

Chapter 16. JavaScript 3: Functions

Table of Contents

Objectives .. 2
14.1 Introduction .. 2

14.1.1 Introduction to JavaScript Functions .. 2
14.1.2 Uses of Functions ... 2

14.2 Using Functions ... 2
14.2.1 Using built-in functions .. 3
14.2.2 Using user-defined functions .. 3
14.2.3 Defining and invoking a function in the same file .. 3
14.2.4 Invoking a file defined in a different file .. 3
14.2.5 Executing code using 'eval' ... 4

14.3 Creating user-defined functions ... 4
14.3.1 A simple function to display the String “hello” .. 4
14.3.2 Creating a function using function statements .. 5
14.3.3 Creating a function using the 'Function()' constructor ... 5
14.3.4 Creating a function using function literals .. 6

14.4 Some simple functions ... 6
14.4.1 Mathematical functions ... 6
14.4.2 Functions that RETURN a value .. 7
14.4.3 Defining a function that returns a value .. 8
14.4.4 A date Function ... 8
14.4.5 The today function described .. 9

14.5 Mathematical Functions ... 11
14.5.1 A form for calculations ... 11
14.5.2 A familiar calculator interface .. 13
14.5.3 Some Function activities ... 15

14.6 Form Validation ... 17
14.6.1 Testing for empty fields .. 17
14.6.2 The HTML defining the table ... 17
14.6.3 The JavaScript function to validate the form fields .. 18
14.6.4 Simplifying the code with a new function .. 19
14.6.5 Improving user interaction .. 20
14.6.6 Validation of multiple fields ... 20

14.7 Testing for numeric fields .. 21
14.8 Testing for invalid field combination ... 23
14.9 The remaining activities ... 27

14.9.1 Activity 6: Completing the colour model form ... 27
14.9.2 Activity 7: Avoiding Multiple Messages .. 27

14.10 Review Questions.. 28
14.10.1 Review Question 1 ... 28
14.10.2 Review Question 2 ... 28
14.10.3 Review Question 3 ... 28
14.10.4 Review Question 4 ... 29

14.11 Discussion Topic ... 29
14.12 Extension: More complex functions.. 29
14.13 Discussions and Answers .. 31

14.13.1 Discussion of Exercise 1 .. 31
14.13.2 Discussion of Activity 1 ... 31
14.13.3 Discussion of Activity 2 ... 32
14.13.4 Discussion of Activity 3 ... 32
14.13.5 Discussion of Activity 4 ... 32
14.13.6 Discussion of Activity 5 ... 33
14.13.7 Discussion of Activity 6 ... 33
14.13.8 Discussion of Activity 7 .. 33

JavaScript 3: Functions

2

14.13.9 Discussion of Review Question 1 ... 35
14.13.10 Discussion of Review Question 2 ... 35
14.13.11 Discussion of Review Question 3 ... 36
14.13.12 Discussion of Review Question 4 ... 36
14.13.13 Thoughts on Discussion Topic ... 36

Objectives

At the end of this chapter you will be able to:

• Understand the importance of functions;
• Write HTML files using JavaScript functions;

14.1 Introduction

14.1.1 Introduction to JavaScript Functions
JavaScript functions are usually given a name, but since JavaScript functions are just objects in their own right, they
can be stored in variables and object properties (see later unit). Functions are different from other objects in that they
can be invoked (executed) with the use of a special operator ().

JavaScript provides many pre-written (built-it) functions, for example the function write, provided by the document
object (see in a later unit how related functions can be stored inside objects; as we noted a few units ago, such
functions are called methods).

An example of the write function being invoked is as follows:

document.write("This message appears in the HTML document");

An example of the alert function being invoked is as follows:

alert("This message appears in an alert dialog");

Some functions return a value. For example, mathematical functions perform calculations on the provided data
and return numerical results. Other functions return true/false values, or text. Some functions return no value at
all, but rather perform a side-effect; write is one such function whose side-effect is to send text to the HTML
document. Functions frequently both perform a side-effect and return a value.

