
1

Chapter 5. Object-oriented Analysis
and Design

Table of Contents
Objectives .. 1
Introduction ... 2
Modelling standpoints .. 2
Classes and objects ... 3

Classification .. 3
Classification in object-oriented design ... 3
A definition of class and object .. 3
Examples of classes .. 4
Some thoughts on the relationship between classes and objects 4

Concrete and conceptual classes .. 5
Attributes .. 5
Operations ... 7
Dynamic behaviour and state .. 8
UML notation and conventions ... 9

Symbol ... 9
Naming conventions .. 10

Finding classes ... 10
Relationships between classes .. 11
Specifying relationships in detail .. 11
Inheritance ... 12
Abstract classes .. 13
Aggregation and composition .. 14

Aggregation .. 14
Composition ... 15

Self-association and roles ... 15
Link classes and link attributes .. 15
Constraints and notes ... 16

Notes .. 16
Constraints .. 17

Class-Responsibility-Collaborator cards ... 17
From model to program ... 17
Dynamic behaviour .. 18

Interaction diagrams .. 18
Summary ... 19

Review .. 19
Questions ... 19
Answers .. 23

Objectives
At the end of this chapter you should be able to:

• Create class models of systems that can be encapsulated in one diagram.

• Simplify a model using generalisation and abstract classes.

• Describe how a more complex model can be specified, and how modelling software maintains
design integrity in such a complex system.

Object-oriented Analysis and Design

2

• Read and describe class models created by other designers.

• Be able to relate class diagrams to equivalent program outlines.

• Specify an object model using CRC cards.

• Describe how objects change over time.

Introduction
This chapter discusses object-oriented modelling methods, that is, the representation of a software
system in terms of classes and their inter-relationships. Class modelling is the most fundamental aspect
of object-oriented analysis and design, and its mastery is crucial for anyone who intends to use object-
oriented techniques. Class modelling is useful to both the analysis and design disciplines: in analysis,
classes and the relationships between them will specify the problem. In design, it specifies the software.

Class modelling is philosophically complex, but practically straightforward. However, it rests on a
few important philosophical concepts, and it is vital that these concepts are mastered before doing any
practical work. When students fail to make progress with real design exercises, it is commonly because
they have not developed a proper understanding of the basic principles. These principles cannot be
learned by rote, they must be understood through exercise and application.

Class modelling is used throughout object-oriented development, from analysis through to
implementation and testing. The class model is the “skeleton” on which the “flesh” of program code
is constructed. During the development of a system the class model is modified and refined, and often
several different models will be used for the same software system, each model seeing the system
form a different standpoint, as will be discussed further below.

Modelling standpoints
Class modelling is a flexible technique with a number of applications. In this it should be contrasted
with use case modelling; although the purpose of use case modelling is not specified in the UML, in
practice it is usually employed as part of a requirements elicitation exercise (as discussed in previous
chapters). Class modelling, on the other hand, is used throughout an object-oriented analysis and
design process, from requirements engineering through to programming.

The designer should have in mind at each stage of development what the class model is being used for.
Neglect of this principle leads to poor design work. If you believe you have produced a class model
that represents “the system” (whatever the system happens to be), you are quite likely mistaken. A
single class model at best represents a particular standpoint on the system.

Design standpoints represent the different uses we make of modelling. We can identify three obvious
standpoints.

• A logical design standpoint: the model shows how a system should function logically, or how its
components interact in a logical sense.

• A specification standpoint: the model shows how the system is broken into manageable components,
and how those components interact.

• An implementation standpoint: the model shows how the system is structured, or how it will be
structured in the future.

Although these standpoints are not completely distinct, they do embody differences in how the
software system should be modelled. Specifically, you should see that analysis models will be more
of a logical standpoint, while design models will, ultimately, be an implementation standpoint.

As design progresses the standpoint of the designers will change. Initially — especially if the system
to be developed is replacing some other system or manual process — the designers will be concerned
mostly with how the system is currently structured. This existing structure may well not be the most

Object-oriented Analysis and Design

3

efficient or logical, but it is necessary to understand the operation and context of the existing system
before designing a replacement. Later, in the design process, the designers will be concerned with the
logical structure of the system. That is, regardless of how an existing system may be implemented, the
designers consider what the simplest, most effective, logical organisation of the new system is. Still
later, the designers will need to refine the model into a design that can be implemented. Here they will
be concerned with specification and implementation standpoints.

The UML provides a set of modelling symbols and terminology and defines the concepts that they
embody. The first job of the novice designer is to learn this notation and come to understand the
concepts. The UML does not specify how these concepts are to be employed. In other words, it does not
provide a different set of symbols for logical and implementation standpoints; it is up to the designer
to ensure that his or her intentions are clear.

Classes and objects
This section discusses the nature of classes and objects. We begin with the philosophical background
of classification and move onto descriptions of objects and classes that will be useful for software
and system design.

Classification
The idea of classification is not a new one; philosophers have been studying the concept for at least
two thousand years. We classify things all the time: we classify people by gender or by age; we
classify motor vehicles by size, passenger capacity, and so on; we classify businesses into publicly
and privately owned entities, amongst others. When we classify something we are saying that it has
properties in common with others of its type. The idea is, at heart, a simple one. We assume that if we
know something about the class, then that fact is true of all the members of the class as well. In writing
a computer program that manipulates, say, customers' bank accounts, we need to be concerned first of
all with the things that all bank accounts will have in common. We do not want to be concerned with
individual customers unless there is something about them that is different to the class as a whole.
This is a profoundly important and simplifying principle.

By being members of a class it is assumed that an object shares the general properties of the class. For
example, all members of the class “human being” have certain properties in common; although there
are a great many different human beings in the world, they are sufficiently similar that there should
be no difficulty distinguishing between any human being and, for example, a cheese sandwich.

Classification in object-oriented design
In object-oriented design, we classify all the objects that a system should know about. That is, we
specifying classes that collectively describe all the behaviour of the system. Although we speak
of object-oriented design, we are mostly interested in classes, rather than individual objects. Class
modelling is the process of assigning classes, and describing their inter-relationships.

Class modelling works in software design because it allows complex systems to be described in such a
way that the complexity becomes manageable. And all interesting (and most useful) software systems
will be complex.

The “things” that a software system will process, recognise and serve are, by definition, objects. Users
of the system, keyboards, screens, bank accounts, stock items, printouts, and so on, are all objects.
By classifying these objects, that is, by creating and managing classes, the designers of the system
impose some control on the complexity of the system. Although a complex system may manage many
millions of objects, it will frequently manage orders of magnitude fewer classes, perhaps fewer than
one hundred.

A definition of class and object
For the purposes of object-oriented modelling, an object can be defined as follows:

Object-oriented Analysis and Design

4

An object is a self-contained entity with well-defined, recognisable properties
(attributes) and behaviour (operations). It can interact with other objects.

This leads to the following definition of a class:

A class embodies the properties and behaviour that a collection of objects have in
common.

Examples of classes
Having presented this philosophical discussion, you may be expecting classes themselves to be
philosophical. In fact, they are usually not. Suppose we are designing a system to manage the work of
a lending library. Some of the classes that will need to be considered are:

• Book

• Member

• Reader

• Borrower

• Loan

• Fine

• Barcode

• Return date

Of course, on more detailed inspection these may turn out to be inappropriate, and no doubt many
other classes will have to be considered, but these initial ideas are appropriate classes because:

• they are self-contained with well-defined behaviour and properties

• each will have some instances (objects) that have a great deal in common

• it is obvious that each has an important role to play in the system

A further key point is that some classes may in fact have sub-classes. For example, “Reader” and
“Borrower” may in fact be types of “Member”.

