ideas in such a paper is much higher. If there is any doubt, reviewers will recommend implementing and using the proposed system before submitting the work for publication.

What to cover

One of the main differences between a good and a poor presentation of a piece of work is an appropriate focus. Avoid the temptation to write down something because you know it (when giving background to the research) or have done it (when describing your contribution). Cover only what is necessary to understand your main idea, and give just enough detail for your reader to follow. Compare and relate your research to existing work, to demonstrate your contribution and also to help the reader understand your goals and your approach better. For example, mere references, as in The system is based on the model of A[1] using the language of B[2], with the algorithm of C[3] as extended by D[4] employed for are not adequate. Poor description of related work may not be this blatant, but many papers do frustrate readers by omitting one or two sentences that could have saved the reader from find and reading the referenced work.

If your paper describes a system, decide at the outset whether you are presenting it in its entirety or just one aspect, and then write the entire paper accordingly. This will serve you much better than an article which tries to do both, changing between overview and focused writing as it proceeds.

A paper that simply describes a system/solution/task is far less informative than one that also makes mention of ideas and avenues of exploration that proved fruitless or inferior. You should also include
alternatives considered by not explored. It is therefore better to outline the path followed during your research, rather than simply presenting the final product as if you went directly to this solution.

Writing Style

It is not easy to describe the work you have done briefly yet adequately this requires good writing as well as a good structure/organization to the document, with appropriate figures to refer to. Structure your paper carefully, and follow normal practice for the type of paper and publication, where appropriate. For example, most theoretical papers have a format comprising definition, lemma, theorem, example, corollary.

Avoid forward references (as described later in section N). If you are forced to use them, give at least an outline of the term/idea to be covered later, so that the reader can continue with some notion of what this is, even if the details have not yet been given.

Visual presentation

Make sure that the visual impact of your paper is not displeasing, as this will give an initial impression of sloppiness which reviewers will then associate with your work as well as its presentation. Consider using latex and bibtex for your documents, which are particularly geared towards scientific writing. Bibtex is a useful way of organizing your references, since latex will automatically lookup references needed in a document from among all the references you have collected. If you are not good at layout and visual presentation, find a colleague who is and ask them for help.

Tables, charts and graphs can tell a story more concisely and strikingly than textual description, and are convenient ways of showing large amounts of information. Tables are more precise than graphs and charts, and encourage readers to interpret the information for themselves. Charts and graphs are more visually appealing and are a way of bringing a specific point home clearly - charts particularly effective for highlighting differences in values when the number of values is relatively small, and graphs more easily showing many values and more readily showing trends. Tables, charts and graphs should be clearly labeled the axes named and units of measure given, multiple bars or lines distinguished and labeled separately, and the entire figure given an appropriate caption. Effective documents use simple writing. They contain interesting examples to illustrate ideas. If program code, models or mathematics is used, this is also explained in plain English. If your first language is not the language of the conference or journal, it is essential to find a suitable person for whom this is their native tongue, and have him/her improve your writing with you. On the other hand, if the conference/journal language is also your own home language, remember that non-native speakers will be reviewing and reading your paper, so keep to simple sentences and plain language.

Tables

The rows and columns of a table should be given in a logical order, such as alphabetic order, chronological order, increasing/decreasing order, ordered from parts to wholes/totals, etc. Where it makes sense to do so, include totals, averages and medians. Lay the information out with independent variables in different rows and dependent variables as the different columns, and if the table is long or has logical subsections, leave blank lines between rows where appropriate. Tables are mostly used to present numeric data or results, but can occasionally be used for text entries, as long as this is not an oversimplified representation of the information.

Charts

Simpler bar charts are generally easier to read than stacked bars, and 3-dimensional bars are best avoided altogether. If stacked bar charts are used, it is best to keep the darkest shades at the bottom and the lightest on top, as people tend to over-estimate the size of the dark areas, and use numbers or connecting lines to clarify relative proportions. In general, numbers at the end of each bar help to make the chart more precise and easily readable. Bar charts are usually read from left to right (or from top to bottom, if bars are arranged to lie horizontally one above the other). You can use this fact to
order the bars in a way that highlights the point you are trying to make e.g. to show an increase or a decrease. Pie charts are usually less informative than bar charts, and particularly ineffective when there are many segments or when some segments are particularly small. If you must use a pie chart to specifically show proportions, then arrange the segments clockwise in a logical order (e.g. from largest to smallest), and explode or make darkest the segment which is most significant (if applicable).

Graphs

Graphs can take the form of lines, connected points, or area plots (which represent proportions by shading the spaces between the lines). For area plots, as for stacked bar charts, it is best to have the darkest shades at the bottom and the lightest on top. Area plots are harder to interpret than conventional line graphs, because all but the bottom value are visually affected by the lines below them (i.e. one needs to focus on the area between the lines, but it is natural to look at the line itself instead). If several graphs are shown on the same set of axes it is important to clearly distinguish the individual lines. This is particularly important with graphs having more than three lines, as these are difficult to read if the lines cross each other. The choice of axis for a multi-line graph, as for a bar chart, can affect the readers interpretation in subtle ways for example if percentages rather than absolute values are plotted, differences will be accentuated and appear greater than they really are. If the axis range is small, differences are also accentuated: for example, a difference of 10 looks small if the Y-axis ranges from say 0 to 100, but looks significantly large if the Y-axis ranges from say 80 to 100. Hence the Y-axis should be carefully selected to show what is scientifically significant in the given context.

Preparing to submit a paper

Writing is an iterative process. As new sections are written, others already drafted are revisited and refined - in the light of the new context, by incorporating what has been learnt by the writer since that section was last tackled, because the text is being reorganized, to reduce the length, etc. As with any cyclic process, it is important to recognize when to stop.

When examining drafts, put yourself in the shoes of a reviewer and ask if there is undue emphasis or de-emphasis of any aspect, or any worrying omission; and write down the main strengths and weaknesses of the paper. Consider changing the paper to address these, or stating in the paper why you have not done so.

If your document is too long, read it critically for clauses, sentences and sections that are not needed by the reader at all or that could be summarized briefly instead; delete references and quotations which are not essential; and replace lengthy descriptions by diagrams or tables (with brief explanations) where possible.