14.1.2 Uses of Functions
Functions can be used for many different purposes. In the past, JavaScript was used to create scrolling status bar
messages for sites that want to give out important information that the user may miss while browsing the site (these
proved to be largely irritating to the user, and have been very rarely used in the last few years). Displaying the date
and time is also a common use of JavaScript. Image mouseovers, implemented using the HTML event system
described in the previous chapter, are also widely used.

Functions are very useful when used in conjunction with HTML forms. Form entry can be validated, and the input
of early parts of the forms might be used to invoke functions to automatically enter appropriate data in other
parts of the forms.

To Do

Read up about JavaScripts Functions in your textbook.

14.2 Using Functions

JavaScript 3: Functions

3

14.2.1 Using built-in functions
The following lines illustrate the use of built-in functions:

document.write("Hello"); document.write(
Math.sqr(2));
document.write("The bigger of 4 and 5 is : " + Math.bigger(4, 5));

14.2.2 Using user-defined functions
You can define your own functions in the same file that they are invoked in, or in a different file which you can then
load in a browser whenever you wish to use the function. Each of these situations are illustrated below.

14.2.3 Defining and invoking a function in the same file
The following code defines and invokes a function named displayHello:

<HTML>
<SCRIPT>
/////////////////////////////
/// define function here ///
///////////////////////////// function
displayHello()
{
document.write("Hello")
}
/////////////////////////////
/// invoke function here ///
///////////////////////////// displayHello();
</SCRIPT>

</HTML>

The browser output when this HTML file is loaded is as follows:

14.2.4 Invoking a file defined in a different file
Some functions prove very useful; in order to use them in multiple Web pages they can be stored in a separate
file. In the example below, the function displayHello has been defined in the file helloFunction.js. The HTML
below uses two <SCRIPT> tags, one to load the function definition from helloFunction.js, and the second to invoke
the function:

<SCRIPT SRC="helloFunction.js"></SCRIPT>
<SCRIPT> <!--
/// invoke function here /// displayHello();
</SCRIPT> -->

JavaScript 3: Functions

4

The contents of the file helloFunction.js is simply the JavaScript definition of the function:

/// define function here /// function displayHello()
{
document.write("Hello")
}

Notice that helloFunction.js is not an HTML file and does not contain any HTML tags. This is signified by choosing an
appropriate file extension — the convention is to use the two-character extension ".js" for JavaScript files.

14.2.5 Executing code using 'eval'
The eval operator expects a String containing JavaScript as an argument, and will execute the String as if it where a
JavaScript statement. The code below creates a String named myStatements and then executes the String using eval:

var myStatements = " var n = 10; alert(n); n++; alert(n) " ;
eval(myStatements);

The result of executing this code is the two alert dialogs:

14.3 Creating user-defined functions

14.3.1 A simple function to display the String “hello”
Let’s assume that we want to create a function that simply executes the following line:

document.write("Hello");

This function does not need any arguments, since it will do the same thing every time. The body of our function
will be the single JavaScript statement above.

The table below illustrates a design for our function:

Name (optional)
Arguments (optional)

JavaScript 3: Functions

5

body document.write("Hello")
Returns (optional)

Depending on how we create the function, we may or may not need to name the function (in most cases it is
useful to name functions).

14.3.2 Creating a function using function statements
The most convenient way to define a function is to use the function operator. The following example defines the
displayHello function previously used:

function displayHello()
{
document.write("Hello");
}

The function operator requires the following:

function displayHello() -- Function name followed by list
of arguments
{ -- Open Brace
document.write("Hello"); -- Sequence of JavaScript statements
forming the
} -- Close Brace

As can be seen above, if there are no arguments an empty pair of parentheses () is written after the function name.

Our function design looks like the following:

Name (optional) displayHello

Arguments (optional)
body document.write("Hello")

Returns (optional)

14.3.3 Creating a function using the 'Function()'

constructor
Another way to define a function is by using the Function() constructor. Recall that functions are themselves
just objects, and that objects are created using constructor functions. Function() allows a function to be defined
by passing a series of Strings to it. All but the last String lists the arguments to the function, while the last String
defines the sequence of statements that form the function's body.