Some thoughts on the relationship between classes
and objects

Here are some concepts to consider when thinking about classes and objects:

• In English we use the words “is a” to mean several different things. For example, in “Rover is a
dog” we are saying that Rover is an instance of class dog. When we say “A dog is a mammal”
we are saying that “dog” is a sub-classes of “mammal”, that is, all members of class dog share
properties with members of class mammal. Therefore, in describing the relationship between classes
and objects, you should take some trouble to use unambiguous terms like “is an instance of” and
“is a subclass of”.

• A class may have any number of instances, including one and zero. Classes can be defined that have
zero members in practice and in principle. Student are often particularly reluctant to use classes that
have only one instance. The “Internet”, for example, is the one and only instance of class “Internet”.
Again, this may seem odd, but class modelling is about classes, not individuals.

Object-oriented Analysis and Design

5

Concrete and conceptual classes
Previously we looked at some examples of classes that might be appropriate for a library computer
system. You should be able to recognise an important sub-grouping of these classes. Classes such as
“Book” and “Member” are physical or concrete classes; they correspond to “real” things in the physical
world. However, the classes “Loan” and “Return date” are different “types” of class. They do not
correspond to real, physical entities at all. We will refer to classes of this sort as “conceptual” classes.
Many student mistakenly use the term “abstract” here; this should be avoided because “abstract class”
has a quite different meaning, which will be explained later.

Some components of a software system have both concrete and conceptual representation. Consider
the “Book” class: The conceptual book “War and Peace” by Tolstoy exists independently of the paper
and binding of a real physical book; indeed the conceptual book may be said to exist if the only text in
existence was in a computer's memory. In other words, in a sense the book exists outside of its physical
representation. At the same time, a lending library loans physical, not conceptual, books. They are real
entities made of paper, with barcodes for scanning, and so on.

This is not purely an academic distinction. Large, complex systems (particularly object-oriented
databases) may be impossible to implement unless this subtle distinction is understood. For example,
if the library's system only represents physical books, it has to store all information about each
book in each instance of the “book” class. But if the library has, say, ten copies of each book, then
most of this information is duplicated in each object, which is a waste of memory and can cause
data inconsistencies. This problem always arises when there is a distinction between physical and
conceptual representations of the same thing, and when there are multiple, similar physical instances
of the conceptual item.

This is not an issue on which the novice designer should lose sleep; the majority of systems can be
designed correctly even if the issue is not understood. However, it will improve the depth of your
understanding if you take the trouble to ensure that the sense of this section is understood.

Note

In an implementation, conceptual and physical classes will have different names to one
another. For instance, the conceptual class “Book” might be named “BookInformation”,
while the physical class may retain the name “Book”.

Attributes
Attributes are the properties of a class; on the whole they are things that can be measured or observed.
For example, an important attribute of the class Animal is “number of legs”. Different animals have
different numbers of legs, but all animals have the property “number of legs”. Even a snake has a
number of legs: it just happens to be zero. However, it would make no sense to talk about a plant's
having “zero legs”. The attribute “number of legs” is not a valid attribute of plants.

Attributes are used rather vaguely in classification in general. For example, biologists distinguish
between insects and spiders because insects have the attribute “has six legs” and spiders have the
attribute “has eight legs”. There is a numerical difference here. However, one of the ways that
biologists distinguish between reptiles and mammals is that reptiles are cold-blooded and mammals
are warm-blooded. There is no numerical difference in this case.

In class modelling the nature of attributes is formalised. We can say that:

An attribute of an object is a property that has a name, a value and a type. The name
and type must be identical for all instances of a class, but the value may be different.

For example, suppose the class “Book” in our library example has attributes “title”, “publisher”, and
“date of publication” (there will, no doubt, be others, but these will do for now). The attribute “title”

Object-oriented Analysis and Design

6

has a name (“title”), it has a type (probably “text” or “string”). Objects of class “Book” will have
values for this attribute, for example, “War and Peace”. The attribute “date of publication” has a name,
and its type is “Date”. Again, objects of class “Book” will be published on different dates, but all
objects will have a value for the attribute.

The important point here is that, although all instances of class “Book” have different values for these
attributes, they all have the attribute, and they are all the same type. The date of publication of a book
will always be a date, and never a height. The title will always be a piece of text and never a colour,
and so on.

In some cases the values of attributes distinguishes one object from another. For example, if Rover is a
brown dog and Fido is a black dog, we may reasonably say that their “colour” attributes are different.
There is no chance of confusing Rover for Fido. However, common sense indicates that if we see
two brown dogs, we cannot assume they are the same dog: there are many brown dogs in the world.
Indeed, even if all the attributes of two objects are identical, this does not make the objects identical.

There is an interesting philosophical issue behind this; many students have argued (sometime fiercely)
in classes that if we really knew all the attributes of a particular class, and two objects had all those
attributes in common, then they would of necessity be the same object. For example, two brown dogs
may be indistinguishable by colour, but the are distinguishable by position. If two putative objects
occupy the same point in space, then they must be identical.

This is all well and good, but irrelevant for this subject. Whatever the philosophical contentions, the
principle which object-oriented designers work to is that:

Two objects are not equal, or identical, just because they have identical attributes.
Objects are only identical to themselves, or things that refer to themselves.

For example, the person Mary Smith is identical to herself, and if Mary Smith is the world-record
holder for (say) javelin throwing, then the object “Mary Smith” is identical to the object “world record
holder for javelin throwing”.

Ignorance of this principle leads to very subtle problems when designs are translated into programs.
For example, consider the following portion of a Java program:

String response = "HELLO".toLowerCase();
 if (response == "hello")
 {
 System.out.println("They are identical.");
 }
 else
 {
 System.out.println("They are NOT identical.");
 }

This Java snippet creates an object of class String and sets it equal to the lower-case text "hello".
The program then tests whether the “response” is equal to the object "hello". Since both objects have
the value “hello”, we might expect the program to consider them equal. But in fact the program will
inform us that the two objects are not equal; the object "hello" and the object “response” have identical
attributes, but they are not equal to each other. The correct way to test whether two String objects have
equal attributes in Java is to write something like:

String response = "HELLO".toLowerCase();
 if (response.equals("hello"))
 {
 System.out.println("They are equal.");
 }
 else
 {

Object-oriented Analysis and Design

7

 System.out.println("They are NOT equal.");
 }

The equals method tests two objects to see if their attributes are equal. The == operator, on the other
hand, tests whether the objects themselves are, in fact, the same object.

It is a key principle of object-oriented design that attributes should be simple. The technical term is
atomic, meaning “not capable of division into smaller components”. If an attribute appears to have
attributes of its own, then it is not an attribute at all, and is probably an object in its own right. You
will find that programmers, of necessity, do not follow this rule. This is because it is standard practice
to use classes to extend the functionality of a programming language. In Java, for example, numbers
— such as 12 and 4.7 — are atomic, but text strings are represented as objects. In this case it is often
necessary to make objects attributes of other objects.

Also, although “has six legs” may be an attribute of insects to a biologist, it will never be an attribute
of any class in an object-oriented design. This is because it is not precise enough. A designer would
say that the class “insect” has an attribute “number of legs” whose value, by default, is 6. We would
write this in a formal way (as will be discussed later):

 numerOfLegs:integer(6)

Having said that, in the initial stages of design, it is inadvisable to be too precise about attributes. In
particular, usually the names are established first before the types and values. In some cases the types
of attributes will not be determined until writing the program code; however, at this point it must be
specified: many programming languages require the types of attributes to be fully specified.