• A checklist such as the one below can be used to determine whether a draft is ready for submission:
 • title page contains all required information
 • number of pages is commensurate with expectations
 • appropriate citations have been included and all are listed in the references or bibliography in full detail
 • spelling and grammar have been checked throughout the document
 • the text adheres to the requirements set out by the institution or journal
 • each chapter and section is complete and covers the appropriate material

To check your spelling and grammar, make sure you use only complete sentences, and avoid jargon and slang. A spelling checker and word processor, and a friend who is not a Computer Scientist, can help with this, particularly as they will not be distracted from their task by the content (as you are likely to be). Be consistent in your style throughout your document, for example do not use the third person almost everywhere and then suddenly write a section in the first person (etc.)
Timing your submission

For successful publication, your paper should be:

- Technically sound
- Correctly timed (the work is complete, rather than almost complete)
- A clear and focused description of your work
- With results adequately and convincingly demonstrated
- Making a sufficiently important/significant contribution that others can build upon
- As interesting and thought-provoking as possible

Make sure that you do not submit your work for publication prematurely. While it is tempting to submit to a conference work that you expect to have finished by the time the conference takes place, the reviewers of your work cannot take your word for this, and will generally advocate that you resubmit when the research has indeed been completed. Under no circumstances should you submit a paper that is incomplete, with notes such as to be included in the final draft.

Presenting evidence and argument

Convincing readers of your results

The key question that readers and reviewers of your paper will ask is whether you have convinced them of the validity of your conclusions. If not, your paper will not lead to others taking up your ideas and using or building upon them, and hence your work will not form part of the research pipeline that advances the subject. Make sure you give enough evidence in the way of arguments, analysis, surveys, measurements, proofs or evaluations. Try to avoid omitting issues whose absence is likely to concern your reader. Where you have chosen between alternative design or implementation options, explain how and why you did so; and in general remember to discuss not only what has been done but also why. Mentioning alternatives that were not implemented or investigated can in itself be useful to readers by suggesting to them possibilities for future work. One of the best ways to convince people of your conclusions is to run experiments or case studies to confirm your claims (whichever is most appropriate to your task or innovation). Any activities you conducted to convince yourself that your research goal has successfully been achieved should also be described. You should also explain why you chose particular evaluation methods and approaches, in the same way as you give reasons for other aspects of your research.

Claims and evidence

Every paper or thesis has at least one major claim, the point of the research being presented. This is the core of the piece of writing, and should have the following properties:

1. It is a conclusion reached, rather than a statement on what has been done (e.g. < X > outperforms < Y > rather than we compared < X > and < Y >)
2. It is new and contestable rather than unsurprising (if readers accept the claim immediately, without puzzling over why it should be the case or whether it is true, they will not bother to read much further)
3. It is precise and specific (e.g. Under conditions < Z >, < X > outperforms < Y > because < W >)

If a claim has been explicitly stated as a specific conclusion/result, it naturally provides a number of pointers as to where evidence is needed and what type of evidence is required. Evidence must be accurate, and if any data or measurements are of questionable quality, this should be explained.
The experiments conducted should be adequate for the topic of a suitable size and sufficiently representative of the area or population studied. For example, enough users should have participated in the study, or databases/workloads of suitable size tested, etc. In presenting evidence, be as precise as you can sensibly be for your particular context, replacing fuzzy language such as a great deal, some, frequently etc. with more concrete evidence like 60% (or whatever value applies, given with appropriate precision).

The place of argument in research

All research requires some argument, if only to convince others that your idea/approach is sound and beneficial. Argument is also needed to illustrate why your conclusions follow from your results, why your survey/case study/experiment uses appropriate measurement indicators, samples and analyses; why you interpret your observations in a particular way, and so forth.

The structure of an argument

Most people find arguments arising in the course of a conversation easy to handle, and doing so in writing should not be much more difficult. The main differences are the degree of confidence required (as writing will hopefully be critiqued by many) and the need for an author to cover both sides of the argument. A typical argument involves the following: on the one hand, a claim, with evidence and reasons to support it, and with qualifications indicating under which conditions it holds; on the other hand, questions and rebuttals from those unconvinced or unclear of the extent of the claim. An author should cover as much as possible of both aspects in order to convince the reader.

An argument in a piece of writing therefore has the following ingredients:

• A claim
• Evidence to support the claim
• An explanation why the claim follows from the evidence
• Qualifications indicating the limits/conditions under which the claim holds
• Reservations, questions and rebuttals that could come to mind, with responses that address these

Arguing your case

Arguments begin by stating premises and using them to derive new facts. Premises come from facts and definitions established in the literature (quote the source so that skeptics can find details), from the conclusions of previous arguments, and from observations made in the course of the research. Examples are widely used to strengthen arguments an argument that something exists needs just one example, a complex argument may also have just one or two examples to illustrate at the same time as clarifying what is meant; arguing that some phenomenon is common or generally causes another, requires a number of diverse examples to convince the reader.

The reasons why the evidence supports and justifies the claim should be given explicitly in a sense, evidence is much like a sub-claim which must itself be explained and justified by further evidence. A collection of quotations from other documents and numbers from experimental results does not constitute evidence unless the author critically analyses and explains their meaning and interpretation. The point of a graph, table or chart should be explicitly given so that the significance of the data presented there is clear.

To cover the other side of the argument, i.e. to address concerns the reader may have, an author can start with their own earlier ideas, describing those which were tried and explaining why they were rejected. Awareness of how a claim contradicts existing belief or practice is essential knowledge, and this aspect must be addressed directly. The evidence should be read critically from an outsiders perspective to identify any alternatives or problems a reader might see; each of these should then be
The writing process

described and refuted or conceded. Some typical objections: the author is oversimplifying the problem, counter-examples haven't been considered, etc.

Criteria for publishable work

Is your work publishable?

The primary purpose of publication is to present innovative and important contributions to the subject. One way of demonstrating that your work has these properties is to point out who will benefit from your research, and how. Another is to explain how your work differs from similar or related papers already published. A paper must have focus, originality and significance to be worthy of publication.

Focus

For each original idea you believe your paper is contributing, describe it in a single paragraph, to make sure that the contribution is clearly and explicitly stated. This paragraph/paragraphs should then be placed upfront, in the abstract, which people read first. If you cannot describe the idea in a few sentences, then you should not write the paper until you understand it better. Develop the idea further, formulate it in more detail, apply it in case studies or experiments, or modify it in some way until you are able to capture it clearly and concisely.

Originality

The most important criterion for publication is that a paper contains at least one original idea. To ensure this is true of your research, you must be sufficiently familiar with existing knowledge in the field. The most common failing of rejected papers is that the system/solution/theory/model/language/approach they describe is isomorphic to an existing one described in the literature. Therefore, you must first and foremost make sure that your literature search has been thorough.

Look critically at your bibliography: if it comprises mainly seminal works, check that a recent paper has not already published something that you are repeating; or if you reference mainly recent work, check that your idea was not proposed a long time ago. And when you come to convince the reader that published works differ significantly from your own, make sure that you have actually read the papers you reference (rather than merely heard of them). Then you can explain the differences explicitly and thoroughly, and can argue more convincingly particularly for those readers who actually have read what you reference!

Significance

If your idea is original and can be succinctly explained in this way, the next question to ask yourself is how much of what still remains to be said is simply a variation on existing work. If the answer is very little, consider thinking more creatively and extending your research before submitting the paper.

