
1

Chapter 8. Design Patterns

Table of Contents
Objectives .. 1
Introduction to design patterns .. 1

The idea of a pattern ... 1
The origins of design patterns ... 4
Patterns in software design ... 4

Design patterns in object-oriented programming ... 5
Definitions of terms and concepts .. 5
Scope of development activity: applications, toolkits, frameworks 6
Pattern classifications and pattern catalogue ... 7
Behavioural patterns .. 8
Creational patterns .. 9
Structural patterns ... 11
How to use a design pattern .. 12

Patterns in Java ... 12
The Observer pattern in Java ... 12
The Model-View-Controller pattern ... 16
Abstract factory facilities in Java ... 16
Composite patterns in Java .. 18

Review .. 19
Questions ... 19
Answers .. 20

Objectives
At the end of this chapter you should be able to:

• Describe the provenance of design patterns and explain their potential use in the design process.

• Select a specific design pattern for the solution of a given design problem.

• Create a catalogue entry for a simple design pattern whose purpose and application is understood.

Introduction to design patterns

The idea of a pattern
A bridge is a structure used for traversing a chasm. In its basic form it consists of a beam constructed
of rigid material, the two ends of the beam fixed at opposite ends of the chasm.

Figure 8.1. A simple pattern for a bridge

Design Patterns

2

The bridge will fulfil its function if the rigidity of the beam can support the loads which traverse it.
The beam's rigidity depends on the material of its construction and its span. In situations where the
heaviness of the load, the length of the span or the material of construction are likely to lead to failure,
the design of the bridge needs to be modified. More rigid materials are generally more expensive and/
or more difficult to work with, so we shall ignore this possibility. This leaves two possible approaches:

1. Increasing the rigidity.

2. Decreasing the span.

Increasing the rigidity

The rigidity of the bridge structure can be improved by supporting the beam in a number of ways.

The girder

We can redistribute the beam's material to improve its rigidity.

Figure 8.2. The girder

Some of the force of the load on the lower beam is distributed by the cross-members resulting in a
compressive force in the upper beam. The (same) material of construction of the upper beam is better
able to support compressive forces along its length.

The arch

Some of the force of the load on the beam is distributed compressively along the material of the arch.

Figure 8.3. The arch

The arch must be specially shaped so that the forces remain compressive along the length of the arch.
This shape is called a catenary.

Suspension

The arch can be replaced by a cable which supplies the same support from above rather than below.

Design Patterns

3

Figure 8.4. Suspension

The cable hangs in a catenary shape.

Decreasing the span

If the chasm is not too deep it may be possible to divide it into two “sub-chasms” by building a support
in the middle.

Figure 8.5. Subdivision

Alternatively, the edges of the chasm can be extended to reduce the length of the span.

Figure 8.6. Narrowing

Some bridges are built by combining several of these approaches into and elegant and functional
structure.

Figure 8.7. The Forth Bridge

The Forth Bridge is a railway bridge over the Firth of Forth river in Scotland.

Patterns

These are the patterns of bridge design. Even though we have no specialist knowledge of civil
engineering, we can see how and why they work, and when we look at a bridge we can see the patterns

Design Patterns

4

which were used to design it because they are built into its structure. Civil engineers, whose work
is to build such bridges, learn these patterns along with a great deal of specialised knowledge about
construction materials and very sophisticated analytical techniques which help them to make precise
predictions about the strength and suitability of different designs and materials before the bridges are
built. They use the patterns, either singly or in combination, when thinking about and discussing the
design of a particular bridge with other engineers, and they recognise the patterns used in constructing
the bridges of their fellow engineers.

The origins of design patterns

The ideas behind design patterns come not from civil engineers but from architects. Like civil
engineers, architects are concerned with designing structures to meet certain functional requirements.
Individual buildings need to have a form that helps them to fulfil their purpose. For instance, a dwelling
for a single family needs to have a living area, a sleeping area and utility rooms, like a kitchen and a
bathroom. A good dwelling design will place these together in such a way that makes family living
convenient and pleasant. The sleeping area should be away from the living area so that it is quiet. The
bathroom will be directly accessible from many parts of the house, and not, for example, via one of
the bedrooms. The kitchen should be accessible from the living area but not from the sleeping area. In
addition, the design will make efficient, effective and economic use of the materials of construction,
for example roofing, materials and plumbing.

In their working lives architects “solve” these problems over and over again, in slightly different ways
and under different circumstances. However, the basic precepts of good dwelling design remains the
same, and they are different from the precepts of good office block design, or good hotel design or
good hospital design. The design patterns of architects are the solutions they have found to all these
various problems. Like civil engineers, architects can see the patterns in the buildings they design and
see examples in the designs of other architects every time they walk into a house or drive down a street.

