

Chapter 13. JavaScript 2: Event
Handling
Table of Contents

Objectives .. 2
13.1 Introduction .. 2

13.1.1 Event-based Programming ... 2
13.1.2 Event Handlers 'One Liners' .. 2
13.1.3 Events and objects ... 3
13.1.4 Anchor Events ... 4

13.2 Animating Button Images .. 7
13.3 Conditional Execution .. 9

13.3.1 JavaScript if statement ... 9
13.4 Code blocks .. 10
13.5 Boolean operators .. 11
13.6 General Selection ... 12
13.7 HTML Attributes for Event handling ... 13
13.8 Extension .. 14

13.8.1 Variables and their Scope .. 14
13.9 Review Questions .. 15

13.9.1 Review Question 1 ... 15
13.9.2 Review Question 2 ... 15
13.9.3 Review Question 3 ... 15
13.9.4 Review Question 4 ... 15
13.9.5 Review Question 5 ... 15
13.9.6 Review Question 6 ... 15
13.9.7 Review Question 7 ... 17
13.9.8 Review Question 8 ... 17
13.9.9 Review Question 9 ... 17
13.9.10 Review Question 10 ... 17

13.10 Discussions and Answers ... 17
13.10.1 Discussion of Exercise 1 .. 17
13.10.2 Discussion of Exercise 2 .. 17
13.10.3 Discussion of Exercise 3 .. 18
13.10.4 Discussion of Exercise 4 .. 18
13.10.5 Discussion of Exercise 5 .. 18
13.10.6 Discussion of Exercise 6 .. 19
13.10.7 Discussion of Exercise 7 .. 20
13.10.8 Discussion of Exercise 8 .. 20
13.10.9 Discussion of Exercise 9 .. 21
13.10.10 Discussion of Activity 1 .. 21
13.10.11 Discussion of Activity 2 .. 21
13.10.12 Discussion of Activity 3 .. 21
13.10.13 Discussion of Activity 4 .. 21
13.10.14 Discussion of Activity 5 .. 22
13.10.15 Discussion of Activity 6 .. 22
13.10.16 Answer to Review Question 1 ... 22
13.10.17 Answer to Review Question 2 ... 22
13.10.18 Answer to Review Question 3 ... 22
13.10.19 Answer to Review Question 4 ... 22
13.10.20 Answer to Review Question 5 ... 22
13.10.21 Answer to Review Question 6 ... 22
13.10.22 Answer to Review Question 7 ... 23
13.10.23 Answer to Review Question 8 ... 23
13.10.24 Answer to Review Question 9 ... 23
13.10.25 Answer to Review Question 10 ... 23

JavaScript 2: Event Handling

2

Answer to Review Question 9 .. 26
Answer to Review Question 10 .. 26

Objectives

At the end of this chapter you will be able to:

• Write HTML files using JavaScript event handlers;
• Write HTML files using conditional statements and code blocks.

13.1 Introduction

The interesting behaviour of a system tends to be dependent on changes to the state of the system as a whole, or to
its components. The kind of interaction a Web application might include usually involves short-term changes of
state in which it is only important to know that they have occurred. That is the change of state is not intended to
persist; it happens and it is not stored explicitly in the system. Such a change is indicated by an event. In the context
of JavaScript, an event is an action that occurs in a browser that JavaScript provides facilities to detect and so act upon.
Events are generally related to user interactions with the document, such as clicking and pointing the mouse,
although some are related to changes occurring in the document itself. Programming JavaScript to handle such
events provides for many styles of human-computer interaction. In short, programming JavaScript event handlers is
crucial if you want interactive Web pages. When this style of programming dominates your design, it is known as
event-based programming.

13.1.1 Event-based Programming
One event that you already know about occurs when the mouse is clicked on something, such as a hypertext
link. Of course, the browser itself may intercept these events. You will note that many browsers change the status
bar when the mouse is moved over an anchor. It is usually changed to the anchor's URL. In this case the browser
has intercepted the event and has caused some action to occur. Events are useful for seeing what the user is doing
and to provide them with extra information concerning their action.

Events are frequently used on forms to make it easier for the user to type in correct information, and to warn them
when they input something incorrectly. For instance, if a text box requires a phone number, you can use events to
notice whenever the user inputs data into the text box, and to ensure that the inputted data contains only numbers
and dashes. Finally, you can validate all of the input before the user submits the form.

Events don't only have to be used to process forms. They could, for instance, by used when you have a number of
frames which need to have their content changed when a user clicks on an anchor.

13.1.2 Event Handlers 'One Liners'
It is possible to add JavaScript to individual HTML tags themselves without using SCRIPT tags. These are often only
single lines of code, and are thus nicknamed 'one liners'. This is not the only way to program event handlers, but is
often the most convenient. This style of handling events is evidence of the close relationship between HTML and
JavaScript: for a whole range of HTML elements tag attributes are provided that are associated with events. These
attributes have as their value JavaScript code that is executed if the event occurs. For example, anchor tags support the
event of a mouse pointer being moved over the anchor using the attribute onMouseOver. If a tag supports the event
represented by the attribute, and the event occurs, then the JavaScript that is the value of the attribute is executed.