If you are writing a paper where the main contribution is an extension or variation of existing work, ask yourself honestly whether the difference you describe is sufficiently significant to truly warrant reading all the pages you are filling. Alternatively, consider publishing the idea as a short note, short paper or even a poster. It may be that you are planning a journal paper when your work would be more suitable for a conference presentation. Journal articles are typically longer than those in conference proceedings, as they should be the more significant contributions to the field, whereas conferences aim at disseminating new ideas widely and rapidly.

Concerns about your contribution

If you encounter a paper which seems to present what you are aiming to do yourself, remember it is virtually impossible to be exactly identical. It may be tackling a similar problem/task using a similar approach. Discoveries of such papers are common in research (particularly if the work is very recently
published, or is not easily accessible). Add the paper to your literature review, and critically evaluate it with a view to improving your own project. Use the paper to compare and contrast with our own research, and study with interest where it confirms or refutes your own ideas.

Another concern that often arises when writing up research is the feeling that the ideas are little more than common sense, unworthy of publication because they are obvious or uninteresting. To overcome this problem it is best to get another's opinion, and to review early entries in your research diary to convince yourself that the contribution only appears straightforward due to familiarity with the project.
Chapter 17. Research Presentations

Table of Contents

Research Presentations .. 1
 The Importance of Presentations .. 1
 Presentation Goals .. 1
 Choosing what to Cover ... 2
 The Structure of a Research Talk .. 2
 The Introduction .. 2
 Related Research .. 2
 The Body ... 3
 Technicalities .. 3
 The Conclusion .. 3
 Knowing Your Audience .. 3
 Illustrating Ideas with Examples .. 3
 Mention Problems and Concerns .. 4
Preparing Slides for a Presentation .. 4
 Limit the Text on Slides .. 4
 How Many Slides are Needed? ... 4
 Visually Appealing Slides ... 4
 Powerpoint vs Hand-Written Slides .. 5
Preparing for a Presentation ... 5
 Advance Preparation ... 5
 Preparation on the Day .. 6
Delivering the Talk ... 6
 How to Talk about your Slides ... 6
 Handling Nervous Tension ... 6
 Answering Questions ... 7
 Requests for Information .. 7
 Attention Seekers ... 7
 Malicious Questioning ... 7

Research Presentations

The Importance of Presentations

Talks are important in getting your name, skills and experience known to others. In particular, a job talk should be very well done; conference papers and seminars should likewise make an impression on other researchers, some of whom can potentially become your employer or collaborator. Unlike a journal article, a presentation is an opportunity to convey your ideas to a captive audience and at the same time to get feedback to guide your future work.

Presentation Goals

The goals of a talk are to communicate an idea and its importance. A conference presentation also serves as an advertisement for the paper to appear in the conference proceedings. A seminar tends to be more detailed, with an emphasis on discussion of the material with the audience. A job talk is similar, but should in addition also show your breadth and depth of knowledge, your interests, the viability of your research and your presentation skills. In an oral/thesis examination, one must also show understanding of the topic and clearly demonstrate one's contribution to the field. Unlike seminars, conference and job talks, it is important to ensure everyone in the audience understands everything you say in an oral examination or viva!
Choosing what to Cover

As it is not possible to fully acquaint an audience with your research work in the course of a presentation, the talk is an "appetizer" - telling enough about what you have done to make the scope and contribution of your work clear, and to stimulate interest. If the audience have understood enough and you have kindled their interest, people will follow up on the details with you afterwards. What then should this appetizer cover? Choose the material you will present according to the background and interests of your audience.

Most research involves a few new ideas and the application of standard tools and techniques. Emphasise what is novel, and omit what is well-known or complicated. Ask yourself what single thing you would like them to remember afterwards, and focus on this. This will mean that you choose one (or perhaps two) issues to relate in detail, and - out of necessity - the others are omitted entirely or just mentioned in passing.

The Structure of a Research Talk

A well-organised talk, the structure of which is given to the audience upfront, is much easier to follow than a rambling one, or one where it is uncertain where the speaker is heading. At the highest level, a talk usually comprises five main sections:

- **Introduction** - an informal description of the research
- **Related material** - an overview of relevant existing work, showing how yours fits into this framework
- **Body** - a more formal overview, aimed at putting across the major contribution of the work (one or perhaps two of your ideas that are novel, significant and interesting)
- **Technicalities** - a more detailed look at the most crucial aspect you want to put across
- **Conclusion** - key results and some of the evidence supporting your claims

The Introduction

Most people will decide how much attention your talk warrants and how competent a researcher you are on the basis of your introduction alone.

Grab your audience - your introduction should raise an issue, present a puzzle or ask a question (and your talk should then solve this issue, question or puzzle); this gets the attention of your audience and keeps them on track with you as you proceed.

Start with a clear and concise definition of the problem you are addressing (it is amazing how many people take some time to do this, or never do). Follow this up immediately with something to get the audience interested - how does this problem fit into the larger picture? why is it hard? what are its practical applications? Having thus said what your are tackling and why, the next question in many minds will be what is new in all this?

The audience is looking for something succinct and tangible to remember your paper by, and this must be given next - the precise contribution of your work to the discipline. Some other points you may choose to cover in the introduction are definition of any special terminology; and a brief outline of the structure of your talk.

Related Research

Before presenting your work, describe related research and how yours compares with it. To make sure your audience understands the talk, you may have to cover background material if many do not have this knowledge. It is important to remember to set the scene even when your audience is a
The Body

Describe your key results here, working from high-level abstractions through to more complex details. Mention technical details if you wish, but do not delve into them as you will lose your audience and detract from the main point(s) you are making. Take time to explain convincingly how you have achieved what you promised in the introduction.

Keep your audience with you - repeat your outline at times, showing where you are in your talk; relate each point to the issue/puzzle/question posed at the outset; consider asking the audience questions; break up difficult material; use the well-known technique of keeping people with you: tell them what you are going to tell them, then tell them, then tell them what you told them.

Technicalities

Following on from this overview of your contribution, give the interesting detail for one, or perhaps two, key ideas. This helps the non-expert to understand what is involved behind the scenes, and gives the expert something to think about and hopefully learn from.

The Conclusion

Having described your research, you can now make observations, present strengths and weaknesses, discuss experimental results, and mention questions, extensions, generalisations or alternatives that you believe warrant future study. Try to wrap up in such a way that both experts and non-experts are shown what they should take away from the talk. When you have finished and checked that there isn’t an undue amount of time remaining, state clearly that you are done by saying something like "Thank you. Are there any questions?"

Knowing Your Audience

Know your audience - what knowledge do they have in your subject area? Is their background largely mixed, or more or less uniform? Do they share your views? Do they share your assumptions?