In the 1970's the architect Christopher Alexander wrote a series of books in which he first enunciated
the idea of the design pattern, and the ways in which patterns could be used to solve specific
architectural problems, and be combined to communicate design ideas amongst architects. He said:

“Each pattern is a rule which describes what you have to do to generate the entity
which it defines.”

— Christopher Alexander, The Timeless Way of Building

This definition gives a pattern two roles – firstly, as an abstract description of a solution to a particular
type of problem; and secondly as a form which we can recognise within an “entity” which solves the
problem. Thus a suspension cable is a way of providing support to the beam of a bridge, and when we
look at a bridge we can see whether or not it uses a cable for support.

Patterns in software design

Many aspects of the work of software engineers have parallels with the work of civil engineers and
architects. For instance:

• Software engineers design and construct software systems to meet certain functional requirements.

• These software systems may consist of a number of software components which must work together
in a structure to deliver the functions.

• The designers must concern themselves with effective, efficient and economic construction and
operation.

• There are precepts of good design for various types of software system.

• Software engineers solve variations of particular design problems over and over again.

Design Patterns

5

However, there are also some stark differences.

• Although they may use other engineers' software, software engineers rarely have the opportunity
to observe other people's software designs in the same intimate way that an architect can when he
or she enters a building.

• Both civil engineering and architecture are very old disciplines stretching back thousands of years.
In contrast, software engineering is a new discipline, only a few decades old.

It is not surprising that software engineers would look to more mature design disciplines for some
assistance in defining what they were trying to do and in a search for techniques to help them to do
it. As explained in ???, the term software engineering itself was coined to emphasise the belief that
it took more than just skillful programming to produce a good piece of software, and that careful
consideration of requirements combined with systematic design and development would help to bring
software artefacts up to the same levels of reliability and elegance as well-engineered “hardware”.

The work of Alexander was known to two software engineers, Ward Cunningham and Kent Beck,
when, in 1987, they visited a client to discuss the design of a user interface. They liked Alexander's
idea that a pattern is a symbolic way of describing a solution to a type of problem, and that a set of
patterns could provide a language for discussing the problem and considering various solutions. They
wanted the users of the proposed system to contribute to the design (another Alexandrian precept), so
they invented a small set of user interface patterns for their users. They became convinced of the value
of these ideas and their relevance to software engineering when the users produced a very elegant and
efficient design using the simple pattern language.

Ward and Cunningham presented their conclusions at a software engineering conference (OOPSLA
'87) but few of the delegates were convinced. However, at about the same time, other workers in
software engineering were feeling their way towards an architectural view of software engineering
and by the 1991 OOPSLA conference the term “design patterns” was in use. A community of software
engineers was gradually developing who were taking Alexander's work very seriously. Many of the
leading members of this community attended a meeting in 1993. During the meeting, they decided
to try designing a building according to Alexander's principles. This included laying out the physical
building plan, which they duly did on the side of the hill in Colorado where the meeting was being
held. Henceforth, they were known as the Hillside group.

Finally, in 1995, four of the main proponents of design patterns, E. Gamma, R. Helm, R. Johnson
and J. Vlissides published the first book on design patterns, Design Patterns: Elements of Reusable
Object-Oriented Software. This is still perhaps the most authoritative book on the subject and much of
the ensuing material is drawn from there. The four authors are known in the design pattern community
as “The Gang of Four”.

Design patterns in object-oriented
programming

Definitions of terms and concepts
The following is a summary of terms you were already introduced to in the earlier chapters that will
be essential for the understanding of design patterns.

Object

One of the main tasks of object-oriented design is to identify the classes which make up the software
system (see ???).

Not all objects that will be part of a system are identified early on in the development process, for a
number of reasons, including the chosen software process (such as incremental processes).

Design Patterns

6

Interface

The most important aspect of an object is its interface. An object's interface defines how the object
can be used, in other words, to what kind of messages it can respond. The parameters that need to be
passed with the message, if any, and the return type are called collectively the operation's signature.
The implementation details of these operations do not need to be known to the client.

Many operations with the same name can have different signatures, and many operations with the same
signature can have different implementations (using inheritance). These are forms of polymorphism.
This substitutablity — in other words, being able to substitute objects at execution time — is called
dynamic binding, and is one of the main characteristics of object-oriented software. Objects with
identical sets of signatures are said to conform to a common interface.

Class

A class definition can be used as a basis for defining subclasses by means of inheritance. A subclass
possesses all the data and method implementations of the superclass together with additional data and
methods pertaining exclusively to objects of the subclass. In some cases, subclass data may shadow
superclass data with the same identifiers, or may override methods with the same signature. An abstract
class is a class that can have no objects. Its main purpose is to define a common interface shared
by its subclasses. Sub-classes specify implementations for these the methods of an abstract class by
overriding them.