In addition, during design there is no reason why the types of attributes have to match the types that
are available to a particular programming language. For example, real numbers (that is numbers with
fractional parts) are represented in Java by the types “float” and “double”. These are technical terms
with no meaning outside of certain programming languages. In design there is nothing to prevent the
use of attribute types “number”, rather than “float”, simply because it is easier for non-specialists to
follow. The translation into programming terms can be made later in the development if necessary.

It is important to understand that an object's attributes belong to the object in some way, that is, they
tend to be “private”. One object cannot automatically obtain, or change, the attributes of another. This
is just another way of saying the objects are self-contained. Part of the process of object-oriented
design is determining which of an object's attributes may be read and written by other objects, and
which will remain private.

Terminology note

Other terms for “attribute” include “instance variable”, “member variable” and “member
data”, and may differ between programming languages (Common Lisp, for instance, uses the
term slot). Technically an “instance variable” is not exactly the same as an attribute, but the
distinction is not important enough to worry about at this stage. Java programmers tend to
use the term “instance variable” rather than “attribute”, but “attribute” is preferred by most
designers and CASE tools.

Operations
In the last section we considered attributes, which say something about what a class is. Operations say
what a class does (or can have done to it). When you have fully specified the attributes and operations
of a class, then you have specified that class completely (some experts would say that one must specify
the class's constraints as well, but that is largely beyond the scope of this course).

Object-oriented Analysis and Design

8

For example, the “Clock” class may have the operation “display time”. This is something that a clock
does. It is not an attribute of class “clock”, because it does not tell us anything about objects of class
clock that we do not already know.

At the design stage, we tend to assume that all of a class's operations are accessible to other classes,
that is, classes can communicate by invoking each others operations. This is called “message passing”.
As design progresses, we usually find that new operations have to be added that are private to that
class, because they are only concerned with internal operation of the class. Remember that classes
should be self-contained, and should expose as little as possible of their internal workings.

In the same way that attributes are formalised in object-oriented design, beyond what is true of
classification in general, operations are also formalised. An operation has a name, a parameter list,
and a return value, much like a function. The parameter list is (essentially) the data elements that will
be supplied to the operation. The return value is a piece of data that can be returned to the object that
invoked the operation. These issues are not very important in the early stages of design (we may only
know the name of the operation), but become important as the design is translated into a program.
Note that an operation has access to the object's attributes, and can read or write them, but normally
has no access to the attributes of other objects.

Terminology

Other terms for “operation” include “member function”, “class function”, and “method”. Java
programmers tend to use the term “method”.

Dynamic behaviour and state
A class model, taken alone, is a description of the static structure of a system; this means that it shows
the system in a way that is independent of time. In the library system discussed earlier, the individual
books may come and go, and individual members for that matter, but the classes “Book” and “Member”
persist. To say that a lending libraries has books and members is true, independent of time.

Of course, in reality the system will change over time. This change is reflected in the values of the
attributes of objects, and the numbers of instances of each class. The library may begin with 1000
books, and ten years later it may have 10 000 books; but there will never be a time when the class
“Book” is not a valid one for the library. Similarly, the addresses and even the names of the members
will change. This will be reflected in the values of the attributes of the instances of class “Member”.

The sum total of information carried by the attributes of an object is called its state. If we know the
state of an object, then we know everything there is to know about it. This last statement is true by
definition. If in describing an object the designer finds that its attributes are not sufficient to specify
its state completely, then they have overlooked some attributes.

If the state of an object is given by the values of all its attributes, then the state of the system if given by
the states of all its objects. In other words, the values of all the attributes of all the objects completely
specify the state of the system at any given time.

If state is so important, why can it not be represented on a class model? The reason is that there are
far better ways to represent changes in state. The UML provides state transition modelling for this
purpose. In a full design it may be necessary to provide state transition diagrams for some or all classes,
to describe their state changes in detail. The pattern of state change over time is called the dynamic
behaviour of a system, and modelling this is called dynamic modelling. As well as state transition
modelling, the UML provides object interaction diagrams, activity diagrams, sequence diagrams and
communication diagrams for dynamic modelling. One can, of course, describe the dynamic behaviour
of classes in plain language as well, and one probably should.

Only objects have state; classes do not have a state. This is because a class specifies properties that
are true of all objects of that class. However, a class can have a default state. This is the set of
attribute values that an object of that class will have by default, that is, if not provided with any other
information.

Object-oriented Analysis and Design

9

UML notation and conventions

Symbol
The diagram below shows the UML symbol for a class formally (left) and as an example (right). The
formal detail looks quite daunting, but you will see that most of the information is optional, and in
practice a class symbol is quite straightforward.

Figure 5.1. The UML symbol for a class

The class symbol has three compartments. The top compartment shows the name of the class, any
tags it has, and any stereotype it has. The stereotype of a class is a higher-level category to which
it belongs. Stereotypes are used to provide additional structure to a model, and to make it easier to
follow. Common stereotypes include «use case» and «actor». Most classes, in practice, will not need
stereotypes. The designer is at liberty to create new stereotypes to organise the work, if required. The
only tag that we will consider in this module is {abstract}, which will be discussed later.

The middle compartment contains the class's attributes. Each attribute can specify a name, a type and
a default value. Only the name is compulsory.

The bottom compartment contains the class's operations. These can be specified in full, with parameter
lists and return values, but very often only the name is given. To distinguish operation names from
attribute names, it is conventional to write an operation name with pair of brackets after it, like this:
push(). If the operation has a parameter list, then it can be written in the brackets, but, again, this is
not compulsory.

The example shows a possible class diagram for a “Button” class. By button we mean a little rectangle
that appears on the screen, and responds to mouse clicks, as with a computer GUI rather than a physical
button. In this example, the button has the stereotype «user interface elements». It is intended that
this stereotype be applied to all classes that represent user interface elements, like list boxes, menus,
windows, and so on. Again, this is not compulsory, but it helps structure the model. There are no tags
associated with this class, so none are shown.

The “Button” class has a foreground colour and a border colour, and these can be changed. So we have
defined two attributes to store the colours. These attributes have type “colour”. Most programming
languages do not have an inbuilt “colour” data type, and at some point the programmer will have to
translate this type name into something that the programming language will understand. This is not
an issue for the early stage of design. It is clear what “colour” means, and this is the important factor.

The operations of the class are “push()”, meaning simulate what happens when a button is pushed
(probably the screen appearance will change), and two operations to change the colours. Why can
another class simply not change the attributes to change the colour? It is vital to understand that a class
should be, as far as possible, self-contained. It is up to the class to decide whether its colours can be
changed or not, and by which other objects. The operations to change that colour will probably change
the values of the colour attributes, but it is up to the implementer of the class to decide how this will
happen. Another class does not need to know the internal operation of the “Button” class.

The operations that set the colour each have a parameter list with one parameter: the colour to be used.

Object-oriented Analysis and Design

10

You will see that the example class is very much simpler than the formal specification. In practice,
it is common for classes to start of with very little detail (no parameters, no types), and to be “filled
in” as design progresses.

A note on software

The class diagrams were created using a commercial package, Select SSADM. Various
software packages may support the UML notation to a greater or lesser degree, and so
diagrams made using different packages will differ from one another.