Many events can occur while a user is interacting with a Web page. For example a user might click on a button,
change some text, move the mouse pointer over a hyperlink or away from one, and, of course, cause a document to
load. There are event handlers for these events with names that include: onClick, onMouseOver, onMouseOut,
onLoad. (We will be making use of all of these later.)

One of the simplest events is a mouse click. It is represented by the attribute onClick and supported by links and
HTML button elements. Examine the following tag with an event handler as an attribute — a so-called 'one-liner'.
(We will assume that this tag appears between <FORM> and </FORM> tags.)

JavaScript 2: Event Handling

3

<INPUT type="button" value="Click to order"
onClick="window.alert('Purchase')">

When a browser interprets this tag, it renders a button labelled Click to order. Subsequently, if a user clicks on
that button, the click event is detected and the JavaScript associated with its attribute is executed. Here, an alert
dialogue box is displayed, as shown below.

Let us work through this HTML and JavaScript. The first part of the <INPUT> tag is as you have previously
seen: the type attribute is assigned the value button; the value attribute, which labels the button, is assigned the
value Click to order. Then comes the new attribute for the tag <INPUT>. It is onClick, and is given the value
that in this case is a single JavaScript statement that invokes the window.alert() method. This final attribute
assignment creates an event handler for the particular JavaScript object representing the button such that clicking on
the visual representation of the button causes the code to be executed.

In general, a sequence of statements may be included in the event handler. However, as it is essentially a 'one-liner'.
Each line in the sequence must be separated by semicolons (as would be done in Java).

For example, including a second dialogue box that said 'Have a nice day' would require a semicolon, as in:

<INPUT type=button value="Click to order"
onClick="window.alert('Purchase window.alert('Have a nice
day')">

This HTML/JavaScript works just as previously, except that clicking on the 'Click to order' button will produce a
second alert box after the first has been dismissed.

Exercise 1

Modify the earlier onClick example to include a flashing background colour before the alert dialogue box. Make
sure you restore the initial background colour by saving it first with a variable and using the variable to restore the
colour at the end. Depending on the speed of your computer, you will probably need at least two colour changes to
notice anything.

You can find a discussion of this exercise at the end of the unit.

13.1.3 Events and objects
Earlier, it was suggested that you could conceive of the button as being an object with a nameless method that
is invoked when you click on the button visible via a browser. You can, in fact, see that the HTML tag is
implicitly creating a button object by accessing the button object and its properties - its type, as defined in the
HTML tag, and its value, the text shown as the button label and defined by the VALUE tag. To do so the special
variable this is used to refer to the object which the method belongs to. Hence, this.type can be used to access
the type property, and this.value can be used to access the value property. The following variation of the first
event handler can be used to confirm the object nature of the HTML button element:

<INPUT type=button name="orderButton" value="Click to order" onClick="windo
this.type + ' and has value: ' + this.value)">

Executing this HTML <INPUT> tag (in a form) will produce the button as before, but when you click on it, the
alert dialogue box now shows the two properties of the object referred to by this.

JavaScript 2: Event Handling

4

Note

Note that you can apparently change some properties of such an object. It is not clear that you
would ever need to change the type of a button (e.g. from this sort of action button to a radio
button) but you might want to change the label.

Exercise 2

Examine the original onClick example, which confirms a purchase, and the previous variation in
which the button properties are accessed via the this keyword. Then devise HTML/ JavaScript
that confirms a purchase, as in the original example of onClick, but which changes the label of the
button after the confirmation to [Purchase confirmed]. See the diagrams below for the sort of
thing you are aiming for.

Hint: use the this keyword like a variable to assign a new string to the value property so that the new
string is the text on the button.

You can find a discussion of this exercise at the end of the unit.

13.1.4 Anchor Events
As mentioned earlier, the anchor tag <A> can be enhanced to include JavaScript event handlers

JavaScript 2: Event Handling

5

that correspond to the mouse pointer moving over the enclosed link, moving away from it and
clicking on it. These anchor tag attributes are, respectively, onMouseOver, onMouseOut and
onClick.

The general form is similar to that for <INPUT> with the event attribute following the link. Say
you wanted to warn a user who had clicked on a link that the URL was not necessarily what
they had wanted. For example, there is a UK company whose website URL is www.apple.co.uk. The
company is not the UK division of Apple Computer Inc., so it might help a user to warn them what
the link they had clicked on was maybe not what they wanted. (After the warning the user could
stop the browser connecting to the server and go back.) The HTML/JavaScript is as follows:

<A href="http://www.apple.co.uk" onClick="alert('Remember this is not
the Apple Computer Site')">Apple.co.uk

Of course warning a user after he or she has done something (clicked on the link) is not as helpful
before one given before the action. The mouse-over event, which is programmed using the
onMouseOver attribute allows this. For example:

<A href="http://www.apple.co.uk" onMouseOver="alert('Remember this
is not the Apple Computer Site')">Apple.co.uk

This tag differs from the previous one only by the replacement of onClick by onMouseOver. When
the user moves the mouse pointer over the link, the dialogue box appears with its warning. Thus,
the user can avoid the URL.

However, even this style is not optimal for the user. The warning can interfere with the interaction,
requiring to be dismissed by clicking on OK or pressing the Enter key. A common practice is to use
the window's status area, just as we did in the previous unit. We can avoid a browser's default
behaviour of displaying a URL in the status area of the window's bottom bar, by inserting
something more helpful to the purposes of the document — such as the kind of warning just
discussed.