There is a distinction between inheritance and conformance. In Java, this is explicitly defined by means
of extending a class through inheritance, and by implementing an interface to ensure conformance to
certain behaviour. An object's type is defined by its interfaces; this defines the messages to which it
can respond or, in other words, how it can be used. A class is a type, but objects of many different
classes can have the same type.

Scope of development activity: applications, toolkits,
frameworks

Software developers may find themselves involved in different sorts of software development
activities. Most developers work on applications designed to be used by non-specialist computer
users to perform tasks relevant to their particular work. However, some developers may be involved
in producing specialist software designed to help application software developers in the production
of their applications. The products of such developers are variously called toolkits or frameworks,
depending on the scope of their applicability.

When developing an application it is necessary to consider reusing existing software, as well as making
sure the newly developed software is easy to maintain and is itself reusable. Maintenance is in itself
a form of software reuse.

The smallest unit of reuse in object-oriented software is an object or class. When a class is reused
(e.g., refined by means of sub-classing) this is called white-box reuse. This is due to visibility: all
attributes and methods are normally visible to sub-classes. This type of reuse is considered to be more
complex for developers, because it requires an understanding of the implementation details of the
existing software. When reuse is by means of object composition, and we are only concerned with the
interfaces – how an object can be used — this is called black-box reuse, because the internal details
of the object are not visible.

Black-box reuse has proved to be much more successful than white-box reuse. It is less complex for
developers and does not interfere with the encapsulation of objects and is therefore safer to use.

Toolkits are a set of related and reusable classes designed to provide a general purpose functionality.
Toolkits help with the development process without imposing too many restrictions on the design.
The packages in Java such as java.net, java.util, and the java.awt are examples.

Design Patterns

7

Frameworks represent reuse at a much higher level. Frameworks represent design reuse and are
partially completed software systems intended for a specific family of applications. One example of
a framework is the Java Collections Framework.

Patterns, in contrast, are not pieces of software at all. They are more abstract, intended to be used for
many types of applications. A pattern is a small collection of objects or object classes that co-operate
to achieve some desired goal. Each design pattern concentrates on some aspect of a problem and most
systems may incorporate many different patterns.

Pattern classifications and pattern catalogue
Design patterns are based on practical solutions that have been successfully implemented over and over
again. Design patterns represent a means of transition from analysis/design to design/implementation.

To help developers to use design patterns, catalogues of patterns have been created. Each catalogue
entry for a pattern should contain the following four essential elements:

• The pattern name, which identifies a commonly agreed meaning and represents part of the design
vocabulary.

• The problem or family of problems and conditions to which it may be applied.

• The solution, which is a general description of participating classes/objects and interfaces their roles
and collaborations.

• The consequences — each pattern highlights some aspect of the system and not others, so it is useful
to be able to analyse benefits and restrictions.

Gamma et al classify design patterns into three categories according to purpose. The categories are
behavioural, creational and structural. Unfortunately the catalogue of patterns is not standardised,
which may cause some confusion. The level of granularity and abstraction differs greatly from objects
whose only responsibility is to create other objects to those that create entire applications. There is no
guarantee that a suitable pattern will always be found. It also may be that several different patterns
could be used to solve a specific problem — in other words, a single pattern may not represent the
only solution, but a possible solution.

Table 8.1. Design patterns according to Gamma et. al.

Behavioural Creational Structural

Interpreter Factory Method Adaptor (class)

Template Method Abstract Factory Adaptor (object)

Chain of Responsibility Builder Bridge

Command Prototype Composite

Iterator Singleton Decorator

Mediator Facade

Momento Flyweight

Observer Proxy

State

Strategy

Visitor

The Portland Pattern Repository

A large collection of design patterns is available at the Portland Pattern Repository [http://
c2.com/ppr/]. This repository is hosted by Cunningham & Cunningham, the consultancy firm

http://c2.com/ppr/
http://c2.com/ppr/
http://c2.com/ppr/

Design Patterns

8

of Ward Cunningham, one of the Gang of Four. The website is also famous for being the
web's first wiki.

Behavioural patterns
Behavioural patterns are required when the operations that need to be performed cannot be achieved
without co-operation. Thus behavioural patterns concentrate on the way in which classes and objects
organise responsibilities in order to achieve the required interaction.

The Observer pattern is an example of a behavioural pattern that defines some dependency between
objects.