If your audience has relatively little Computer Science knowledge, you will spend more time on your introduction and background, and omit the technicalities altogether. That is, you will take more time to describe the problem, where it occurs in practice, why it is hard to solve, current thinking, and the underlying concepts and terminology you will be referring to in your talk. If your audience comprises Computer Scientists, then the more they know about your field, the more you can shorten the introduction and background, focus on the body and increase the section on technicalities. If you address experts in your field, devote most of your time to the body and technicalities, and take extra care throughout to convince them of the soundness and accuracy of your claims and your results.

Illustrating Ideas with Examples

It is well known that examples are vital, but choose those that illustrate why you have developed your solution/language/model/architecture/theory, not those that look most impressive or illustrate as many details as possible. It is no help to you if your examples are mind-boggling and leave you audience wondering what the benefit of your research is. The main criterion to consider when choosing your examples, is do they accentuate the point you are trying to make. Do they bring home the practical advantages of your idea? Are they the examples that motivated your tackling the specific problem/
task in the first place? Do they illustrate the single thing you wanted your audience to remember after your talk?

Mention Problems and Concerns

Be honest with your audience, otherwise you will have gone to a great deal of effort without gaining much. If you have concerns, voice them. If there are problems you have not yet solved, or don't know how to solve, mention them. After all, this is a research talk, and you are meant to challenge and stimulate thought in your audience. If you hide your concerns, you will not learn from the advice, experience, different perspectives and ideas of your audience; a rare and valuable opportunity will be lost, possibly forever. And the fact that you are skirting the difficult issues will show - either directly visible as a reluctance to discuss certain aspects, or else leaving the overall impression of a poor talk that missed out the interesting details. Talking about your problems takes courage, but if your worst fears turn out to be valid and your concerns truly require a change in research direction, then it is far better to find this out immediately and at your own initiative. More usually, you will find that your audience finds a solution for you, or points you in a direction that will lead you there, and that the interest generated by your paper stems mainly from precisely those problems you were reluctant to mention.

Preparing Slides for a Presentation

Limit the Text on Slides

Once you have decided what your talk will cover, make sure that your slides support the talk, and no more. Do not write all or most of what you will say on your slides. Use short points rather than whole sentences. Reading to the audience is very boring and frustrating, particularly as they read faster than you can speak. Slides are essentially cues/prompts for yourself, and notes for your audience of what they should be remembering. You should spend far longer discussing issues on a slide than it takes to read through that slide. Keep the amount of information on a slide to a minimum, and talk about this.

How Many Slides are Needed?

Beware of preparing too many slides and rushing through them. With practice you will learn how many slides you typically use per ten minutes of presentation (a rule of thumb is around 2 minutes per slide, but this is very much dependent on your personal style), and you will begin to naturally produce about the right number of slides.

From time to time, a slide containing only the title of the next section gives the audience something to hang things onto as they hear them, and avoids the distraction of wondering where you are heading.

Usually it is advisable to make a few extra slides in case you finish your talk much too early (a little early is no problem, just stop after what you prepared). Many people also prepare extra slides for questions they anticipate - e.g. graphs or tables of results, or diagrams showing system/solution parts in more detail.

Visually Appealing Slides

Be visual - after your talk outline and your statements of the main points you want to make, try to have a picture on most of your slides. Make the words on your slides readable - few words, large fonts. Enhance your slides with colour, but do so for a reason (to show emphasis, alternatives, timing, etc.) and avoid using such a variety that you resort to shades like yellow that are hard to see.

Do not show code (unless your talk is on a new language) or maths if you can avoid it. Use examples as much as possible, and make sure they are at the right level of detail. It is true that “a picture is worth a thousand words”, but diagrams must nonetheless be carefully explained (do not, e.g., say vaguely that “our results look like this” or “here is an example using our model”).
Powerpoint vs Hand-Written Slides

Powerpoint slides has been the norm at conferences for some time, enhanced with photographs, video or other media where the paper requires this. But if you are making a presentation in your own department or to your own research group, think carefully about using hand-written transparencies instead. What you want is feedback on your ideas, not to impress or distract the audience with effects; and the simpler your slides the more they will focus where you want them to. If you feel uncomfortable about "breaking the mould", sound out your supervisor or a colleague; you will find they are far more likely to welcome this than to object.

It is quicker and easier to write your text and draw your examples manually. You can also add to them or change them during your talk. Using PowerPoint you will spend much time configuring the visual appearance and special effects - time that would be better spent on the content. You will be more reluctant to omit a slide (that you should not be wasting the audience's time on) for this very reason, and can also be tempted to include too much on a slide by using a small font (e.g. code, complex diagrams and tables, too much text, etc.) Naturally you can still include transparencies made from figures you already have in convenient electronic format. Special PowerPoint effects are not vital - they essentially allow for emphasizing and timing display components, which is still possible with transparencies through appropriate use of colour or overlays.

With hand-written slides, be sure to use permanent ink projector pens, and to replace the backing sheets with ordinary paper that does not cling to the transparency. Add brief notes to these backing sheets where necessary to remind yourself of points you forgot to make when rehearsing, details that are hard to remember (like numbers or names), time checkpoints, and so on. If your personal preference, or that of your department, is to use PowerPoint, at least consider this alternative seriously first.

Preparing for a Presentation

To present your research to an audience requires good planning and delivery. Part of the preparation for a talk is thus concerned with polishing the delivery.

It is easier to present your own work if you already have experience delivering talks on other material. Practice public speaking by offering to present a paper you have read at a reading group session or research group meeting. If this is not normal practice in your department and there is no interest in starting such an initiative, offer to present a seminar on your literature review; this gives you practice in giving a talk without having to worry about the quality of the content.

Irrespective of the experience of the speaker, any presentation can go either more or less smoothly depending on the amount of preparation put in - beforehand and on the day of the talk. This effort is sketched in the two sections that followed.

Advance Preparation

If there is a tendency in your community to boast about how casually and quickly one's talk or slides were produced, ignore this completely! It is absolutely vital to prepare a talk thoroughly beforehand. Take time to draft slides, obtain feedback, and improve them until you are satisfied with what they cover and how. Decide exactly what you are going to say, slide by slide as well as between slides, and rehearse this until you have the entire talk in your mind. Though the slides will be there to guide you, a polished talk is always easier on the audience; while the confidence of knowing that you are well-prepared will do wonders for your voice and delivery. Remember it is obvious to an audience if a talk is not well-rehearsed, and this can lead to individuals being more aggressive and attacking than they otherwise would have been.