Let us take a different example, in which a document is meant to sell something to its user. You
might to encourage the user to follow a link to some on-line shopping as soon as he or she moves
over the link to the on-line shop, as in the following. First the document provides some ordinary
text, followed by a link that reads ''. Placing the mouse pointer over the link generates the text in the
status area.

Note that the text 'Click here to get to the bargains!' only appears in the status area when the mouse
pointer is over the link. This is achieved using the mouse-over event. As the name suggests,
when the mouse pointer is over the link, the appropriate JavaScript code is executed. Here is what
produces this interaction:

<P>
There's a sale on. Come to our on-line shop for lots of
bargains.
</P>

<P>
<AHREF = "http://www.most-expensive-sellers.com"

http://www.apple.co.uk/
http://www.apple.co.uk/
http://www.apple.co.uk/
http://www.most-expensive-sellers.com/

JavaScript 2: Event Handling

6

onMouseOver = "window.status = 'Click here to get
to the bargains!';return >

</P>

Exercise 3

Write down in your own words an explanation of what the above HTML and JavaScript in the
anchor tag does.

You can find a discussion of this exercise at the end of the unit.

Note

Note that the status area may not change back once the mouse pointer leaves the anchor, as this
behaviour varies among browsers.

Strictly speaking there is something missing from the JavaScript of the onMouseOver event
handler. It can be used for other actions than changing the status bar and it is useful for the browser
to know whether the URL should be shown in status area (the usual behaviour) or not. For instance,
in the first onMouseOver example the URL would still be shown in the status area after the alert
dialogue box had been dismissed, especially if Enter had been used — because the mouse pointer
would still be over the link. Including a return true statement at the end of the JavaScript 'one-liner'
tells the browser that it should not display the URL. Although the status bar is to be occupied by
our exhortation to come shopping, it is better to include the return value, as below:

<A HREF = "http://www.most-expensive-sellers.com"
onMouseOver = "window.status = 'Click here to get to

the bargains!'; return true;">Come to our cheap on-
line store

The use of a return value is a very important part of the above event handler. You will recall from
our abstract object model (in Unit 10) that messages to objects can evoke a response. We
encountered this with the window.prompt and window.confirm methods that return values. Many
event handlers need to return a value for the browser to make use of. In the case in point, true is the
response if we do not want the browser to display the URL in the anchor tag — exactly what is
required here as we plan to change the status area anyway. However, if we want to see the URL, we
must script the event handler to return false, as in the script below that changes the background
colour but does not change the status area:

<A HREF = "http://www.most-expensive-sellers.com"
onMouseOver = "document.bgColor = 'coral';

return false">Come to our cheap on-line store

As we have indicated, there is also an event that represents the mouse pointer leaving a link.
This 'mouse-out' event is represented by the attribute onMouseOut and the code associated
with it is executed when a user moves the mouse pointer away from a link.

Exercise 4

Change the scripting in the previous anchor to restore background colour to what it was before being
changed to coral. Hint: use a variable to remember the background colour property of the
document's state. (You may find it convenient to look again at the discussion of variables in the
previous unit.)

You can find a discussion of this exercise at the end of the unit.

The alternative version of the script in the previous exercise shows a common situation for
which there is a shorthand notation. The situation is where a variable is declared and soon
afterwards it is initialised, i.e. set to a first value, just as in the second version of the previous script.

http://www.most-expensive-sellers.com/
http://www.most-expensive-sellers.com/

JavaScript 2: Event Handling

7

The shorthand allows initialisation at the same point as declaration, for example:

<SCRIPT>
var origBgCol = document.bgColor
</SCRIPT>

Be careful when using variables with handlers. As a general programming rule, you should
declare variables close to where you use them. This might suggest that you should declare
origBgCol in the handlers for both events, but this does not work because of rules of JavaScript. If
handlers need to use the same variable (because they need to use the value the variable holds)
then declare the variable external to the handlers. (See the extension work on this topic)

Activity 1: Clicking on Input Buttons

1. Implement the JavaScript of Exercise 1 to ensure you are familiar with the concept of
handling an event using an HTML attribute.

2. Modify your implementation to prompt the user for his or her name, and then modify the button

label using the button object's value property to include that name. With our current knowledge of
JavaScript the button can only be modified in the event handler, so have it change after the first
click.

Remember that if your PC or video card is very fast, you will probably not see the colours flashing.

You can find a discussion of this activity at the end of the unit.

Activity 2: Programming Anchor Events

Change the HTML/JavaScript that exhorted you to go shopping for bargains (just before
Exercise 4) so that when you click on the anchor the window status area changes to the
greeting, 'Enjoy your shopping!' To test the JavaScript, return false from the handler to prevent
the browser from following the link.

You can find a discussion of this activity at the end of the unit.

Now do Review Questions 1, 2 and 3

13.2 Animating Button Images
A common use for event handlers is to produce small animations to reinforce some aspect of the
user interface. There are many situations where this may help the user to focus on some part of a Web
page. For example, the buttons used in the screen shot on the left below can be enhanced by
highlighting the button, as in the screen shot on the right below. This style of animation is known as
a 'Rollover'.