The Observer pattern

In some applications, two or more objects that are independent of each other must respond to some
event in synchrony. For example any Graphical User Interface (GUI) will respond to the click of a
mouse button, or keyboard, which will trigger the execution of an application or utility and redraw
the screen appropriately. The mouse click event will result in one or more objects responding. Each
object is otherwise independent. Each object is able to respond only to certain events.

Other typical examples of applications in which the Observer pattern could be used:

• To integrate tools in a programming environment. For instance, the editor for creating program code
may register with the compiler for syntax errors. When the compiler encounters such an error, the
editor will be informed and can scroll to the appropriate line of code.

• To ensure consistency constraints, such as referential integrity for database management systems.

• In the design of user interfaces to separate presentation of data from applications that manage
the data. For example a spreadsheet object and a chart or a text report may all display the same
information resulting from an application's data at the same time in their different forms.

The problem

The important relationship that needs to be established is between a subject and an observer.
The subject may be observed by any number of observers. The observers should be notified
when the subject changes state. Each observer will receive information concerning the
subject's state with which to synchronise, and to allow them to respond as required by the
application. The following summarises the conditions:

• The subject is independent, and the observers are dependent.

• A change in the subject will trigger changes in observers — of which there may be many.

• The objects that will be notified by the subject are otherwise independent. They only share
in some aspect of their behaviour.

Figure 8.8. Class diagram of the Observer pattern

Design Patterns

9

The solution

Participating classes /objects:

In the diagram the subject is shown as a class. Subject has methods for attaching and detaching
observer objects. The methods are shown on the diagram as addObserver(), deleteObserver()
and notifyObservers().

Observer has an updating interface for objects that will be notified of changes in a subject,
here shown as an interface with the method update().

Concrete Subject, a subclass of Subject, contains its state (of interest to the observers), plus
operations for changing its state. Concrete Subject is able to notify its observers when its state
changes. On the diagram the attribute state, and methods getState(), setChanged() provide
this functionality, and the other methods are inherited from Subject.

Concrete Observer maintains a reference to the Concrete Subject object, and a state that needs
to be kept consistent with the Concrete Subject. It implements the updating interface. On the
diagram the Concrete Observer is a class that implements the Observer interface. It supplies
the code for the update() method and has observerState to denote the data that needs to be
kept consistent with the Concrete Subject object.

Collaborations

The Concrete Observers objects register with the Concrete Subject object, using the
addObserver() method.

When a Concrete Subject changes state it notifies the Concrete Observer objects by executing
the notifyObservers() method.

The Concrete Observer object(s) obtain the information about the changed state of the
Concrete Subject and execute the update() method.

Consequences

The advantage of the pattern is that the Subject and Observer are independent of each
other, and the subject does not need to know anything about the handling of the notification
by the observers (i.e., how update() works). This means that any type of broadcasting
communication could be implemented in this way.

Creational patterns

Creational patterns handle the process of object creation. These patterns may be used to provide for
more reusable designs by placing the emphasis on the interfaces and not the implementation. The
abstract factory is an example of a creational pattern that can be used to make objects more adaptable,
in other words:

• Less dependent on specific implementations.

• More amenable to change and customisation, easier to change the objects themselves.

• Less necessary to change the applications that use the objects.

Abstract factory pattern

The abstract factory pattern makes the system independent of how objects are created, composed and
represented. It should be used whenever the type or specific details of the actual objects that need to

Design Patterns

10

be created cannot be predicted in advance, and therefore must be determined dynamically. Only the
required behaviour of the objects is specified in advance. The information that can be used to create
the object would be based on data passed at execution time. Examples of applications of the pattern:

• To customise Windows, Fonts, and so on, for the platform on which the application will run so as
to ensure appropriate formatting, wherever the application is deployed.

• When the application specifies all the required operations on the objects it will use, but their actual
format will be determined dynamically.

• To internationalise user interfaces (e.g., to display all the text in a local language, to customise the
date format, to use local monetary symbols).

The problem

The application should be independent of how its objects are created and represented.
It should be possible to configure the application for different products/platforms. The
application defines precisely how the objects are used (i.e., their interfaces).

The solution

Participating classes/objects

Abstract Factory class will contain the definition of the operations required to create the
objects, createProductA(), createProductB().

Concrete Factory implements the operations createProductA(), createProductB(). Only one
Concrete Factory is created at run time which will be used to create the product objects

AbstractProduct will declare an interface for the type of product object for example a
particular type of GUI object: Label or Window.

ProductA will define the object created by the Concrete Factory 1, implementing the Abstract
ProductA interface.

Client Application uses only the interfaces from the Abstract Factory and Abstract Product
classes.