Naming conventions
The UML makes certain recommendations about how names of things are to be written, with
varying degrees of force. We recommend that you follow the UML naming conventions as if they
were all compulsory, because most professional designers do, and you will want your work to be
understandable by your colleagues. The naming conventions are also in line with the Java naming
conventions, and should be familiar.

• Names of classes are written with an initial capital letter (like this: Button, not like this: button)
and have no spaces. To show where a space would be, the next letter is capitalised (like this:
BarcodeReader, not like this: Barcode Reader).

• Class names are singular, not plural. It is incorrect to name a class “Books”. Although there may
be many book objects, there is only one book class.

• Names of attributes and operations start with a lower-case letter, but may have capital letters to
indicate where the spaces would be, if the name would normally have spaces.

• Names of operations are followed by brackets () to distinguish them from names of attributes

The prohibition against spaces arises because most programming languages do not allow spaces in
their naming convention, and it is modern practice for the final model diagrams to be as close to a
program as possible. Some, but not all, CASE packages will enforce these conventions.

Finding classes
The customers of a software engineering project will not think of their work in terms of classes; it is
the job of the developers to determine suitable classes with which to structure their work. This job
requires experience and intuition, and invariably improves with practice. Here are a few general hints:

• The names of classes are usually nouns. A good place to start is to take a written description of the
system and select all the nouns. You will undoubtedly have to remove some classes and add others,
but this method provides a place to start.

• It is better to have too many classes to begin with, rather than too few. You can always remove
some if you find that they are redundant

• Classes should, as far as possible, correspond to entities that the clients would understand. Computer
terms rarely make good class names. You will find that as development progresses you will need
to add classes to represent implementation factors, but you should not start off with these. Classes
should make sense to non-technical people, at least in the early stages.

• If something has sub-types, or it is a type of something else, it is probably a class

• If something is important, but does not appear to be a class, it might be an attribute of some other
class

As you add detail to a design you will discover new classes, and you can add these to the model. You
will also often find that you can simplify a design by adding classes, as will be shown.

Object-oriented Analysis and Design

11

At all stages of development you should challenge your class model and be prepared to modify it
if necessary. It is important to remember that iterative, incremental and evolutionary methods will
have you update not only requirements, but the software design (and hence class model) for multiple
development iterations. This is especially important for agile process methods.

Relationships between classes
Finding and describing classes is the first stage of class modelling. The next stage is to determine, and
show, how classes are related.

In the simplest terms, a relationship between two classes is shown by a line (as it is in an entity relation
diagram):

Figure 5.2. A relationship between two classes

In general such a relationship is referred to as a link, association, or a collaboration.

In the diagram above, the classes are shown with horizontal dashes where the operations and attributes
normally go; this is an indication that there are some operations and attributes, but they are not shown
on this diagram. It is also permissible to show a class simply as a rectangle, but then the reader does
not know whether the class has attributes and associations and they are not shown, or if it does not
have any at all.

The line connecting the two classes has an arrow to indicate the direction of the association. Objects
of class “LibraryMember” borrow objects of class “Book”, not the other way around. This is fairly
obvious from the context in this example, and the arrow could have been omitted, but if you are
working on a system which is less obvious it does well to include the arrows. Note that links should
have names, although you will not always want to show the name on the diagram (to reduce clutter).
If you cannot assign a sensible name to a link, it is probably not a real link, or the classes at each
end are incorrect. Normally a link should be able to have a relatively simple, short name, which will
probably be a verb.

The UML is strict about the positions of arrows. It would be incorrect to draw the arrow in the figure
above on the line. Arrows on lines have a different meaning altogether.

The links shown above is an example of a “named association”; it is the most general kind of link.
The UML also recognises a number of special-purpose links, which will be described later.

Specifying relationships in detail
If a link is drawn as a simple line, it is assumed to be a one-to-one association. In the previous example
this would mean that each member of the library can borrow exactly one book, and each book can be
borrowed by exactly one member. This is probably not correct. It is good practice to indicate on each
end of the link its multiplicity, that is, the number of objects associated with the link. It is particularly
important to distinguish between “1” and “many” in multiplicities.

Object-oriented Analysis and Design

12

We could re-draw the previous example like the figure on the left:

Figure 5.3. Indicating multiplicity

This indicates that at any given time a “LibraryMember” is involved with a “borrows” association
with an object of class Book, that is, a library member can borrow up to six books. At the same time,
a book can only be on loan to one member.

The figure on the right is an example of a many-to-many relationship. A student can be studying one,
two, or three courses at a particular time. Each course can be studied by an indeterminate number of
students. The symbols “M” stands for “many”, and means “some unspecified number”. The asterisk
(*) can also be used to stand for “many”. Note that the UML distinguishes a many that may include
zero from a many that does not. In the “students” example, the number of students enrolled on a course
varies from zero up to many, not from one up to many.

The multiplicity symbols are an example of what the UML specification calls end ornamentation.
End ornaments are symbols that can be used on the ends of associations to enhance their meanings.
Another common end ornament is the navigability arrow. This is an arrow drawn on (not alongside)
the line and indicates the direction in which the class structure can be traversed for information.

Inheritance
We indicated earlier that object-oriented modelling recognised some specialised types of associations.
The first, and most important, of these is the generalisation-specialisation association. You will have
encountered this previously in when studying use case modelling; it is now time to examine this
relationship in more detail.

As a reminder, the symbol for a generalisation-specialisation relationship is shown below:

Figure 5.4. Generalisation-specialisation represented in the UML

Object-oriented Analysis and Design

13

The arrow points towards the most general class. In this example, we are considering part of a system to
be used by an estate agency for assisting in finding suitable premises for small businesses to purchase.
The class “Premises” represents any premises. Its important attributes are the address, floor size, type
of use permitted, amount of parking space, price expected, and so on, but these are not all shown in the
diagram for reasons of lack of space (ellipses are used to indicate this). There are two important sub-
classes of premises: leasehold premises, and freehold premises. These have all the same properties of
“Premises”, and some additional ones. For example, leasehold premises will naturally have an address
and a size, but they will also have a lease duration, a ground rent, and some others. Similarly, freehold
premises will have properties that are not applicable to leasehold premises, or to premises in general.

It would be an error to show the attributes “address”, “floor area”, and so on, in “LeaseholdPremises”
and “FreeholdPremises”. These classes will automatically have these properties, as they will inherit
them from “Premises”. The same mechanism applies to operations: any operations of “Premises” will
apply also to its sub-classes and should not be shown again in the diagram except if the sub-classes
do different things in these operations.

There may also be sub-classes of “LeaseholdPremises” and “FreeholdPremises”. These will inherit
the properties of all their super-classes. So classes can form a complex hierarchy. When a sub-class
inherits properties from a class other than its own base class, this is called indirect inheritance.

Terminology

A variety of different terminology is used to denote different parts of a generalisation-
specialisation relationship. Using the above figure as an example, we could say:

• “Premises” is a generalisation of “LeaseholdPremises” and “FreeholdPremises”

• “Premises” is the base class of “LeaseholdPremises” and “FreeholdPremises”

• “Premises” is the super-class of “LeaseholdPremises” and “FreeholdPremises”

• “LeaseholdPremises” and “FreeholdPremises” are sub-classes of “Premises”

• “LeaseholdPremises” and “FreeholdPremises” are specialisations of “Premises”

Multiple inheritance

It is possible for a class to be a sub-class of more than one base class.