Indeed, most rollover arrangements will also include the text value of the images' ALT attributes, as
in the diagram below:

JavaScript 2: Event Handling

8

How can you script such an interaction? The basic strategy is to swap an image that represents
an unselected button, for example the first image below, with an image that represents the
selected button, such as the second image below, and then swap it back.

Exercise 5

Can you think of the event or events that would trigger these swaps? And can you guess how you
would refer to the image object from within the event handlers?

You can find a discussion of this exercise at the end of the unit.

The HTML/JavaScript code for the button rollover is as follows:

<IMG VSPACE=2 SRC="prod-cat-button.gif"
onMouseOver="this.src='prod-cat-but
onMouseOut="this.src='prod-cat-button.gif'"
ALT="Check out the full Catalspecial orders.">

The IMG tag is just as you have previously seen. Ignoring the event handlers, it guarantees vertical
spacing of two (via VSPACE attribute) and specifies the source of the image to be prod-cat-
button.gif (via the SRC attribute); at the end of the tag it specifies the alternative (ALT) to the graphic
image that also provides help to the user when the mouse pointer is over the button image.

As you might guess from the earlier use of the this variable with button objects, this is used in
the event handlers to refer to the object corresponding to the graphical image being used as a
button. As IMG tags have a SRC attribute, so to image objects have a src property accessible in
JavaScript. Hence, within each of the event handlers the src property is changed to modify what
image is being shown. In the mouse-over event handler, the image source is changed to refer to
the graphic image that represents the selected version of the button. So, for example, if the image
source specifies the file containing the first image below, moving over the image will change its
source to specify the file containing the second image. When the mouse pointer leaves the image,
the original graphic (image 1) is restored.

JavaScript 2: Event Handling

9

Exercise 6
Complete the HTML/JavaScript for the button rollover interaction shown in the previous
diagram using the 'this' style of referencing the image and placing break (
) tags after each
image () tag.

You can find a discussion of this exercise at the end of the unit.

Activity 3: onMouseOver Event with an image

Choose a gif, jpg or png image of your choice. Write an HTML page that displays the image and
produces a warning dialogue box when the mouse pointer is over the image.

You can find a discussion of this activity at the end of the unit.

Activity 4: onMouseOver Event with an image

Produce an HTML page that displays the image you used in Activity 3, but in this page make the
status bar gives different messages according to whether or not the mouse pointer is over the image.
You will need to use the event handler onMouseOut.

You can find a discussion of this activity at the end of the unit.

Activity 5: changing an Image object

Every IMG HTML tag has an equivalent JavaScript image object. To make these objects easily
accessible it is possible to provide a NAME attribute to the IMG tag. For example, to give an
image the name "change", we would use the following IMG attribute:

NAME="change".

Now, in any JavaScript used in the HTML page, the image object will be stored in a variable called
change. So, to access the image's src property, you could use the following code:

change.src

Now, try to set up an image and change it to another image when the mouse goes over it. If you
have problems, look at the source code for the example above.

You can find a discussion of this activity at the end of the unit.

13.3 Conditional Execution
As in Java, JavaScript provides an if statement which, based on the value of a variable or
other expression, can conditionally choose particular JavaScript code to execute.

13.3.1 JavaScript if statement
The if statement appears exactly as it does in Java (an expression that evaluates to true or false
must be included in parentheses):

if (true or false expression)
statement

The expression in parentheses is evaluated and if it is true the following statement is executed; if
it is false, it is not. Recall that the window.confirm() method returns true or false depending on

JavaScript 2: Event Handling

10

whether the user clicks OK or Cancel. We will now use confirm() in an example of the if
statement:

var member
member = window.confirm('Please confirm you are a member of
the shopping club')
 if (member)
window.alert('Welcome to the Shopping Club')
</SCRIPT>

This code produces a confirmation dialogue box. When the user clicks OK a welcome dialogue
box appears, as below.

if statements also have a matching else statement, which behaves as in Java:

if(true or false expression)
statement_1

else
statement_2

statement_2 is only executed if the expression in parentheses evaluates to false.

Exercise 7

Change the previous script to display the following dialogue box if Cancel is clicked by the user when asked
to confirm membership.

You can find a discussion of this exercise at the end of the unit.

13.4 Code blocks
To execute more than one statement in a conditional, you may use code blocks, which are
sequences of statements packaged together between braces — { and }. Code blocks behave just as
they do in Java, and can be used in the same places.

The most general form of an if statement can be written as follows:

if (true or false expression)
{

statement_1a

JavaScript 2: Event Handling

11

statement_1b
}

and

if (true or false expression)
{

statement_1a
statement_1b
statement_1c
...
statement_1n

}
else
{

statement_2a
statement_2b
statement_2c
...
statement_2n

}

Let us extend the shopping example from the introduction to the if statement to provide the user
with a table of possible purchases if they are a member of a shopping club.

Exercise 8

Remembering that you can dynamically create the content of an HTML document using the
document.write() method, change the shopping example to ask for confirmation of, say membership
of an Italian food shopping club. If the user clicks OK, they should be presented with a table of
shopping choices, as in the following:

You can find a discussion of this exercise at the end of the unit.

13.5 Boolean operators
So far we have used the window.confirm() method that is guaranteed to return either true or false.
In a more general case, you will obtain true / false values by comparing two or more values.