Figure 8.9. Class diagram for the Abstract Factory pattern

Consequences

Different product configurations can be used by replacing the Concrete Factory an
application uses. This is a benefit and liability, because for each platform or family of products
a new Concrete Factory subclass needs to be defined. However, the changes will be broadly
restricted to the definition of subclasses of Abstract Factory and Abstract Product, thus
confining the changes to the software to well documented locations.

Design Patterns

11

Structural patterns
These patterns deal with the composition of complex objects. Similar functionality can be often
achieved by using delegation and composition instead of inheritance. An example of a structural
pattern is the composite pattern. In the Java API, this pattern is used to organise the GUI using AWT
objects and layout managers.

Composite pattern

The pattern involves the creation of complex objects from simple parts using inheritance and
aggregation relationships to form treelike hierarchies.

The diagram shows the composite pattern as a recursive structure where a component can be either a
leaf (which has no sub-components of its own) or a composite (which can have any number of child
components). The component class defines a uniform interface through which clients can access and
manipulate composite structures. In the diagram this is represented by the abstract method operation().

Figure 8.10. Class diagram of the Composite pattern

The problem

Complex objects need to be created, but the composition and its constituent parts should be
treated uniformly.

The solution

Participating classes/objects

Component should declare the interface for the objects in the composition, as well as
interfaces for accessing and managing its child components.

Leaf represents objects that have no children, and defines behaviour for itself only.

Composite will define behaviour for components with children, and implements the child
related interfaces.

Client Application manipulates objects through the component interface using the operation()
method. If the object to be manipulated is a Leaf it will be handled directly, if it is a Composite,
the request will be forwarded to the child

Consequences

The pattern enables uniform interaction with objects in a composite structure through the
Component class.

Defines hierarchies consisting of simple objects and composite objects which can themselves
be composed and so on.

Makes it easier to add or remove components.

Design Patterns

12

How to use a design pattern

• Consult design pattern catalogues for information (such as the Portland Pattern Repository,
discussed earlier). You may find an example or description that may suggest the pattern is worth
considering.

• Try to study the suggested solution in terms of participating objects/classes, conditions, and
descriptions of the collaborations.

• If the examples of these patterns are part of a toolkit, it may be useful to examine the available
information. java.util supports the Observer pattern, for example.

• Give participant objects names appropriate for your application context.

• Draw a class diagram showing the classes, their necessary relationships, operations and variables
that are needed for the pattern to work.

• Modify the names for the operations and variables appropriately for your application.

• Try out the pattern by testing a skeleton example.

• If successful refine and implement it.

• Consider alternative solutions.

Patterns in Java
Some design patterns generally recognised as common solutions to specific problems have been
adopted as part of the Java JDK and Java API. A sample of these design patterns will be analysed
here in greater detail.

The Observer pattern in Java

In Java, the Observer pattern is embodied by the Observer interface and the Observable class which
are part of the java.util package.

Any object that needs to send a notification to other objects should be sub-classed from class
Observable, and any objects that need to receive such notifications must implement the interface
Observer.

Table 8.2. Observable class methods in java.util.package

Observable Methods Description

addObserver(Observer o) Add the object passed as an argument to the
internal record of observers. Only observer
objects in the internal record will be notified when
a change in the observable object occurs.

deleteObserver(Observer o) Deletes the object passed as an argument form the
internal record of observers.

deleteObservers() Deletes all observers from the internal records of
observers.

notifyObservers(Object arg) Call the update() method for all the observer
objects in the internal record if the current object
has been set as changed. The current object is set

Design Patterns

13

Observable Methods Description

as changed by calling the setChanged() method.
The current object and the argument passed to the
notifyObservers() method will be passed to the
update() method for each Observer object.

notifyObservers() Same but with null argument.

countObservers() The count of the number of observer object for the
current object returned as an int.

setChanged() Sets the current object as changed. This
method must be called before calling the
notifyObservers() method.

hasChanged() Returns true if the object has been set as
“changed” and false otherwise.

clearChanged() Reset the changed status of the current object to
unchanged.

addObserver() method of the Observable class registers the Observers.

Each class that implements an Observer interface will have to have an update() method, and this
method will ensure that the objects will respond to the notification of a change in the Observable
object by executing the update() method:

public void update(Observable, Object)

The Observable object can indicate that it has changed, by invoking at any time notifyObservers()

Each Observer is then passed the message update() where the first argument is the Observable that
has changed and the second is an optional one provided by the notification.

Example of Observer pattern using java.util

An electrocardiogram (ECG) monitor attached to a patient notifies four different devices:

• Remote Display for the physician, to allow them to adjust the configuration settings and treatment.

• Chart Recorder that will display the waveforms.

• Remote Display with a patient alarm.

• Instruments Monitor for the service personnel.

Figure 8.11. The ECG Observer

Each of the devices will perform specific operations when the events for which they have registered
an interest take place. The ECG attached to the patient will notify them of changes, as they occur.