For example, “Radio” and “Television” are sub-classes of “ElectronicDevice”. “Television”
and “Car” are sub-classes of “TaxableProperty”. “Television” inherits properties of
“ElectronicDevice” and of “TaxableProperty”. “Radios” are not taxable, and therefore cannot
be a sub-class of “TaxableProperty”. “Cars” are not electronic. This is a clear example of
multiple inheritance. This example is quite artificial, to illustrate a case where it is difficult to
avoid multiple inheritance. In many cases it will be possible to restructure a model to avoid it.
Note that some programming languages (including Java) do not allow multiple inheritance,
so many designers avoid it as well.

Abstract classes
An abstract class is one that can have no direct instances.

An abstract class has no direct instances logically, or by definition. But a class is
not abstract merely because it happens to have no instances. For example, the class
“PersonWhoCanRunAMileInLessThanThreeMinutes” happens to have no instances at present, but
there is no logical reason why this should be the case. No doubt careful use of performance-enhancing
drugs and twenty years of selective breeding could cause this class to be instantiated. For a class to be
abstract it must be logically impossible, not physically impossible, that it be instantiated.

In addition, a class is not abstract merely because it does not correspond to a real-world entity.
This mistake is commonly made by novices; it is not unusual to see beginners label classes like

Object-oriented Analysis and Design

14

“BankAccount” or “Transaction” as abstract because they represent non-physical things. The correct
term for these classes, as mentioned earlier, is conceptual.

As an example, consider a computer system that manages information about certain products that a
business manufactures. The bulk of information about a product (e.g., price, delivery time, warranty
duration) is encapsulated in a class called “Product”. However, we may choose to create classes to
represent the specific products we produce, and have them as sub-classes of “Product”. In this case,
by definition there are no direct instances of class “Product”, but there will be instances of the sub-
classes of “Product”. Because “Product” is never directly instantiated, it is an abstract class.

What is gained by doing this? In short we have gained a measure of simplicity. By gathering most
of the important information about the products into a single class (“Product”) we have removed the
need to duplicate this information in the different sub-classes of “Product”.

Making “Product” abstract has two important benefits. First, the reader of the model will know
immediately that “Product” has a particular role in the system, that of providing structure and
simplification. Second, the compiler that generates the final program will know that there can be no
direct instances of class “Product”. This means that (i) it does not have to use memory to store the
details of the instances, because there are none, and (ii) it is able to prevent the programmer making
some trivial mistakes. Consider this definition in Java:

abstract class Product
 {
 //... details go here
 }

If the program attempts to create an object of this class later, it can only be because the programmer
has made an error. The compiler will flag any such attempt as a compile time error.

An abstract class can have abstract operations. These are operations that are specified, but not
implemented. It is up to the subclasses to provide a full implementation of the abstract method.

An abstract class with no-subclasses is more than likely useless. If you find this on your models you
have probably made a mistake.

It is possible to indicate that a class is abstract in a class diagram by adding the {abstract} tag beneath
the class's name.

Aggregation and composition
All object-oriented designers use generalisation-specialisation relationships all the time. They are vital
to good design. The relationships we will consider in this section are defined by the UML, but it is not
generally agreed that they are a special kind of association at all.

Aggregation
Aggregation is a general term for any whole-part relationship between objects. Its symbol is a white
diamond, like this:

Figure 5.5. The representation of aggregation in the UML

Object-oriented Analysis and Design

15

This diagram can be read as “an Army is an aggregate of one or more soldiers and one or more
weapons”. The aggregation is expressing a loose whole-part relationship between the army and its
constituents, where the constituents are not necessarily members of the aggregate. For example, if the
army as an entity ceased to exist there would still be soldiers (they would simply be unemployed).
This topic has lead to some very heated debate. In practice the distinction between a computer system
which works, and a system which does not, is highly unlikely to hinge on whether the designers used
aggregations or named associations. An aggregation can usually be replaced by an association called
“has” without much loss of clarity.

Composition
It is not clear that composition is more expressive than a simple association labelled “contains”.
Composition expresses a whole-part relationship where the “parts” are definitely contained within
the “whole”.

Figure 5.6. The representation of composition in the UML

This example can be read as “a book consists of one or more pages, and one binding”. Note the
distinctions between this and the previous example. First, the binding and pages physically comprise
the book; it is impossible for the binding and pages to be in one place and book in another. Second,
destruction of the book would imply destruction of the binding and pages.

Self-association and roles
So far we have shown how classes can enter into associations with other classes. However, it is
allowable — and often essential — to model a class as being associated with itself. For example,
suppose we are designing a system for managing contracts, and we want to show that a contract can
consist of a number of small sub-contracts. Sub-contracts have exactly the same properties as contracts.
We could represent this as follows:

This example says that one object of class “Contract” consists of zero or more objects of class
“Contract”. To clarify the relationship, it is customary to use role names. Where an association name
describes the overall nature of the association, a role name is attached to the end of an association, and
describes the role played by the object at that end. If the example above, one object plays the role of
“main contract” while zero or more others play the role of “sub-contract”. Because role names are so
important in these cases, some CASE tools will report an error if they are omitted.

Link classes and link attributes
In many cases each instance of an association has properties of its own. It is sometimes helpful to show
this in the model for increased expressiveness. In addition, it gives us a way to show that multiple
classes are involved in the same association.

Object-oriented Analysis and Design

16

A link attribute simply assigns a value to a particular instance of the link, that is, for each pair of
objects that are associated there is a particular value of the attribute. For example, in the top diagram
of the figure shown below:

Figure 5.7. Link attributes

“transactionNumber” is a link attribute. This model says that the bank and its customers enter into
transactions, and each transaction has a particular number.

However, the association may be too complex to be represented by a single attribute. In this case we
can use a link class. With a link class there is one instance of the class for each pair of objects that
are associated. The link class can have any number of attributes, and can quite legitimately enter into
relationships of its own with other classes in the system. In the example above, the link class “Number”
defines each transaction carried out by the bank with its customers. It has attributes to indicate the
nature and date of the transaction, as well as the number. Link classes can also have sub-classes. For
example, it may be useful to indicate that there are different types of transaction by means of sub-
classes, rather than simply having an attribute called “type”.

Link classes are a very powerful and expressive tool, but do take some experience to able to use
effectively.

Constraints and notes

Notes

As in use case modelling, it is often very helpful to be able to annotate a diagram to show particular
features. The notation is exactly the same:

Figure 5.8. The notation for notes

You can, and should, apply notes wherever you think they will be helpful to the reader, but they
should not be viewed as a substitute for proper documentation. A class model is not complete until all
classes, attributes, operations, and associations, have been documented. Notes are useful for pointing
out specific details on diagrams.

Object-oriented Analysis and Design

17

Constraints
Constraints are additional information about a class that are not associated with any particular attribute
or operation. A typical constraint might say, for example, that one attribute will have a value which
depends on some other attribute. It is customary to write simple constraints below the class in braces,
{like this}.

Constraints are becoming increasingly important in object-oriented modelling, as there is an increasing
interest in formalising the technique. A scheme called the object constraint language is under
development to support formalised constraints, but this is beyond the scope of this course.

Class-Responsibility-Collaborator cards
Class-responsibility-collaborator cards (CRC cards) are not a part of the UML specification, but they
are a useful tool for organising classes during analysis and design.

A CRC card is a physical card representing a single class. Each card lists the class's name, attributes
and methods (its responsibilities), and class associations (collaborations). The collection of these CRC
cards is the CRC model.