Of course, you need to be able to compare all kinds of values and make a variety of comparisons.
Here are the main operators for doing, which should be familiar to you from the Java module:

Operator Example Meaning
== a == b equality between any two
 values; returns true or false
 (example tests for a being equal
 to b)
!= a != b inequality between any two

values; returns true or false
(example tests for a not being
equal to b)

JavaScript 2: Event Handling

12

Operator Example Meaning
=== a === b identity between any two

objects; returns true or false
(example tests to see if a refers to
the same object as b)

!== a !== b non-identity between any two
objects; returns true or false
(example tests to see if a does not
refer to the same object as b)

< a < b less than between any two
values; returns true or false
(example tests for a being less
than b)

<= a <= b less than or equal to between any
two values; returns true or false
(example tests for a being less
than or equal to b)

> a > b greater than between any two
values; returns true or false
(example tests for a being greater
than b)

>= a >= b greater than or equal to between
any two values; returns true or
false (example tests for a being
greater than or equal to b)

&& a && b logical 'and' between two
Boolean (true/false) values
(example returns true only if
both a and b are true, and false

th i) || a || b logical 'or' between two Boolean
(true/false) values (example
returns false only if both a and b
are false, and true otherwise)

! !a logical 'not' of one Boolean (true/
false) value (example returns
false if a is true and true if a is
false)

13.6 General Selection
Because of the simple general form of the if ... else statement, you can use it as a very general
selection mechanism by combining if statements in sequence, as in the code below, which
determines the day of the week (in English) from the numeral for that day held by a Date object.
Days of the week were numbered from 0 for Sunday, through to 6 for Saturday.

<SCRIPT>
var today = new Date()
var dayNo =
today.getDay() if (dayNo
== 0)
dayName = 'Sunday'
else if (dayNo ==
1) dayName =
'Monday' else if
(dayNo == 2)
dayName =
'Tuesday' else if

JavaScript 2: Event Handling

13

(dayNo == 3)
dayName =
'Wednesday' else
if (dayNo == 4)
dayName =
'Thursday' else if
(dayNo == 5)
dayName = 'Friday'
else if (dayNo ==
6)
dayName = 'Saturday'
window.alert('Local day
is ' + dayName)

</SCRIPT>

Note that there are other control statements in JavaScript. An alternative to using multiple
if...else statements would be to use a switch statement. Use your knowledge of Java to experiment
with these statements.

Exercise 9

Navigator objects provide properties and methods for manipulating the Web browser. A pre-
declared variable called navigator can be used for this purpose. The following code writes
out details of the browser:

document.write('appCodeName = ',
navigator.appCodeName, '
') document.write('appName
= ', navigator.appName, '
')
document.write('appVersion = ', navigator.appVersion,
'
') document.write('language = ',
navigator.language, '
') document.write('platform =
', navigator.platform, '
')

You can find a discussion of this exercise at the end of the unit.

Activity 6: Remembering an Event

Modify the code of Exercise 2 (reproduced below), in which a button changed labels after being
clicked, so that clicking the new button has no effect.

<FORM>
<INPUT type=button value="Click to order"

onClick="window.alert('Purchase confirmed. Thank
you'); this.value = '[purchase confirmed]'">

</FORM>

You can find a discussion of this activity at the end of the unit.

Now do Review Questions 7, and 8.

13.7 HTML Attributes for Event
handling

There are many HTML attributes for handling events in JavaScript. The following table lists the main
ones, and the objects that support them. You do not have to memorise this list, but you should be aware of
the sort of events that can be handled.

HTML Event Attribute Object supporting event

JavaScript 2: Event Handling

14

HTML Event Attribute Object supporting event
onAbort — triggered when document loading
interrupted

Image

onBlur — triggered when an input element loses
focus

Text elements, Window, other elements

onChange — triggered when user selects or
deselects an element or enters text and moves
focus to another input element

Select, text input elements

onClick — triggered when user clicks once; return
false to cancel default action of following a link,
submitting, etc.

Link, button elements

onError — triggered when an error occurs while
loading an image

Image

onFocus — triggered when an element is given
focus

Text elements, Window, other elements

onKeyDown — triggered when a key is pressed
down by user; return false to cancel

Document, Image, Link, Text elements

onKeyPress — triggered when key is either
pressed or released; return false to cancel

Document, Image, Link, Text elements

onKeyUp — triggered when the user released a
key; return false to cancel

Document, Image, Link, Text elements

onLoad — triggered when document or image
finishes loading

Window, Image

onMouseDown — triggered when mouse left
button pressed down by user; return false to

l

Document, Image, Link, button elements

onMouseOut — triggered when mouse is moved
away from element

Link, Image, Layer

onMouseOver — triggered when mouse pointer
moved over element; for anchors, return true to

 URL di l i

Link, Image, Layer

onMouseUp — triggered when user releases
mouse button; return false to cancel

Document, Image, Link, button elements

onReset — triggered when form reset requested;
return false to stop reset

Form

onResize — triggered when window is resized Window

onSubmit — triggered when form submission
requested; return false to stop submission

Form

Now do Review Questions 9 and 10.

13.8 Extension

13.8.1 Variables and their Scope
As you might have discovered, if you forget to declare a variable JavaScript will implicitly declare it for you.
That is, if you write origBgCol = document.bgColor, JavaScript will declare the variable origBgCol if it has not
previously been declared in some way (such as with a var statement). However, if you attempt to retrieve a value
from a variable that has not been declared, as in document.bgColor

= origBgCol, then JavaScript will report an error.