Time yourself to make sure that you remain within the limit set. Have a few checkpoints e.g. half-time and three-quarter-time points so you can adjust your pace if necessary. Practice the start and the end especially well, as these have the major impact. Give a trial talk before an audience of friends and colleagues first wherever possible, asking them to ask you hard questions.
Try to use the same presentation method as others in the community, but if you must use different
equipment, then make sure you arrange this with the organizers in advance. Whatever format you are
using, take along backup copies of your slides in case of problems.

Preparation on the Day

On the day of the talk, do not dress inappropriately. If you are too formally or too casually dressed
for the occasion (depending whether it is an academic talk or a formal interview, respectively) this
will not inspire confidence in you. Also avoid clothes that distract your audience because they are
revealing, or too colourful, or the like.

Arrive early at the venue and make sure that the equipment you need for your talk exists and works
as you expect, by physically trying it out well before it is time for your presentation. If your venue
requires that you use a microphone, watch how previous speakers use this (if any) and attach it to your
clothing with the help of the organizer or session chair. It is generally best to attach a microphone
to your collar or some other part of our clothing as near to your face as possible. This can be hard
to do, and if it falls or is clumsily handled, the amplified noise can be very unpleasant, so find out
how to switch it off while you are attaching it. And if you are inclined to gesture while you talk, be
mindful that you don't dislodge your microphone because of the noise and the loss of time, confidence
and concentration.

Delivering the Talk

How to Talk about your Slides

In any presentation, try as best you can to speak naturally, as you would if conversing with a friend
or two - your tone and pace vary, you make some simple gestures, you move around a little (but not
too much), introduce some humour if you can, smile or laugh at times, use different body language,
etc. The more you are able to relax, the more natural your delivery, and the easier you will be on
your audience. The best ways to reduce anxiety are to rehearse very thoroughly indeed (this cannot be
stressed too strongly) and to gain experience by doing as many presentations as possible.

If you have prepared well, you will definitely avoid the two cardinal sins of public speaking - reading
your slides/notes, and over-running you time. Keep eye contact with your audience, being as inclusive
as possible. Looking at different individuals in different parts of the room from time to time is one way
to ensure you don't forget this. You should also regularly look at the organizer or session chairperson
during the second half of your presentation, to detect any signals such as time running out. It is selfish
and self-defeating to exceed your time limit, as the audience is unlikely to concentrate on the content
during the extra time anyway.

Handling Nervous Tension

The individual who is not nervous when they start a public talk is extremely rare; even the most
well-known and highly respected academics will acknowledge anxiety and trepidation. To calm your
nerves, try some of the following techniques:

- In the 5 or 10 minutes preceding your talk, switch off from what is happening around you and
 inwardly rehearse your opening sentences. This ensures you will get off to a good start, whereupon
 your confidence will grow as the talk progresses

- Before the talk, contract your stomach muscles while simultaneously breathing out hard; this relaxes
 you and will improve your voice quality

- When you take to the podium or lectern, pause for a minute to look at your audience so as to
 accustom yourself to them, find sympathetic or friendly faces, and mentally tell yourself that you
 will do fine
• If you feel yourself becoming tense during the talk - pause, take a deep breath and let it out slowly. Wait until it passes, perhaps taking a drink of water or clearing your throat if this is easier for you.

• If the paper you are presenting has co-authors you trust, is sanctioned by your supervisor, or was accepted by reviewers, then the suitability of your paper is already established, so do not suffer needless anxiety over the worthiness of your research.

• No-one forms a bad impression of another's research because of the poor quality of a presentation; remind yourself there will be no lasting ill-effects even in the unlikely event of the presentation being a failure.

Answering Questions

While question time can be traumatic for the under-prepared, the diffident or the under-experienced, one should be appreciative of questions asked. It shows interest and knowledge on the part of the questioner, and gives a good opening to chat to them afterwards, possibly learning from this and making valuable new contacts.

There are three main types of questions asked of presenters:

1. requesting information
2. attention seeking
3. malicious questioning

Requests for Information

Most questions are simply directed at finding out more information, in order to better understand what you have presented. If you are well prepared and sufficiently familiar with the work, these pose no problem and should be welcomed. Answer honestly and concisely. If you do not understand the question, say so. Once you do, repeat the question in your own words so that everyone can hear and interpret the answer in the way you intend. If you are insecure about answering, and feel that a team member in the audience would be better able to do so, you should nonetheless give your best response and leave it up to your colleague to help you if they think it necessary. If you do not know the answer, say so directly, as you are unlikely to make up a good reply on the spur of the moment when you are already under pressure. Say so confidently, and be careful not to fob off your predicament by saying "it is not known" rather than "I do not know", unless you have established this fact in your literature search.

Attention Seekers

Some questions are posed simply to draw attention to the questioner, so as to show off their intelligence, knowledge, experience or imagination. Such a question is best dealt with by repeating it and then answering it in a way that compliments the questioner without being patronizing. While much of this waste everyone’s time, it is also true that the main benefit of a presentation is usually the insight gained from exactly this type of question, so have an open mind and treat each question seriously.

Malicious Questioning

Malicious questions attempt to ridicule the presenter and cast doubt on their work or its significance. This is hard for anyone to deal with, but remember that it happens to everyone at some time - so you have the sympathy of others in the audience. Frequently the questioner is known for habitually attacking speakers in this way and hence the criticism is viewed in this light (it might even be more worrying if such a person does not bother to ask you such a question!) Sometimes such a questioner is not even well versed in the topic, but is simply wanting to find out how you cope with pressure (e.g. in an interview situation). The best approach is to answer as politely and briefly as possible, and avoid
long exchanges with this person, if necessary by suggesting that you discuss the issue further off-line. A one-to-one talk is likely to be much less hurtful and destructive, if indeed it takes place at all.
Chapter 18. The Masters/PhD Thesis

Table of Contents

The Masters/PhD Thesis ... 1
Steps in Obtaining a Thesis ... 1
Choosing a Supervisor ... 2
Supervision Style .. 2
Investigative Work .. 2
Changing Supervisor .. 2
Choosing a Thesis Topic ... 3
Pitfalls to Avoid ... 3
The Thesis Proposal ... 3
Financial Aid .. 4
Writing the Thesis ... 4
Motivation .. 4
Motivation when Reading ... 4
Some Final Tips to Help You Stay on Course .. 5

The Masters/PhD Thesis

The basic requirements of a Masters degree are to show that one has mastered research methods and techniques, that one is familiar with the state of the art in a particular field, and that one is able to apply those research methods in creating, improving or analyzing state of the art systems. Originality and significant contribution to knowledge are only required for PhD degrees, although most Masters theses contain some aspects that are original. In many universities, particularly in South Africa, the distinction between Masters and PhD theses has become blurred, as the standard of Masters theses grows higher.