The Function() constructor returns a function which can be assigned to a variable of your choice. So, we can

now define displayHello() in this alternate way:

var displayHello = new Function("document.write('Hello');");

Notice how there is no need for braces { } to be used, since the body statements are contained in a String.
Defining functions with Function() constructor is less convenient than using the function operator, but is
extremely useful when dynamically creating functions, since the function arguments and body can easily be
created as Strings.

Notice the single quotes around 'Hello' — a double quoted String cannot appear inside a double quoted
String. Having single quotes on the outside, and a double quoted "Hello" works just as well:

JavaScript 3: Functions

6

var displayHello = new Function('document.write("Hello");');

In our above call to Function() there is only one String, since displayHello() requires no arguments. As before,

our function design looks like this:

Name (optional) displayHello
Arguments (optional)
body document.write("Hello")
Returns (optional)

14.3.4 Creating a function using function literals

Another third way to define a function is by using a function literal. This approach is very similar to using the
function operator, except that the function is now nameless, although it can still be assigned to an arbitrary
variable.

To define displayHello using a function literal, we would write the following:

var displayHello = function() { document.write("Hello"); }

Notice that function literals use a very similar syntax to function statements, and differ only in that the name of
the function is not given.

Note

Although there are three different ways to define a function, in most situations you will find that using named
functions defined with the function operator (the first technique described above) is easiest, although the
other techniques all have their uses.

All the examples in the rest of this unit (and in most of the other units) define functions using the function
operator.

14.4 Some simple functions

14.4.1 Mathematical functions
A JavaScript function to add two numbers:

function add()
{

document.write(5+5);
}
add();

Name (optional) add

Arguments (optional)
body document.write(5+5)

Returns (optional)

JavaScript 3: Functions

7

And functions to perform various other arithmetical operations:

function minus()
{

document.write("<p>" + (6-4));

}
function times()
{

document.write("<p>" + 6*4);

}
add();
minus();
times()

Note: Function naming convention

You should always name your functions and variables with a lower case first letter, unless you are writing a
function that will act as a constructor (see later unit). If your function name is made up of a number of words,
start the second and subsequent words with an upper case letter to make the names more readable. Examples
might include:

• function calculateTaxTotal()

• function changeImage()

• function setCircleRadius()

• function divide()

14.4.2 Functions that RETURN a value
Most mathematical functions do not display their results in an HTML document: they only calculate and return
intermediate results for use by other functions.

For example, the code below uses the Math.pow(value, power) function to calculate the area of a circle. Also
the Math.round() function is used to create roundedArea.

// calculate circle ara
var radius = 10;
var circleArea = 3.1415 * Math.pow(radius, 2);
// round to 2 decimal places
var roundedArea = Math.round(circleArea * 100) / 100;
document.write("<p> Area of circle with radius " + radius + "
has area of " + circleArea);
document.write("<p> rounded area is " + roundedArea);

JavaScript 3: Functions

8

14.4.3 Defining a function that returns a value
Creating a user-defined function that returns a value is straightforward: at some point in the function's execution a
return statements needs to be executed. Typically, functions returning a value require arguments that will be
used in the calculation of that value.

For example we might wish to define a function addVAT(total) which adds 14% to a total, and returns this new
value. The specification for our function might appear as follows:

Name (optional) addVAT
Arguments (optional) total

body return (total * 1.14)
Returns (optional) Value representing 14% VAT added to total

function addVAT(total)
{
return (total * 1.175);
}
var goodsTotal -=50;
writeln(" total before tax = " + goodsTotal);
var newTotal = addVAT(goodsTotal);
writeln("<p> total with tax added " + newTotal);

As can be seen, to make a function return a value we include a return statement after having done the appropriate
calculation.

Arguments are named like variables (in fact they can be though of as a kind of local variable). So these named
arguments can be referred to in the processing and calculation of the function.