Design Patterns

14

The skeleton solution presented below will display messages stating the specific tasks performed by
each Observer.

/*=== ECG.java

Definition of class ECG subclassed from Observable
from which Observable objects will be created.
Demonstrates the use of methods setChanged() which will change
the state of the ECG object, and notifyObservers() which will
broadcast the event to the registered objects.

==*/

import java.util.*;

public class ECG extends Observable
{
 String message = "";

 public void broadcastChange()
 {
 message = "\tHeart Electrical Activity";
 setChanged();
 notifyObservers();
 }

 public String getState()
 {
 return message;
 }
}

//class

/*===

TheObserver.java

Definition of class TheObserver from which Observer objects will
be created.

The class implements the Observer interface and thus must define
the method update() which will be executed when the objects of
class TheObserver are notified.

==*/

import java.util.*;
import java.io.*;

public class TheObserver implements Observer
{
 String name;
 String says;

 public TheObserver (String name, String says)

Design Patterns

15

 {
 this.name = name;
 this.says = says;
 }

 public void update(Observable O, Object o)
 {
 System.out.println(((ECG)O).getState()+
 "\n\t" + name + " : " + says+ "\n");
 }
}

//class

/*==

PatternTest.java

Definition of program to test the Observer pattern

An object of class ECG called ecg is created, as well an array
called observers containing the four TheObserver objects.

These objects register with the observable object ecg using method
addObserver.

When the ecg method broadcastChange() is executed the observers
will be notified and update themselves.

==*/

import java.util.*;

public class PatternTest {

 public static void main(String[] args) {
 ECG ecg = new ECG();
 TheObserver[] observers
 = { new TheObserver("Physician", "Adjust Configuration"),
 new TheObserver("Remote Display","Monitor Details"),
 new TheObserver("Chart Recorder", "Draw ECG WaveForm")
 new TheObserver("Service Personnel", "Monitor Instruments")};

 for (int i = 0; i < observers.length; i++)
 ecg.addObserver(observers[i]);

 ecg.broadcastChange();
 }
}

The Observer pattern as part of the Java API

An example of the application of the Observer pattern of the Java API is the Java model of
event handling using listeners. Graphical User Interface (GUI) components from the Java Abstract
Windowing Toolkit (AWT) such as buttons, text fields, sliders, check boxes, and so on, are
managed in this way. The observer objects implement a listener interface (e.g., the ActionListener,
WindowListener, KeyListener etc.). When any of the components changes state, the listeners are

Design Patterns

16

notified that a change has occurred. The listener decides what action should be taken as a result
of the change. To tell a button how the events it generates should be responded to, the button's
addActionListener() method is called, passing a reference to the desired listener. Every component
in AWT has one addXXXListener() method for each event type that the component generates. When
a button with an action listener is clicked, the listener receives an actionPerformed() call which will
contain the instructions that need to be performed in response to the event. The actionPerformed()
method must be defined as part of implementing the listener interface

The Model-View-Controller pattern
This pattern is a specialised version of the Observer pattern, which was introduced in the Smalltalk
language as a way of structuring GUI applications by separating the responsibilities of the objects in
the system. The user interface consists of a View, which defines how the system should present this
information to the user, and a Controller, which defines how the user interacts with the Model, which
receives and processes input events. Systems analysis and design concentrates mainly on building the
model representing the main classes of the application domain and the information of interest will
be internally stored in object of the classes. The Model-View-Controller pattern makes it possible
to associate the model with many different view/controller pairs in a non-intrusive manner without
cluttering the application code. It is introduced here because it can be easily applied to the way in which
Java applications using the java.awt can be structured. It provides a way for providing the application
system model with a user interface. This is achieved by separating the responsibilities as follows:

The responsibilities of the Model are:

• To provide methods that enable it to be controlled.

• To provide a method or methods to update itself, and if it is a graphical object, to display itself.

The Controller carries out the following series of actions:

• The user causes an event such as clicking the mouse over a button.

• The event is detected.

• A method to handle the event is invoked.

• A message will be sent to the model.

• The update method within the model will change the data within the model.

• A message will be sent to the view update the user interface, to, for example, redraw the image.

The View performs the following:

• Initially displays the model when the window is created, and every time it is resized.

• When the event handler detects a change (e.g., responds to a click of a button) it sends a message
to redraw the screen.

• The View enables the updated information from the model to be displayed.

Abstract factory facilities in Java
To make the creational process more versatile, object-oriented language facilities that provide for
customisation should be used. The JDK has facilities to customise graphics and to internationalise
programs and applications.