Also associated with variable declaration is the variable's scope and its search chain. These define respectively

JavaScript 2: Event Handling

15

the region of the JavaScript program in which the variable can be seen, and the way in which JavaScript looks for
the variable, and operate in the same way as they do in Java. Details can be found in JavaScript, The Definitive
Guide, 3rd edition, by David Flannagan, O'Reilly Books, 1998. The rules explain why the following solution to
Exercise 4 will not work:

<AHREF = "http://www.most-expensive-sellers.com"
onMouseOver="var origBgCol=document.bgColor;

document.bgColor = 'coral';return false"
onMouseOut="document.bgColor=origBgCol">

Come to our cheap on-line store

In the above example, the scope of origBgCol is the onMouseOver event handler, as this is where the variable is
declared. Since the onMouseOver and onMouseOut scopes do not overlap, when JavaScript searches for
origBgCol in the onMouseOut handler will not find the variable, and since it is attempting to obtain a value from
an undeclared variable, an error is reported. Declaring origBgCol in the onMouseOut handler would not work
either, as all it would do is declare two separate variables which have the same name in different scopes.

The solution to this is to declare the variable outside of both handlers, in some scope which they can both access.

13.9 Review Questions

13.9.1 Review Question 1
An event takes place and is conveyed to the Web browser and thence to the document. Describe what it means to
handle an event.

You can find the answer to this question at the end of the unit.

13.9.2 Review Question 2
Regardless of whether a handler has been provided, when a user of a Web browser clicks the mouse an mouse-
down event occurs. True or false?

You can find the answer to this question at the end of the unit.

13.9.3 Review Question 3
Do all events have to be captured by JavaScript code?

You can find the answer to this question at the end of the unit.

13.9.4 Review Question 4
When do you return true from an anchor event handler?

You can find the answer to this question at the end of the unit.

13.9.5 Review Question 5
What is the special keyword that acts like a variable that you use to refer to an object in its event handler?

You can find the answer to this question at the end of the unit.

13.9.6 Review Question 6

http://www.most-expensive-sellers.com/

JavaScript 2: Event Handling

16

What is the basic strategy for animating button rollovers? You can find the answer to this question at the end of the

unit.

JavaScript 2: Event Handling

17

13.9.7 Review Question 7
What is the name of the variable that refers to the browser object? You can find the answer to this question at the

end of the unit.

13.9.8 Review Question 8
True or false: you can't capture a mouseOver event unless the mouse is over an anchor or an image. You can find the

answer to this question at the end of the unit.

13.9.9 Review Question 9
Which is not an event handler attribute?

1. onMouseClick

2. onMouseOut

3. setTimeout

4. onLoad

You can find the answer to this question at the end of the unit.

13.9.10 Review Question 10
True or false: Events occur on objects.

You can find the answer to this question at the end of the unit.

13.10 Discussions and Answers

13.10.1 Discussion of Exercise 1

The event handler starts the same with the HTML attribute onClick="... Then the variable for saving the initial
background colour must be declared: var currentBack; with a semicolon terminating the statement. Then comes
the colour changes, each with semicolons at the end of the statement. Next the initial colour is restored with
document.bgColor = curentBack. A semicolon is needed after this too. The last statement is the alert message to
window, as before. Putting it all together gives:

Note to implementer: the statement below must be on one line.

<INPUT type=button value="Click to order" onClick="var currentBack;
currentBack = document.bgColor; document.bgColor = 'blue';
document.bgColor = 'coral'; document.bgColor = 'blue';
window.alert('Purchase confirmed. Thank you')">

Note that if you were to try this on a fast PCs you might find that the flashing is not noticeable.

13.10.2 Discussion of Exercise 2
The HTML/JavaScript code is given below.

JavaScript 2: Event Handling

18

<FORM<
<INPUT type=button value="Click to order"
onClick="window.alert('Purchase
</FORM<

The JavaScript works as before: when the user clicks on the button a dialogue box is displayed.
Then the label is changed using the assignment this.value = '[purchase confirmed]' (which is, of
course, preceded by a semicolon).

But, what will happen if the user were to click on the newly labelled button? Exactly the same
thing would happen. The handling of the previous onClick event has not been remembered —
events are not remembered, they continuously happen — and so the behaviour of this little system
remains the same. Later we will see how an event can, in effect, be remembered and that memory
used to affect behaviour.

13.10.3 Discussion of Exercise 3
The first part of the tag and the text that immediately precedes the closing tag are standard
HTML and together set up a link to Apple.co.uk with the specific URL. What follows the value for
the HREF attribute, the URL, is an attribute that specifies in JavaScript what reaction there is to be
to an event that is expected to happen with this HTML tag. The expected event is that the user will
place the mouse pointer over the anchor; this is denoted by the attribute onMouseOver. The value
of the attribute (i.e. what follows the = symbol) is the JavaScript to 'handle' the event. The
JavaScript simply changes the status area of the browser's border. So, the combination of the
onMouseOver attribute corresponding to the mouse-over event, and the JavaScript to change the
window status means that when the mouse pointer is placed on this link, the message string is
displayed in the browser's status bar.