Steps in Obtaining a Thesis

The following are the major steps involved in thesis work:

1. Select a suitable university and department
2. Choose a supervisor and research topic
3. Arranging funding for your studies
4. Read the literature and decide on a research question to tackle
5. Choose appropriate research methods and secondary goals, and produce a project plan
6. Write the thesis proposal
7. Conduct the research, writing up as you proceed and revising the project plan as needed
8. Produce progress reports, papers, presentations and other deliverables as and when required by the university and funding bodies
9. At the completion of the research, complete and submit the thesis document for examination
10. If required by the university, undergo a thesis defence or other form of oral examination on the work
11. Where required, make corrections or extend the research as suggested by the examiners.
Most of these activities have been described in previous sections. Those peculiar to thesis work are discussed below.

Choosing a Supervisor

When choosing a supervisor, consider their level of expertise, knowledge and research experience in your problem area; their supervision style and their personality. Greater expertise on the part of your supervisor will not only improve your research productivity and quality, it will also help your confidence and general peace of mind. A supervisor should have some knowledge of the area being researched, be familiar with the research process, and have adequate skills to oversee, guide and encourage the student or junior.

Supervision Style

In considering supervision style, ask yourself what type of contact you prefer (someone who keeps regular tabs on you at the one extreme, someone with a laissez faire attitude who has limited time for supervision, or what between these two extremes suits you best), how much pressure you work best with, and whether you will be helped or hindered by any individual characteristics or methods of a potential supervisor (e.g. if he/she is known to require frequent presentation of research progress to large groups, etc.)

In choosing a supervisor you also need to know yourself, to know whether their supervision style will be beneficial for you. Do you prefer to work alone or in a group? Do you prefer the firm hand and watchful eye of someone who oversees your work because you perform best under pressure, or value the freedom to work at your own pace under someone who respects your independence? Do you prefer a supervisor who continually challenges your ideas and extends you to the limit, or one with a gentler, supportive nature? Would you rather contribute to an established research project, or start a new, individual piece of work?

Investigative Work

The ideal supervisor is an expert in the field that interests you and is actively engaged in good research in that area, working with a good team of happy, well-motivated students and collaborators, globally known and respected for his/her ideas, with a personality that suits your own. Finding such a person, or coming close to it, requires good research in its own right! Look at the research record and thesis offerings of potential supervisors at a number of departments; meet the supervisors and their students, attend their research meetings and seminars, ask about supervision style, and find out graduate throughput and dropout rates. Try to ask current thesis students how much their supervisor assisted with literature searches, finding a topic, solving problems, introducing them to others, and so forth. If you have an idea for a research question to tackle, write this up and ask for comments.

Changing Supervisor

Once you have chosen a supervisor and started your thesis, do not feel obligated to remain with that supervisor if you are unhappy with him or her. In particular, if you feel that person is hardly ever available for consultation, shows no personal interest in the project, has inadequate knowledge, fails to give constructive criticism or treats you badly (being rude, negative, sexist, racist, exploitative, or harassing you), speak to them frankly and calmly about the problem, and if this fails to help then look for another supervisor.

It is best to heed warning signals of the above kind early on, when changing supervisor will have less impact on your progress. Be wary of a supervisor who gives you too much freedom in choosing your topic; such a person is likely to lack the background to help you adequately. Likewise, a supervisor who cannot point you to some good papers with which to begin your literature search, is probably not qualified to help you on that specific topic. Finally, remember that students should also behave in a
Choosing a Thesis Topic

Finding a thesis topic is the first difficulty encountered by most students. A fairly easy way of narrowing down this problem is to list the potential supervisors and their research fields - eliminating anyone whose supervision style or research area is not appealing. Some reading into the topics on this list is then advisable, after which the best candidate field or fields should be selected. It will help to find a topic within this field by writing down at this stage what one finds interesting and why - both as explicitly as possible. Supervisor and student can then work together until a specific research question/task is decided upon.

The research question(s) you are addressing should:

- Indeed be unsolved, or solved only under certain assumptions
- Lend itself to good theoretical work or good empirical results (or both)
- Be significant and of interest to other researchers
- Not require more time than you have, or at least have a core that is manageable

If you choose a topic that is clearly defined, narrow and focused, you can start sooner and are less likely to go off at a tangent down a path that proves fruitless or uninteresting. It will also be easier for you to plan and evaluate your research, and you will spend less time worrying about convincing examiners that your work is worthy of the degree.

Pitfalls to Avoid

Beware of taking risks when setting your research goal. If it is your own idea and you struggle to convince your supervisor that it is suitable, be aware that you will probably struggle even more to convince others in the field, including your examiners and reviewers of your papers. If your work concerns something very different from what others in your department are interested in and actively researching, it will be harder to get feedback and help.

Do not choose a goal that is too ambitious. For some who are very enthusiastic and confident, this can be very difficult - so heed carefully the advice of your supervisor if this is to cut down the task or find something less complex or risky. Remember that many papers you read are the work of large research teams or the product of many years’ effort, and of people with research experience far greater than your own. Furthermore, many authors have a knack of marketing their research very well, so that the reader has the impression of a much grander accomplishment than is indeed the case (bear this in mind when you read, and when you discuss papers with your supervisor, team members or reading group).

It is better to look at recent dissertations passed by your institution to get an idea of what is expected.

The Thesis Proposal

Once you have decided your research question or goal, write up a thesis proposal - whether or not it is required by your department - and give it to your supervisor and others for comment. This will take several months, as you need to familiarize yourself adequately with the problem/task, with existing research that is relevant to it, and with appropriate research methods (so that you can identify these and explain how they will be applied). You must be able to define the problem or task clearly and come up with a methodology and plan for tackling it within a reasonable time. The more detail you can show, the better quality feedback you will receive; and remember to write for an audience who are not involved in the same research field. Once your proposal is written, give a talk to present it to fellow students and staff - whether or not this is the normal practice in your department.
Financial Aid

Make sure that you have enough funding to be able to devote sufficient time to your thesis without having to worry about finance, or waste time with part-time work. If you have a reasonable lifestyle and find that you are struggling to survive on the funding you are receiving, speak to your supervisor and others in your department; usually arrangements can be made to help, and if it does require doing other work, this is likely to be more appropriate and suitable for your context, e.g. research or teaching assistant-ships. Do you financial planning in good time, so that when such RA and TA positions are offered, you are among the applicants - these are unlikely to be vacated until a year's time (or perhaps a semester's time) in most institutions. Speak to graduate students and staff in your department, and in the Post-Graduate Administration section of your university, to make sure that you are aware of all the funding opportunities in good time. If you can, try to earn money as a research assistant prior to commencing your thesis studies; this has the extra advantage of giving you valuable insight and experience in the field and in research techniques, as well as a taste of the working style of potential supervisors.

Writing the Thesis

Do not think of a thesis as comprising two main stages, research and dissertation writing, as these must proceed in parallel. Many ideas are incorrect or incompletely formulated before being tested, and writing them down first helps significantly to improve and clarify the ideas, saving a great deal of time when they are subsequently implemented or tested.