Graphics related platform characteristics

One of the problems of having a portable Abstract Windowing Toolkit is that the appearance and
positioning of the objects may differ from one platform to another. To ensure that the graphical display
is similar wherever the application may be ported, we should be able to adjust the View accordingly.

Design Patterns

17

The ToolKit and FontMetrics classes may be used to help create a Concrete Factory that will create
the Concrete Product:

Figure 8.12. Java output of screen and font information

The ToolKit class provides information regarding screen resolution, pixels, available fonts, and
FontMetrics can help supply information concerning font measurements for every AWT component.
Below is a program listing showing how some screen and font information can be obtained.
Figure 8.12, “Java output of screen and font information”, shows an example of some output obtained
from the program.

/*===

Sysinfo.java

program for finding out details of the display using the
java.awt Toolkit class

The program creates a Toolkit class object theKit, and then uses
the Toolkit methods:

getDefaultToolkit, getScreenResolution, getScreenSize and getFontList.

===*/

import java.awt.*;

public class Sysinfo
{
 public static void main(String[] args)
 {
 Toolkit theKit = Toolkit.getDefaultToolkit();
 System.out.println("\nScreen Resolution: " +
 theKit.getScreenResolution() + " dots per inch");
 Dimension screenDim = theKit.getScreenSize();

 System.out.println("Screen Size: " + screenDim.width
 + " by " + screenDim.height + " pixels ");

 String myFonts[] = theKit.getFontList();

 System.out.println("\nFonts available on this platform: ");

 for (int i = 0; i < myFonts.length; i++)
 System.out.println(myFonts[i]);

 return;
 }
}

Design Patterns

18

Java facilities for internationalisation of applications (displaying all user visible text in the local
language, using local customs regarding dates, monetary displays etc.) are available from java.util
package using the ResourceBundle class and its subclasses.

Composite patterns in Java

HCI classes for creating GUI applications are used in almost every interactive application. Much of
these GUI classes adhere to some form of Composite pattern, and the Java AWT is no exception.
Here, containers are components which can hold other components. Each component knows how to
draw itself on the screen; containers, however, will defer some of their drawing functionality to the
components that they contain.

Figure 8.13. java.awt GUI components containers and layout managers

Layout Managers Description

FlowLayout Places components in successive rows in a
container, fitting as many on each row as possible,
and starting on the next row as soon as a row is
full. This works in much the same way as a text
processor placing words on a line. Its primary use
is for arranging buttons, although it can be used
with components. It is the default layout manger
for Panel and Applet objects

BorderLayout Places components against any of the four borders
of the borders of the container and in the centre.
The component in the centre fills the available
space. This layout manger is the default for
objects of the Window, Frame, Dialog, and
FileDialog classes

CardLayout Places components in a container, one on top of
the other – like a deck of cards. Only the “top”
component is visible at any one time.

GradLayout Places components in the container in a
rectangular grid with the number of rows and
columns that you specify.

GridBagLayout This places the components into an arrangement
of rows and columns, but the rows and columns
can vary in length. This is a complicated layout

Design Patterns

19

Layout Managers Description

manager with a lot of flexibility for controlling
where components are placed in a container.

In Java, these are embodied by the AWT Component and Container class, and the layout manager
classes. A Window can be divided into Panels, and each Panel can be treated as an individual
component within another layout at a higher level.

Review

Questions

Review Question 1

How many of the different methods of managing heavy loads have been used in constructing the Firth
of Forth Bridge?

A discussion of this question can be found at the end of this chapter.

Review Question 2

What is the principal difference between the job of a software engineer and those of architects and
civil engineers?

A discussion of this question can be found at the end of this chapter.

Review Question 3

Explain the role of design patterns in object-oriented software development.

A discussion of this question can be found at the end of this chapter.

Review Question 4

Place each of the following patterns in the category it belongs to according to “the gang of four”:

Patterns: Observer, Model-View-Controlled, Abstract Factory, Composite:

Category: Creational, Structural, Behavioural.

A discussion of this question can be found at the end of this chapter.

Review Question 5

What are the four essential elements of a design pattern catalogue entry?

A discussion of this question can be found at the end of this chapter.

Review Question 6

What is meant by granularity?

A discussion of this question can be found at the end of this chapter.

Review Question 7

Give examples of white-box reuse and black-box reuse from the pattern examples.

A discussion of this question can be found at the end of this chapter.

Design Patterns

20

Review Question 8

Compile ECG.java, TheObserver.java and TestPattern.java, then execute the TestPattern program.

1. Create a new directory in which to store the files. You may call the directory Activity1.

2. Copy all three files ECG.java, TheObservers.java and TestPattern.java

3. Compile the three files using the JDK command javac

4. Once the compilation is successful you should be able to execute the TestPattern application using
the command java Testpattern

Does the program output the messages in the order you have expected?