13.10.4 Discussion of Exercise 4
The JavaScript code is given below.

<SCRIPT>var origBgCol</SCRIPT>

<AHREF = "http://www.most-expensive-
sellers.com"
onMouseOver="origBgCol=document.bgColor;
document.bgColor = 'coral';return false"
onMouseOut="document.bgColor=origBgCol"<

Come to our cheap on-line store<A>

The most important aspect of this code is the use of the origBgCol variable to remember the
original background colour. The assignment takes place as part of handling mouse-over event,
while the variable is declared outside the event handler. Alternatively, the assignment can also be
done outside the event handler, thus:

<SCRIPT>
var origBgCol
origBgCol=document.bgColor
</SCRIPT>

<AHREF = "http://www.most-expensive-sellers.com"

onMouseOver="document.bgColor = 'coral';return false"
onMouseOut="document.bgColor=origBgCol">

Come to our cheap on-line store

13.10.5 Discussion of Exercise 5

http://www.most-expensive-sellers.com/
http://www.most-expensive-sellers.com/
http://www.most-expensive-sellers.com/

JavaScript 2: Event Handling

19

For the rollover style of interaction you need to swap the button image with the highlighted image when the
mouse-over event is triggered, and swap it back when the mouse-out event takes place.

To refer to the image object whose image is to be swapped you need to use the this keyword.

13.10.6 Discussion of Exercise 6
Your code might look something like the one below. Note how this is used to denote the image object within whose
tag the JavaScript appears.

<IMG VSPACE=2 SRC="prod-cat-button.gif"
onMouseOver="this.src='prod-cat-button-sel.gif'"
onMouseOut="this.src='prod-cat-button.gif'"
ALT="Check out the full Catalogue with details of

special orders.">

<IMG VSPACE=2 SRC="order-status-button.gif"
onMouseOver="this.src='order-status-button-
sel.gif'" onMouseOut="this.src='order-status-
button.gif'"
ALT="If you have placed an order that has not been

delivered, look here for info.">

<IMG VSPACE=2 SRC="message-button.gif"
onMouseOver="this.src='message-button-sel.gif'"
onMouseOut="this.src='message-button.gif'"
ALT="Submit a form requesting sales information or
for someone to call you.">

<IMG VSPACE=2 SRC="online-shop-button.gif"

onMouseOver="this.src='online-shop-button-sel.gif'"
onMouseOut="this.src='online-shop-button.gif'"
ALT="Registered customers can browse products and

prices and place orders online.">

<IMG VSPACE=2 SRC="retailers-button.gif"

onMouseOver="this.src='retailers-button-sel.gif'"
onMouseOut="this.src='retailers-button.gif'"
ALT="Find out about shops near you where you can

examine and buy our products.">

<IMG VSPACE=2 SRC="contacts-button.gif"

onMouseOver="this.src='contacts-button-sel.gif'"
onMouseOut="this.src='contacts-button.gif'"
ALT="Names, postal addresses, telephone and fax

numbers for you to contact all our departments.">

JavaScript 2: Event Handling

20

13.10.7 Discussion of Exercise 7

<SCRIPT>
var member
member = window.confirm('Please confirm you are a member of the
shopping club')
 if (member)
window.alert('Welcome to the Shopping Club')
else
window.alert('Sorry you cannot shop here unless you are a member of Shopping
Club')
</SCRIPT>

13.10.8 Discussion of Exercise 8
The following JavaScript achieves the desired behavior. Notice the form of the if ... else statement and how code
blocks are used.

<!DOCTYPE html>
<!-- Copyright (c) 2015 UCT -->
<html>
<BODY>
<SCRIPT>

var member
member = window.confirm('Please confirm you are a member of the Italian food
club')

if (member)
{
 //next are JavaScript document writes to include a table
 //of items and prices document.write('<TABLE BORDER=1>')
 document.write('<CAPTION>Quick Meals from Italy Delivered To Your
Door</CAPTION>')
 document.write('<TABLE style= "width: 40%" border = "1">')
 document.write('<TR>')
 document.write('<TD>Pizza Margherita</TD><TD>21,000 Lire</TD>')
 document.write('</TR>')
 document.write('<TR>')
 document.write('<TD>Risotto Milanese</TD><TD>18,500 Lire</TD>')
 document.write('</TR>')
 document.write('<TR>')
 document.write('<TD>Tortellini con funghi</TD><TD>24,000 Lire</TD>')
 document.write('</TR>')
 document.write('</TABLE>')
}
else
{
window.alert('Sorry, please go back to the membership enrolment page')
//next is JavaScript to go back to a membership form
document.write('<A href="http://www.food-
shopping.co.it/registration/register/"> Registration form ')

}
</SCRIPT>
</BODY>
</html>

JavaScript 2: Event Handling

21

13.10.9 Discussion of Exercise 9

if (navigator.appName.substr(0,8) == 'Microsof')

window.alert('This is a Microsoft browser')
if (navigator.appName.substr(0,8) == 'Netscape')
window.alert('This is a Netscape browser')

13.10.10 Discussion of Activity 1
Clicking on Input Buttons

1. The code from Exercise 1 is repeated below:

<INPUT type=button value="Click to order"
onClick="var currentBack; curentBack = document.bgColor;
document.bgColor = 'blue'; document.bgColor = 'coral';
document.bgColor = 'blue';; window.alert('Purchase
confirmed. Thank you')">

