
1

Chapter 8. Prototypes

Table of Contents
What is a prototype? ... 1
The role of prototypes in research .. 1
Why build a prototype? ... 1
When to build a prototype .. 2
Low- and high-fidelity prototypes .. 2
Prototyping steps .. 2
Problems with prototyping .. 2

What is a prototype?
A prototype is a simplified system, designed and built to focus on certain aspects while ignoring others.
For example, a prototype might ignore user interface issues entirely, or it may be built solely for ease
of development without concern for efficiency, or it may implement only some parts of a system and
omit others entirely, etc. A prototype is easier to study and reason about than an abstract model, and
quicker to produce than a complete working system. It can also be easier to analyse than a full system
because unimportant aspects have been factored out. A prototype is never the major contribution of
research, but it is often a helpful tool for achieving some other research goal.

The role of prototypes in research
Prototypes are mainly used in the following ways in IT research:

• To demonstrate that an idea is practical and feasible, by implementing it in some prototypical form

• To enhance an idea/model/system/architecture/approach, and develop it in more detail - by
discovering problems, solutions and alternative opportunities in the course of prototype construction

• As a vehicle for conducting an experiment, to test some property of a system or approach — e.g.
performance, usability, integration etc.

• To study the use of some technique in a particular application context, one which has characteristics
different from other environments where the technique has so far been applied

Why build a prototype?
Constructing prototypes enables us to study, test and improve on ideas and designs. The more
prototype systems developed and explored, the more we will learn and the more our research will
benefit. The longer a research project proceeds without constructing a prototype, the more time is being
invested in an untested concept; and the more choices are being made without verification. Researchers
run the risk of developing in more and more detail an idea that is unsound, flawed or inferior.

Building a prototype to test an idea is a type of formative evaluation, so-called because it is being tested
in order to help form the solution to the research problem. A prototype facilitates testing decisions
already made (are there any problems with what has already been done?) and assists in future decision-
making (what is the best alternative for the next step?). Prototypes are particularly useful for checking
system performance, but partial systems can also be built to answer specific questions about certain
components or aspects of a system.

Prototypes

2

When to build a prototype
Prototyping is used extensively in engineering. Where there is an accepted theory, model or method
of analytical testing this is used initially and prototyping is left until a design is almost complete;
otherwise prototypes are built early in the project.

To build a prototype to evaluate an idea, that idea must first be developed in sufficient detail to
make implementation possible. You need to identify the components (including hardware, users and
external software) and the interactions of interest, what information they require, and how to represent
this. Overall system requirements need to be decomposed into tasks and operations, which must
then be allocated to individual components. Relationships between components and operations must
be decided, for example the temporal ordering of operations and the information passed between
components

Low- and high-fidelity prototypes
Low-fidelity prototypes do not look very much like the system envisaged, but are quick and cheap
to construct and test, and are useful particularly in the early stages of the research project. A Wizard
of Oz prototype is an example of a low-fidelity prototype used in HCI, where an interface design is
evaluated by having a (hidden) human respond to inputs in the place of software components which
have not been built. User interface prototypes can even involve hand drawings and story boarding in
the beginning, to check usability before any software is produced.

Initial prototyping should be fast and simple as possible, to get an idea whether or not the system is
on the right track as quickly as possible. Focus on key aspects only, and keep the number of tests and
amount of analysis down to a minimum, since only significant benefits and problems are a concern
at this stage.

High fidelity prototyping creates systems that are much closer to the final product envisaged. Besides
taking longer to develop and having a higher chance of containing hidden bugs, they can cause
researchers to be distracted by less important details instead of focusing on the issues that the prototype
was intended to explore.

Prototyping steps
1. identify the question(s) to be answered by the prototyping exercise

2. design a prototype specifically for answering those questions

3. design an experiment using that prototype to answer the questions

4. implement the prototype

5. conduct the experiment using the prototype

6. process and analyse the results from testing the prototype

7. use the results to answer the questions and direct future research accordingly

Problems with prototyping
The main problems with prototyping are that it is very time-consuming, and researchers find it difficult
to throw away prototype code when drawbacks or problems are identified because of the time they
have already invested in that prototype. To avoid these problems it is best to build partial solutions,
and gradually extend (or, when necessary, replace) them to test new aspects as they are considered.