Using CRC cards is a straightforward addition to object-oriented analysis and design:

1. Identify the classes.

2. List responsibilities.

3. List collaborators.

CRC cards can be used during analysis and design while classes are being discovered in order to keep
track of them.

CRC cards have various benefits, which you might notice makes them very amenable to iterative and
incremental process models, especially agile ones:

• They are portable: because CRC cards are physical objects, they can be used anywhere.
Importantly, they can easily be used during group meetings.

• They are tangible: the participants in a meeting can all easily examine the cards, and hence examine
the system.

• They have a limited size: because of their physicality, CRC cards can only hold a limited amount
of information. This makes them useful to restricting object-oriented analysis and design from
becoming too low-level.

Class responsibilities are the class's attributes and methods. Clearly, they represent the class's state
and behaviour. Collaborators represent the associations the class has with other classes.

CRC cards are useful when the development of classes need to be divided between software engineers,
as the cards can be physically handed over to them. A useful time to do this is when classes are being
reviewed, for, say, determining whether they are appropriate in a design.

From model to program
During object-oriented development, the models will tend to become more detailed, and there will
be a shift in standpoint from a logical to an implementation view. Developers using the waterfall or
similar process models feel that there should be a strong correspondence between the final model and
the program code it results in. However, iterative and agile methods often eschew heavy amounts of
documentation, and realise that models (including object models) may not always accurately reflect the

Object-oriented Analysis and Design

18

code, since both will always be changing as the code-base develops, and as the customers' requirements
develop over time.

For agile methodologies it is important to remember that documentation is secondary to the software
being produced. Slavishly attempting to specify every last component of the software in a detailed
object model is antithetical to agile process methods, and there are many published studies showing
that such complete, upfront designs are both inadequate (since requirements, and hence designs,
continuously change) and detrimental to software engineering as a whole.

Dynamic behaviour
The object model which we have just been discussing is a static model of classes and their
relationships. It does not show how the classes call on one another to perform the functions required
in the software system.

These dynamic aspects of the object model are usually represented in other diagram types of the UML.
We will be briefly discuss interaction diagrams.

Interaction diagrams
Interaction diagrams show how objects interact with one another. Specifically, they show which
objects are currently executing, and what methods they are calling on other objects.

There are various kinds of interaction diagrams that can be employed in the UML. We will examine
one specific type, the sequence diagram. Sequence diagrams show how objects interact with each
other over time. In other words, sequence diagrams show the sequence of interactions between objects.

Figure 5.9. Sequence diagram notation in the UML

 : Borrower : Catalog : Book

: checkOut

: requestBook

: isAvailable

The figure above shows a sequence diagram of how books are checked out of a library. Notice how
the objects are arranged horizontally along the top of the diagram, and are represented as rectangle
boxes, just as classes are. It is important to notice the colon before the class name in these boxes —
this colon tells us that the box represents not a class, but an instance of the class. If the instance should
be given a specific name, then the name appears before the colon. For example, “artOfWar : Book”
represents an object called “artOfWar”, of class “Book”. This is exactly the same as when specifying
attributes in classes (see the section called “Attributes” above).

It is important to realise that it is because sequence diagrams represent the interactions a software
system undergoes over time that it is interested in objects rather than classes. A running software
system consists of instances of classes, and not of the classes themselves.

Object-oriented Analysis and Design

19

Time is represented vertically, with earlier events happening closer to the top. This means that
sequence diagrams should be read from top to bottom. Each object also has a vertical life-line that
shows us the object's period of existence. Interactions are represented by solid and dotted lines, each
of which has an arrow and a label. Solid lines show method calls, and point from the life-line of the
object making the call towards the object which will execute the method. The rectangles along the life-
line represent the time over which an object is executing a function. Dotted lines represent a return of
control from the object executing a method to and object which had originally called it.

Note that the method names should be operations belonging to the object to which the arrow is pointing.
“Borrower” calls “requestBook”, an operation belonging to an instance of class “Book”.

A useful way of using sequence diagrams is to outline difficult use cases as a sequence diagram: this
will highlight what objects are required in developing the use case, as well as what actions each object
will perform in order to complete the use case. Further, a sequence diagram can then be thought of as
showing how the system reacts to events, the events being the input from the actor in the use case.

The UML also prompts us to use sequence diagrams in this way: remember that actors in use cases
are themselves classes. We can easily use instance of these classes (of these actors) as valid objects
in sequence diagrams.

Summary
Class modelling is the key modelling technique for object-oriented designers. If you are in a position
to say that you understand class modelling, then you can reasonably claim that you understand
object-oriented design. Of course, an understanding of other object-oriented techniques (e.g., use case
modelling) will also be helpful.

Class modelling centres on a small number of philosophical points, which must be understood
extremely well. There is not a great deal of factual material to remember, but these key points are
crucial. These are the most important issues:

• The distinction between objects and classes

• The nature of attributes and operations

• The use and specification of associations, especially generalisation

In constructing a class model, the first step must be to obtain a working list of candidate classes. As
design progresses, these classes will be refined and some will be deleted. At an even later stage, new
classes will be introduced to support more detailed, implementation-related concepts.

A class model is refined by finding and specifying associations. Doing this helps to determine whether
the initial choice of classes is a sound one, and how to improve it.

Ultimately the class model will be transformed into a computer program.

Review

Questions

Review Question 1

Which of the following entities are likely to be of interest when considering system design from a
“logical” point of view, and which from an “implementation” point of view? Which are relevant to
all standpoints? Clerk; Screen; Mouse (the input device, not the rodent); File; List; Ledger; Service
technician; Database; Customer;

A discussion of this question can be found at the end of this chapter.

Object-oriented Analysis and Design

20

Review Question 2

Fill in the gaps with an appropriate word or phrase, or select the correct one of the indicated choices:

A class encapsulates the behaviour and properties of a number of [__________]. The members
of a class are also referred to as [__________]. The minimum number of instances of a class is
[__________], the maximum is [__________]. In object-oriented design, an object [can/cannot] be be
a instance of more than one class, and an object [can/cannot] change which class it is an instance of.

A discussion of this question can be found at the end of this chapter.

Review Question 3

Suppose you are designing a computer system to carry out stock control in a large book warehouse.
The system should store extensive details of each book, including at least the following information:
authors, title, publisher, date of publication, size, number of pages, binding format, shelf location, re-
order level, purchase price, sale price. Which of these properties of books do you think are relevant
to the conceptual class “Book”, and what properties to the concrete class “Book”? This problem is
somewhat more difficult than it first appears; see the answer for further discussion.

A discussion of this question found at the end of this chapter.

Review Question 4

Fill in the blanks with an appropriate word or phrase:

Attributes define the properties of a class. In a class specification an attribute has a [__________]
and a [__________] (e.g., number, text). In each object of that class the attribute will also have a
[__________]. This may be different for each object, but no instance of the class will lack the attribute
entirely. For example if I say that a particular vehicle has 12 wheels, I am implying that vehicles have
a attribute whose name is “[__________]”, whose type is “[__________]” and whose value in the
particular case is [12]. The minimum number of attributes that a class may have is [__________]. The
maximum number is unlimited, but in practice it is difficult to manage a class with more than about 30
attributes. Java programmers tend to use the term [__________] in preference to attribute, but these
are essentially the same thing.

A discussion of this question can be found at the end of this chapter.

Review Question 5

Draw a UML class symbol that has the following specification. The class is called “Customer”. It has
four attributes: name (which is text), address (also text), balance (a number), and credit rating (type
currently unknown). It has one operation: “printStatement()”, which has no parameters or return value.