Motivation

The more motivated you are to do research, the higher your chance of success. As with all research, thesis work involves both exciting times and frustrating times. When progress seems too slow, or ideas fail, it becomes hard to continue working. This section offers some tips for staying motivated when the going gets tough.

Firstly, do not try to do your thesis research entirely by yourself. Do it with your supervisor - have regular meetings, seek his/her advice and guidance, and check your progress (or lack of progress) with him/her. This will not only reduce the time spent, but also make the entire experience a much happier one.

If your degree is part-time, do not be tempted to take leave of absence from work at the beginning, even though the time spent choosing a research question or goal can be considerable. The best time to take leave is when you are producing the final dissertation draft, as this is when you need to concentrate your thinking and to maximize the number of hours spent daily on your thesis.

Motivation when Reading

Much of one's research time is spent reading, particularly in the beginning. Most MSc students spend their first few months reading; PhD students typically take 6 - 12 months familiarizing themselves with the field so that they can confidently find an open problem or novel approach to a task. At first, most students feel overwhelmed and despondent because of the amount of material to read and the slow rate at which they are able to assimilate documents. But you are not meant to read every relevant article; with practice you will learn how to distinguish those that are important - aim to read these, along with recent papers and papers that are highly relevant. And as your knowledge grows, so will the rate at which you can read and understand other work.

If, during the course of your work, you find a paper that reports almost exactly what you are attempting, do not be too despondent. Read it carefully, along with others in the field such as a supervisor, colleague or collaborator. Contact the authors and talk to them (by email if necessary, but preferably face to face). You may find that there are interesting differences, or that there are still alternatives or
extensions for you to pursue. You can end up gaining a great deal from interaction with the author(s), who are clearly kindred souls, and if you are lucky it may even lead to collaboration in the future.

Some Final Tips to Help You Stay on Course

• If you are hating what you are working on, do not be afraid to change your thesis topic or direction to something of greater personal interest

• Focus on the skills you will learn, rather than the research outputs

• Incorporate in the project the gaining of some knowledge or experience of direct relevance to you

• Concentrate on the reward(s) that will follow the qualification of MSc/PhD, such as publication/s, travel, a new job, promotion, enhanced status, etc.

• Talk to someone sympathetic who can support and encourage you, such as a fellow student or a friend outside the department

• Do not expect too much of yourself (don't set unrealistic milestones or expect to work more hours per day than you can reasonably manage)

• Concentrate on what has been achieved, rather than being negative about what has not been done

• Break down every hard task into small sub-tasks, even when considering what you plan to achieve each day

• Look at your early notes and plans to see how much has already been learnt and how much progress you have already made

• Remember that research is about breaking new ground, so problems and setbacks are to be expected - see them as confirmation that the task you are tackling is sufficiently hard to qualify as good thesis material
Figures

Why Use Figures

Figures (graphs, charts, and graphics) are an additional means of communicating information about systems, algorithms, dynamics, and perhaps most importantly, data. Good figures make it easier and faster to communicate certain information, and can play a crucial role in the structure of a paper. This chapter will focus on highlighting some of the most important areas to focus on when creating figures.

Revealing the Data

It may seem obvious, but the first and foremost objective of a figure is to show the data. Figures have an amazing ability to quickly reveal information about data that might otherwise be difficult to detect or understand. In fact, a graphic can give far more precise insights than even statistics can in some cases. Consider the four sets of data below:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>10.0</td>
<td>8.04</td>
<td>10.0</td>
<td>9.14</td>
<td>10.0</td>
</tr>
<tr>
<td>8.0</td>
<td>6.95</td>
<td>8.0</td>
<td>8.14</td>
<td>8.0</td>
</tr>
<tr>
<td>13.0</td>
<td>7.58</td>
<td>13.0</td>
<td>8.74</td>
<td>13.0</td>
</tr>
<tr>
<td>9.0</td>
<td>8.81</td>
<td>9.0</td>
<td>8.77</td>
<td>9.0</td>
</tr>
<tr>
<td>11.0</td>
<td>6.33</td>
<td>11.0</td>
<td>9.26</td>
<td>11.0</td>
</tr>
<tr>
<td>14.0</td>
<td>9.96</td>
<td>14.0</td>
<td>8.10</td>
<td>14.0</td>
</tr>
<tr>
<td>6.0</td>
<td>7.24</td>
<td>6.0</td>
<td>6.13</td>
<td>6.0</td>
</tr>
<tr>
<td>4.0</td>
<td>4.26</td>
<td>4.0</td>
<td>3.10</td>
<td>4.0</td>
</tr>
<tr>
<td>12.0</td>
<td>10.84</td>
<td>12.0</td>
<td>9.13</td>
<td>12.0</td>
</tr>
<tr>
<td>7.0</td>
<td>4.82</td>
<td>7.0</td>
<td>7.26</td>
<td>7.0</td>
</tr>
<tr>
<td>5.0</td>
<td>5.68</td>
<td>5.0</td>
<td>4.74</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Figure 1: Four sets of data.
The four sets of data shown in Figure 1 have some interesting properties. For each of them the following are true: - Sample size = 11 - Mean value for X = 9.0 - Mean value for Y = 7.5 - Equation of regression line: Y = 3 + 0.5X - standard error of estimate of slope = 0.118 - t = 4.24 - Sum of squares = 110.0 - Correlation coefficient = 0.82

As you can see, many of the statistical tools we usually rely on to give us information about a data set are telling us that each of these four data sets are identical. The data sets have the same number of elements, the same mean for both the X and Y values, etc. After some statistical inquiry, we might be tempted to suggest that these four sets of data are the same. However, once these four data sets are plotted as graphs (Figure 2), the differences between them, and their important individual characteristics, are immediately obvious:

Figure 2: Scatter plots of the four data sets shown in Figure 1.

These four sets of data are known as Anscombe’s quartet, and are an excellent example of the power that graphics have to reveal information about a data set that might otherwise remain hidden.
Data-Ink Ratio

The data-ink ratio of a figure is the proportion of elements of the graphic that are actually communicating data. A good figure should attempt to maximise the data-ink ratio as much as possible, eschewing unnecessary elements which don’t communicate any new or useful information. Decorations or otherwise overly busy graphical elements might sometimes look good, but they can get in the way of the primary function of the figure, distracting the viewer from the data rather than revealing it to them.

To maximise the data-ink ratio in a figure, try to identify useless graphical elements by answering the following questions:

- Non-data-ink: Does this element communicate any information?

Figure 3 has a great deal of non-data-ink. The elements indicated by the red arrows don’t communicate any information at all.

- Redundant data-ink: Is the information communicated by this element already communicated?