2. The modified version is given below.

<FORM>
<SCRIPT>
var person = prompt('What is your name?','')
</SCRIPT>
<INPUT type=button value="Click to order"

onClick="var currentBack; curentBack = document.bgColor;
document.bgColor = 'blue'; document.bgColor = 'coral';
document.bgColor = 'blue';; window.alert('Purchase
confirmed. Thank you '+person);
this.value='Click to confirm, '+person">

</FORM>

13.10.11 Discussion of Activity 2

<A HREF = "http://www.most-expensive-sellers.com"
onClick = "status='Enjoy your shopping!';return false">

Come to our cheap on-line store

13.10.12 Discussion of Activity 3
Your code might look something like:

<IMG SRC="right.gif" onMouseOver="window.alert('Warning: over image')" ALT=

13.10.13 Discussion of Activity 4

http://www.most-expensive-sellers.com/

JavaScript 2: Event Handling

22

Your code might look something like:

13.10.14 Discussion of Activity 5

Your code might look something like:

<IMG SRC="left.gif" onMouseOver="this.src='right.gif'"
onMouseOut="this.src=

13.10.15 Discussion of Activity 6
The code is changed merely by adding a variable to remember that the originally labelled button was clicked and
an if statement to test for this and avoid doing anything if the button has previously been clicked.

<FORM>
<SCRIPT>var stillToConfirm = true</SCRIPT>
<INPUT type=button value="Click to order"

onClick="if (stillToConfirm){window.alert('Purchase confirmed.
Thank you'); this.value = '[purchase confirmed]';stillToConfirm
= false}">

</FORM>

13.10.16 Answer to Review Question 1
An event is something whose occurrence you can capture by providing JavaScript code to handle it in the object
where the event takes place. When you capture it, you can execute JavaScript to perform some action.

13.10.17 Answer to Review Question 2
This statement is true. The event occurs whether there is a handler or not. If there is a handler the code is executed.
A separate event occurs when the user releases the mouse button.

13.10.18 Answer to Review Question 3
No, most events are not captured by JavaScript code. The browser will handle events in a default manner if no
code is written. Indeed most events are simply ignored by the browser.

13.10.19 Answer to Review Question 4
You return true when you do not want the browser to show the anchor's link URL in the window's status area.

13.10.20 Answer to Review Question 5
The keyword is this.

13.10.21 Answer to Review Question 6
You have to arrange that the graphics representing the normal button and the selected button replace each other as
the mouse pointer is moved over the button (or anchor) and then away again. This means you have to update the src
property of the image object to be assigned one graphic or another.

JavaScript 2: Event Handling

23

13.10.22 Answer to Review Question 7
The browser object is referred to by the variable navigator.

13.10.23 Answer to Review Question 8
This statement is false. There are many HTML tags that can have event handlers for the mouseOver event. <p>,
<div>, and <h1> and a few other marks.

13.10.24 Answer to Review Question 9

setTimeout is not an event. It is merely a function which will cause an event to happen. Other functions and actions
can cause events to happen. For instance, if a function loads a new document into the current window, this will
cause an onLoad event.

13.10.25 Answer to Review Question 10
This statement is true. An HTML mark such as <a> represents an object. In fact, there is a very close relation
between HTML marks and JavaScript objects.

	Objectives
	13.1 Introduction
	13.1.1 Event-based Programming
	13.1.2 Event Handlers 'One Liners'
	13.1.3 Events and objects
	13.1.4 Anchor Events

	13.2 Animating Button Images
	13.3 Conditional Execution
	13.3.1 JavaScript if statement

	13.4 Code blocks
	13.5 Boolean operators
	13.6 General Selection
	13.7 HTML Attributes for Event handling
	13.8 Extension
	13.8.1 Variables and their Scope

	13.9 Review Questions
	13.9.1 Review Question 1
	13.9.2 Review Question 2
	13.9.3 Review Question 3
	13.9.4 Review Question 4
	13.9.5 Review Question 5
	13.9.6 Review Question 6
	13.9.7 Review Question 7
	13.9.8 Review Question 8
	13.9.9 Review Question 9
	13.9.10 Review Question 10

	13.10 Discussions and Answers
	13.10.1 Discussion of Exercise 1
	13.10.2 Discussion of Exercise 2
	13.10.3 Discussion of Exercise 3
	13.10.4 Discussion of Exercise 4
	13.10.5 Discussion of Exercise 5
	13.10.6 Discussion of Exercise 6
	13.10.7 Discussion of Exercise 7
	13.10.8 Discussion of Exercise 8
	13.10.9 Discussion of Exercise 9
	13.10.10 Discussion of Activity 1
	13.10.11 Discussion of Activity 2
	13.10.12 Discussion of Activity 3
	13.10.13 Discussion of Activity 4
	13.10.14 Discussion of Activity 5
	13.10.15 Discussion of Activity 6
	13.10.16 Answer to Review Question 1
	13.10.17 Answer to Review Question 2
	13.10.18 Answer to Review Question 3
	13.10.19 Answer to Review Question 4
	13.10.20 Answer to Review Question 5
	13.10.21 Answer to Review Question 6
	13.10.22 Answer to Review Question 7
	13.10.23 Answer to Review Question 8
	13.10.24 Answer to Review Question 9
	13.10.25 Answer to Review Question 10