A discussion of this question can be found at the end of this chapter.

Review Question 6

In the early stages of development it is usually better to identify too many classes than too few. You
can then rationalise you choice of classes by removing, modifying and merging them. The following
list is of classes that may be considered for deletion or absorption into a new class. Suggest why this
might be the case for each example.

• Fred Bloggs, a customer of the bank

• Colour

• Hard disk

• Central processing unit

Object-oriented Analysis and Design

21

• Linked list

• Red

• Test procedure

• Print

• List of customers

For as many of these examples as you can, suggest an application where it is not a bad choice of class.

A discussion of this question can be found at the end of this chapter.

Review Question 7

Draw the class diagram for the radio/televsion/car example given in the text, showing where multiple
inheritance occurs.

A discussion of this question can be found at the end of this chapter.

Review Question 8

Construct a class model to represent the following information. The customer is a company that
specialise in the supply of specialist musical recordings, of the type that are difficult to obtain through
mainstream record shops. The customer would like to make it possible for their clients to order their
products on-line using a Web browser. The on-line system is to provide full details of each musical
recording, and will be integrated into an automated stock control system. In this way their client will
be able to tell immediately if the items required are in stock. The customers describes the details of
their stock as follows:

We stock about 10,000 different musical recordings, usually with 1-10 of each item
in stock at any given time. With more popular items we will stock ten or more copies
of the same recording, perhaps in different formats.

We stock recordings in different formats: cassette tapes, audio CDs and audio
DVDs. The publishers we buy from will normally supply a recording in more than
one format. For example, usually we will get CDs and cassettes of a given recording
from the same publisher.

We buy our stock from music publishers. For each publisher we record the name
and address, and the name and e-mail address of our contact person there. When we
place an order we need to know the publisher's catalogue number, which is generally
different for different formats.

When a customer looks at our Web site, we want to be able to give extensive
details for all our recordings. For example, we will want to display the title,
performer, composer, date and venue of recording, copyright holders and some
general information. In addition, we want to display the titles and durations of all
the musical tracks. This is complicated by the fact that the CD, DVD and cassette
formats generally don't have the same tracks. Because a DVD is longer than a CD,
it will usually have a few extra tracks. A cassette tape usually has even fewer tracks
than the CD.

A discussion of this question can be found at the end of this chapter.

Review Question 9

Redraw the contract-subcontract relationship shown below so that it does not use a self-association.
Do you think your model is more or less expressive in this form?

Object-oriented Analysis and Design

22

A discussion of this question can be found at the end of this chapter.

Review Question 10

What is meant by the statement “objects are not classes, but instances of classes. However, classes
can be considered objects”? In other words, in what sense is a class also an object? (This is a tricky
question if you are not absolutely clear on the distinction between “classes” and “objects”).

A discussion of this question can be found at the end of this chapter.

Review Question 11

Write a simple, one-line definition of each of the following key terms. Try to do this without referring
back to the notes if possible. For each term, give an example.

• Attribute

• Operation

• Self-association

• Generalisation

• Polymorphism

• Link class

• Multiplicity

• Stereotype

A discussion of this question can be found at the end of this chapter.

Review Question 12

Which of the following are true? Give an example to support your decision.

• If Z is a subclass of Y, and Y is a subclass of X, then Z is a subclass of X

• If Z is associated with Y by an association A, and Y is associated with X by an association A, then
Z is associated with X by an association A

• If Z is associated with Y by an association A and by an association B, then A and B are different
names for the same association

• If each object of class Z is associated with ten objects of class Y, and each object of class Y is
associated with ten objects of class X, then there are 100 objects of class X for each object of class Z

A discussion of this question can be found at the end of this chapter.

Review Question 13

What is the difference between class modelling, and entity-relationship modelling? In what ways are
classes and entities similar? In what ways are they different? (If you have not completed the part of
the course that deals with entity-relationship modelling, you may find this question difficult).

Object-oriented Analysis and Design

23

A discussion of this question can be found at the end of this chapter.

Review Question 14

Consider these three classes: Rectangle, Circle, and Line, which are subclasses of a general Shape
class. These classes have operations drawRectangle(), drawCircle(), and drawLine() respectively.
Each of these methods cause the appropriate shape to be drawn. Is this system exhibiting
polymorphism or not?

A discussion of this question can be found at the end of this chapter.

Review Question 15

What is the difference between a link class and a link attribute? Gives examples of each.

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1

Probably “Clerk”, “Customer”, “Ledger” and “Service technician” are important in a logical
standpoint. None of these are likely to transform directly into parts of a computer program. On the other
hand, “File”, “List” and “Database” probably will. “Screen” and “Mouse” are less easy to categorise.
In some cases these will in fact simply be alternative representations of the human beings that will
interact with a system. For example, a clerk may use a keyboard and a mouse; in some systems it is
the fact that these particular devices are in use that is important, but in most it will be the person and
that person's role that are important.

Discussion of Review Question 2

A class encapsulates the behaviour and properties of a number of [objects, entities]. The members
of a class are also referred to as [instances]. The minimum number of instances of a class is [zero],
the maximum is [unlimited, infinite]. In object-oriented design, an object [cannot] be be a instance of
more than one class, and an object [cannot] change which class it is an instance of.

Discussion of Review Question 3

Some things are clearly properties of the conceptual class. For a book, things like the title, author,
date of publication and publisher are probably conceptual. They will be independent of any physical
realisation of that book. For example, there are many copies of Tolstoy's “War and Peace” in existence,
in many different formats, but all share the same fundamental properties.

In a library, the shelf location and bar-code number are properties of the physical book.

Less straightforward cases are properties like the format (size, shape, binding) of the book. These
are clearly “concrete” properties. However, there are many different copies of each of these formats.
Are these individual copies “physical” and the formats themselves “conceptual”? This is not a
straightforward question. It may be in a very complex book handling system that we have to institute
a number of different classes to represent book information.

Discussion of Review Question 4

Attributes define the properties of a class. In a class specification an attribute has a [name] and a [type]
(e.g., number, text). In each object of that class the attribute will also have a [value]. This may be
different for each object, but no instance of the class will lack the attribute entirely. For example if I
say that a particular vehicle has 12 wheels, I am implying that vehicles have a attribute whose name
is “[number of wheels]”, whose type is “[number, integer]” and whose value in the particular case
is [12]. The minimum number of attributes that a class may have is [zero]. The maximum number

Object-oriented Analysis and Design

24

is unlimited, but in practice it is difficult to manage a class with more than about 30 attributes. Java
programmers tend to use the term [instance variable] in preference to attribute, but these are essentially
the same thing.

Discussion of Review Question 5

Discussion of Review Question 6

Bad classes:

• Fred Bloggs, a customer of the bank: this is potentially a bad class because Fred Bloggs is an object
(instance), perhaps of class Customer. It is unlikely that there will be a whole class of Fred Bloggses.

• Colour: colour is likely to be an attribute of something. If you have studied Java programming
you will probably come across a class called Colour. However, Java does this as an extension of
the language, not because Colour represents anything in a model. However, in a program for, for
example, colour mixing in printing machinery, perhaps Colour is important enough to be a class
in its own right.

• Hard disk: this is a bad class because it is concerned with the internal operation of the computer.
In modelling, we want to avoid detail of this depth. “Document” and perhaps “Folder” may be
reasonable modelling concepts. However, in an application to design computers, HardDisk may be
a sensible class.