A discussion of this question can be found at the end of this chapter.

Review Question 9

Design a solution using the Observer pattern for the operation of dispensing cash by an ATM machine.
When a bank customer withdraws money from an ATM (Automatic Teller Machine), before the cash
is dispensed it is necessary to determine whether there are sufficient funds. If there are, then it is
necessary to instruct the machine to dispense the cash, to debit the customer's account and to log the
transaction for auditing purposes.

How would you use the Observer pattern to design a solution to this problem?

A discussion of this question can be found at the end of this chapter.

Review Question 10

Draw a diagram to represent the design pattern of a solution to the ATM operation of dispensing cash
using the Observer pattern. You may use a CASE tool for the class diagram and include the outline of
the methods, data and messages required to make the pattern work. It would be useful if you put the
project in which the class diagram will be placed into a new directory.

A discussion of this question can be found at the end of this chapter.

Review Question 11

The code you are expected to write will be a skeleton for the Observer pattern with messages instead
of complex code to implement the operations. Compile the three parts of the program in the correct
order. The Observable class, then the Observer and last the program. You may use any version of Java
for this exercise. Follow the instructions similar to the ones given for Activity 1. It would be useful
to place all of your files for this exercise in a new directory.

A discussion of this question can be found at the end of this chapter.

Answers

Discussion of Review Question 1

The Firth of Forth bridge uses three patterns which can be directly seen. These are:

• girders with cross-members,

• arches in a catenary shape,

• decreasing the span.

In addition some suspension support is provided 'from above' but this is not strictly a catenary shape.

Design Patterns

21

Discussion of Review Question 2

The main difference is that software engineers do not have the opportunity to see their and other
people's designs implemented visually.

Discussion of Review Question 3

Your answer is expected to include some of the following:

Serve as exemplars to programmers, designers and architects, which they can quickly adapt for use
in their projects.

Emphasise solutions: discovering patterns that have been used before rather than inventing them.

Represent codified, distilled wisdom: solutions to recurring problems, if those solutions have well
understood properties.

Allow programmers and designers to program and design using bigger chunks; this also eases
those aspects that involve understanding an architecture; architectural reviews. Reverse engineering,
maintenance and system restructuring.

Aid in communicating among designers, between designers and programmers, and between a project's
team members and its non-technical members.

Identify and name abstract, common themes in object-oriented design, themes that have known qualify
properties.

Form a documented, reusable base of experience, which would otherwise be learnt only through an
informal oral tradition or through trial and error.

Provide a target for reorganisation of software because a designer can attempt to map parts of an
existing system to a set of patterns. If this mapping can be done, the complexity of the resulting
reorganised system will be less than the original version.

Discussion of Review Question 4

Behavioural: Observer, M-V-C

Creational: Abstract Factory

Structural: Proxy, Composite

Discussion of Review Question 5

• The pattern name which identifies a commonly agreed meaning and represents part of the design
vocabulary.

• The problem or family of problems and conditions in which it may be applied.

• The solution which is a general description of participating classes/objects and interfaces their roles
and collaborations.

• The consequences - each pattern highlights some aspect of the system, and not others so it is useful
to be able to analyse benefits and restrictions.

Discussion of Review Question 6

Granularity usually refers to the size of the components you deal with. In this context it could be from
patterns that specify how a single object may be created, to patterns that will specify the structure of
a whole application.

Design Patterns

22

Discussion of Review Question 7

For example, in the Observer pattern:

Concrete Observer is an example of black-box reuse because all the Concrete observer needs to do
is to implement the update() method.

The Concrete Subject is an example to white-box reuse, because it needs to know the details of its
super class Observable.

The Concrete Factory of the Abstract Factory pattern is an example of white box reuse. The way in
which the Client Application uses the Abstract Factory pattern is an example of black box reuse. Etc.

Discussion of Review Question 8

Compare this example with the Observer catalogue entry description, and follow the instructions on
how to use a design pattern before going on to do the next exercise.

Discussion of Review Question 9

This exercise will help you test your understanding of the Observer pattern. You are expected to base
your answer on the given examples – to literally use the pattern. Using the CASE tool will help you
produce the documentation of your design in the standard format.

Discussion of Review Question 10

The purpose of this exercise is to use the Observer class and Observable interface from java.util and
to test some of the methods from the lecture notes. This will consolidate your understanding of the
use of this design pattern.

Discussion of Review Question 11

Writing portable software, and implementing dynamic binding of objects in a distributed environment
for which Java was designed requires developers to be aware of the different platforms, and be able
to make sure applications take advantage of the facilities in the language that make it possible to port.