Consider the bar from a bar chart in Figure 4. It communicates only one piece of information, but in many ways. We don’t need all of them. The number, the height of the bar, the shading within, etc. are all communicating the same piece of information that any one of them could communicate all on its own. This is an example of redundant data-ink.

These questions are based on Edward R. Tufte’s “Two Erasing Principles” which aim to increase the data-ink ratio: 1. Erase non-data-ink (within reason) 2. Erase redundant data-ink (within reason)
Chart Junk

Non-data-ink is sometimes referred to as “chartjunk”. Some forms of chartjunk are so common that one might not even notice them. The erasing principles above will help identify unnecessary elements, but some very common examples are highlighted in this section.

Vibrations

Many graphs and charts rely on various dense repeating patterns line parallel lines to differentiate between elements. An example of this can be seen in Figure 6. Due to the physiology of the human eye, lines like this sometimes appear to be moving slightly or otherwise distorted (this is known as the moiré effect which is highly exaggerated in Figure 5). This can make elements more eye-catching, but it can also be very distracting, not to mention that all that ink communicates no data whatsoever.

Try to avoid using vibrating lines or other dense repeating patterns to differentiate between chart elements.
Figure 5: Moiré vibrations.
Grid Lines

Grid lines are so ubiquitous that one might not think to question them at all. However, especially if the grid lines have a weight similar to that of the important data elements or if they are very closely spaced, grid lines can distract from the data. Often, grid lines fall into the redundant data-ink category, needlessly reiterating information that is readily available from other elements of the figure.

Figure 7 is timetable for trains running between Paris and Lyon. The think and densely packed grid lines compete with the information that the graphic is intended to convey.

It is made far more legible by thinning the grid lines and making them a lighter shade (Figure 8).

If you must use grid lines, make sure they are finer than the lines/points used to communicate the data, and that they contrast less from the page than the data. This way, they are still useful, but are far less obtrusive.

Ducks

Occasionally one will come across a particularly bad graphic that sacrifices all legibility for decoration. They can be very eye-catching, but often conceal the data rather than reveal it. Such graphics are known as “ducks”.

Figure 6: Vibrating lines used to distinguish data.
Figure 7: The famous Marey Train Schedule visualization.

Figure 8: An improved version suggested by Edward R. Tufte.
Figure 9 is regarded by some to be the worst figure ever to be printed:

While eye-catching, this graphic has many problems. All in all, it only communicates 5 data points - the proportion of enrolled students under the age of 25 from 1972-1976. The colours and the fake 3D effect add no new information (they are pure non-data-ink). The top half of the graph is actually just the inverse of the lower half (redundant data-ink), and the values of it are represented by the empty space below it, rather than the coloured part above it, the opposite of the lower part. Finally, the broken y-axis distorts the data to make it appear more interesting than it actually is. Although very boring, Figure 10 is a much better representation of exactly the same data:

Show the data, maximise the data-ink ratio, erase non-data-ink, erase redundant data-ink, and you will avoid making a duck.

Data Distortion

By changing certain aspects of a figure, it is possible to distort the data rather than reveal it for what it actually is. Several such distortions are discussed in this section.

Spurious Linear Regression

Earlier in this chapter we looked at Anscombe’s quartet and saw that different sets of data can lead to the same line of regression. Lines of regression can be very useful for communicating a general trend, and give your data some predictive power. However, regression lines can be very sensitive to outliers, and must be used with care. Importantly, they must always be shown with the points that were used to generate them.

Three Dimensional Effects

3D effects are often used and almost always purely decorative. Their usage not only diminishes the data-ink ratio of a graphic, but the perspective distortion needed for the effect can distort the data too. Consider the pie charts shown in Figures 11 and 12:

In the 3D version (Figure 11), “Item C” appears to be about the same size (if not larger) than “Item A”. In the non-distorted 2D version (Figure 12), it is easy to see that Item A is actually much larger (more than twice as large in fact) than Item C. Both the 3D effect and the lack of proper labelling distort this data.
Figure 9: A graphical duck.
Figure 10: A boring but accurate representation of the same data shown in Figure 9.

Figure 11: 3D pie chart.
Truncated Axes

Another way that data can be distorted graphically is by manipulating the axes of a figure. The two bar charts (Figures 13 and 14) show exactly the same information. The y-axis of Figure 13 has been truncated (ranging from 9100 to 9800), making the difference between the groups seem much greater than it actually is. The more accurate Figure 14 shows just how much the data has been distorted. Sometimes it is necessary to truncate an axis, but care must be taken to alert the reader to this fact.

Practical Considerations

So far, we have discussed some of the more theoretical aspects behind good figure design. There are several more practical concerns that must also be addressed. Many of these focus on the usage of figures as key components that form part of the structure of a greater work.
Figure 13: Data distorted through truncation of the y-axis.

Figure 14: An accurate portrayal of the data.
Title

Every figure should have a title. The purpose of the title is to concisely inform the reader what the figure is meant to convey.

Earlier in the chapter, in the Ducks section, we looked at a particularly bad figure. The title was one of its issues. “Age Structure of College Enrolment” does not mean much, and certainly doesn’t capture what the presentation of the data is meant to reveal. The revised title, “Percentage of College Students Under 25 Years Old”, is far better. It is less ambiguous, and describes precisely what the graph sets out to present.

Titles should be concise, but give enough information so that the reader knows immediately what the function of the figure is. A good rule of thumb to follow is that the title should be of a form similar to: (Vertical axis quantity) vs. (Horizontal axis quantity) for (Experiment).

The title should be preceded by an identifier such as “Figure 1:...” to facilitate references to the figure from the body of text. Depending on the format of the work, the title may be the first sentence of the Caption.

Caption

All figures should have a caption. The function of the caption is to give the reader all of the information they need to fully understand the figure, and summarize what it presents.

The caption should mention what exactly is being plotted in the figure (which statistics, or which data), the origin of the data, the context within the paper, and any auxiliary information required to understand the figure. If applicable, samples sizes and summary statistics should also be mentioned. Where necessary, the caption should contain citations to referenced work.

A good caption will allow a figure to stand “on its own”, without further explanation in the body of the text. This is important because, for many readers, the first skim read through a paper will rely heavily on the figures to start building an understanding of the entire paper.

Axes

We have already touched on the importance of axes as a part of how to accurately represent data. Axes should conform to the following:

- There should be (at least) an x-axis and a y-axis.
- They must be labelled and the units used must be mentioned.
- Scales should be provided on the axes and they should be labelled.
- The choice of scale should not distort the data.
• Any breaks in the axes should be indicated.

Reference in text (structure)

All figures included in a paper should be referred to at least once in the body of the text. The purpose of the figure is to aid understanding of information that is being presented, and the figure should be clearly linked to this information so that it can be easily found if and when required by the reader.