• Central processing unit: has all the same problems as the example above

• Linked list: if you didn't know what a linked list was, then that is as good a reason as any for getting
rid of it. Even if you did, it is still too technical to use in modelling

• Red: is probably the value of an attribute

• Test procedure: this is probably an operation, or perhaps a use case

• Print: this is almost certainly an operation (or a Printer class perhaps?)

• List of customers: too much detail. “Customer” is a sensible class name. The fact that there are more
than one customer should be represented by the multiplicities of associations with other classes
(see later).

Discussion of Review Question 7

Object-oriented Analysis and Design

25

This is a somewhat contrived example, and is unlikely to occur in a real application. However,
multiple inheritance does occur in real applications all the time. It is probably more important in
programming, rather than modelling as such. For example, a popular style of programming called
“mix-in” programming makes extensive use of multiple inheritance. In mix-in programming a large
number of very simple, general-purpose classes are defined, and these are inherited in various
combinations by the major classes. Because something is important in programming, this does not
necessarily mean it should be used in modelling. This topic is an important and controversial one.

Discussion of Review Question 8

There is no single right answer to this question. You should be prepared to discuss you solution with
your tutor/classmates (hint: a good answer will probably contain between 5 and 10 classes).

Discussion of Review Question 9

In this alternative formulation, there is no self-association, but a SubContract is shown as a sub-class of
Contract. The representation that used a self-association did not make this class/sub-class relationship
explicit; indeed it may not really be true. If one is prepared to accept the implicit assumption that
SubContract is a sub-class of Contract, then the diagram shown above does effectively remove the self-
association. This may be a reasonable approach for someone who really find self-associations difficult
to follow. So perhaps some improvement in expressiveness has been gained, but at the expense of a
slight loss of accuracy.

Discussion of Review Question 10

Suppose a class model has three classes, called ClassA, ClassB and ClassC. Objects of these classes
will share properties (this is the definition of being an instance of a class, after all). However, the classes
themselves will also have properties in common. For example, they will all the attribute “name”. Its
value is “ClassA” for ClassA, “ClassB” for ClassB, etc. All classes will have the property of being able
to enter into relationships with other classes. All classes will have the attribute “numberOfAttributes”.
Thus we can say that there is a class called “Class”, which embodies the behaviour of all classes. Each
actual class is an instance of class “Class”.

This is not simply an academic point. Being able to express a modelling notation in terms of the
modelling notation itself is a very powerful way to ensure that the modelling system is consistent. If
you study the UML specification documents, you will find that all UML diagram rules are themselves
specified in UML notation. This is called meta-modelling

Discussion of Review Question 11

• Attribute: a property that objects of a class have, that can be expressed in terms of a name, a type
and a value. For example, class “Vehicle” has attribute “numberOfWheels”. Different vehicles have
different values of this attribute.

• Operation: a well-defined unit of behaviour of an object of a class. For example, class Vehicle has
operation “startEngine()”.

• Self-association: an association between one or more objects of a class, and one or more objects
of the same class. For example, each object of class “LivingThing” is involved in a one-to-many

Object-oriented Analysis and Design

26

association called “eats” with other objects of the same class (technically I suppose that some living
things don't eat other living things, but I hope you get the general idea).

• Generalisation: the property that a class has of representing behaviour and attributes of a number
of subclasses. For example, class Vehicle generalises classes Car, Bus and Tram, etc.

• Polymorphism: differences in behaviour between different sub-classes of the same base class.
For example, all sub-classes of Vehicle have the operation “startEngine()”, but the mechanism of
starting the engine is different in each case.

• Link class: a class that specifies the details of an association between two other objects. For
example, the relationship between a seller and a buyer may be complex enough to need a class (e.g.,
SalesTransaction) to represent its details.

• Multiplicity: the number of objects that take part in each end of an association. For example, the
multiplicity of the relationship between Driver and Vehicle is 1 to (1-*), meaning a driver can drive
one or more vehicles.

• Stereotype: a category to which a class belongs, e.g., “Actor”, or “User interface element”.

Discussion of Review Question 12

• If Z is a subclass of Y, and Y is a subclass of X, then Z is a subclass of X. This is correct, and a
fundamental principle of object orientation. If mammal is a type of animal, and dog is a type of
mammal, then dog is a type of animal. Can you think of a dog that is a mammal but not an animal?

• If Z is associated with Y by an association A, and Y is associated with X by an association A, then
Z is associated with X by an association A. This is false. For example, lions eat zebra and zebra eat
grass. But lions don't eat grass. The association is not carried across the classes. This is one of the
things that distinguishes generalisation/specialisation from other relationships.

• If Z is associated with Y by an association A and by an association B, then A and B are different
names for the same association. This is also false. Two objects can be associated in completely
different ways. For example, customers deposit money in a bank account; customers withdrawn
money from a bank account. “Deposit” and “withdraw” are two totally different associations.

• If each object of class Z is associated with ten objects of class Y, and each object of class Y is
associated with ten objects of class X, then there are 100 objects of class X for each object of class
Z. This is correct. For example, if a program has ten screen windows, and each window has ten
buttons, then there will be 100 buttons for each program.

Discussion of Review Question 13

Class diagrams can be considered to be highly-developed and regularised entity relationship models
(ERMs). Class modelling provides a definite notation and meaning for concepts that are weakly-
defined in ERMs. For example, an relationship called “is-a” can be used in an ERM to show that one
thing is a type of another thing, or that one thing is an instance of another thing. Moreover, when
an “is-a” relationship is used, it does not necessarily denote any inheritance of properties. In ERMs
properties are usually represented as entities as well, so this would be difficult to show. The same
applies to relationships that are often written as “has-a”. This is an aggregation, but the different types
of aggregation are not as well defined in ERM as they are in class modelling.

For all these differences, ERMs and class diagrams are more similar than they are different; both
attempt to show the static structure of system in terms of the “things” (entities; classes) of which it
is comprised.

Discussion of Review Question 14

The system as described is not polymorphic. There is a difference in behaviour between the different
subclasses of Shape, and this difference is in an operation that is philosophically common to the three

Object-oriented Analysis and Design

27

classes. That is, drawCircle(), drawRectangle(), and drawLine() are obviously drawing operations.
However, there is no corresponding “drawing” operation in the base class “Shape”. The system could
not invoke the drawing operation in Shape, with a view to the correct sub-class being drawn. To be
polymorphic, the base class needs to have an operation called “draw()” that is abstract, that is, does
nothing. The sub-classes all provide their own implementations of “draw()”. Now if there is an object
of an sub-class of Shape (it doesn't matter which), another object can cause it to be drawn by invoking
the “draw()” operation. The presence of “draw” as an abstract operation in Shape guarantees that all
sub-classes of shape will respond to a “draw” operation. This is a powerful simplifying principle.

Discussion of Review Question 15

Both link classes and link attributes provide additional information about associations than can be
carried by a simple association name. A link attribute carries only a single piece of information and,
being and attribute, cannot interact directly with other objects. A link class is a fully-fledged class
and can take part in class relationships of its own. It can carry as much information as required. Link
attributes are simpler to read and simpler to implement, but are not as versatile. For example, an
employer and an employee may interact in a way defined by a contract. A simple link attribute might
be a contract number. This would identify different contractual agreements between the same entities.
However, implementing Contract as a class would allow a lot of extra information to be represented.
Of course, it is only worth doing this if it improves the expressiveness or accuracy of the model.