14.4.4 A date Function
The function below displays the current date and time:

//function name
function today()
//begin function statements
{
//declare variable dayAndTime
// and initialise to become a new Date object
var dayAndTime = new Date()
//write date to browser page
document.write("The date is: " + dayAndTime)
//end function statements
}
//invoke function
today()

JavaScript 3: Functions

9

The above code includes many comments explaining how it functions. Without these comments the function and
its invocation would look as follows:

function today()
{
//declare variable dayAndTime
// and initialise to become a new Date object
var dayAndTime = new Date()
//write date to browser page
document.write("The date is: " + dayAndTime)
}
today()

The browser output is as follows:

Note

The behaviour of the scripts may vary according to which Web browser you use.

14.4.5 The today function described
This function has been defined with:

function today()
{
...
}

The first statement declares a variable called dayAndTime initialised with a Date object. Date was discussed in
previous units, and allows access to the current date and time.

Note

JavaScript is case sensitive. The variable dayAndTime is not the same a dayandtime.

It is a good idea to keep all your JavaScript in one case. Lowercase letters, except for the first letter of the
second and later words, is the most appropriate choice (unless working with class names).

At this point, the function now has the date and time stored, but has not yet displayed it. The second statement does
this:

document.write("The date is: " + dayAndTime)

In the second statement the document object refers to the primary Web browser window. The method
write allows content to be written to the browser.

The output is determined in this particular instance by:

("The date is: " + dayAndTime)

The value of variable dayAndTime is converted to text and concatenated (added) to the String "The date is: ".

JavaScript 3: Functions

10

This new String is sent to the write statement and displayed in the browser window.

Exercise 1

Open a new notepad document and write (or copy) the script for the today function. Save the document as
"today.html" (or something similar) and load this HTML document into your Web browser. Your browser
should look similar to the one in 14.4.4.

Your first task is to familiarise yourself with this function.

1. Change all uses of the function name today() to an alternative name. Save and reload your changed HTML

file.

JavaScript 3: Functions

11

2. Change dayAndTime to an alternative name. Save and reload your changed HTML file.

3. Add the window.status = dayAndTime; statement. Remember to use the new name you've given the

dayAndTime variable name.

What does this new statement do? Save and reload your changed HTML file. You can find some

thoughts on this exercise at the end of the unit.

14.5 Mathematical Functions

14.5.1 A form for calculations

The form we shall develop

We shall progress in stages to a form providing a simple calculator as follows:

The above image shows an example of a single line text field with 4 * 7 in it. By clicking on the Click for answer
button the result appears in the second (result) text field.

There are two important events that happen on such a form:

• The user clicking the "Click for answer button".

• The user clicking the "Clear" button.

A function that evaluates the calculation in the first text box and places the result in the second text box. The second of

these events can be more simply implemented with a form reset button.

The other events that occur will be the user typing in a calculation in the "Calculation:" text field. The browser will
ensure that the user's input is stored in the appropriate form's text field.

The HTML for the form

The following HTML code displays the text, the text boxes and the two buttons:

<FORM>
Calculation: <INPUT TYPE=text NAME=expression SIZE=15>

Result: <INPUT TYPE=text NAME=answer SIZE=15>

<INPUT TYPE=button VALUE="Click for answer"

JavaScript 3: Functions

12

onClick="calculate(this.form)">
<INPUT TYPE=reset VALUE="Clear">
</FORM>

As you can see, when the first (Click for answer) button is clicked it will call the calculate() function,
passing it the argument form. This argument refers to the form the button appears in.

The second button is a standard reset button called 'Clear'. When a 'reset' button is clicked, the browser
clears all text boxes in form.

There are two named text fields: expression and answer.

When the Click for answer button is clicked the JavaScript function calculate() is invoked, with the
argument this.form. This argument refers to the form in which the function is being invoked from.

The JavaScript Function

The function is quite straightforward: it retrieves the expression the user has entered in the text field
named expression, evaluates this expression and places the answer into the answer text field.

The function is passed an argument referring to the form where these buttons and fields are defined.
The function specification can be written as follows:

We can refer to the value of a text field by:

[formname].[fieldname].value

We have named our function argument theForm — this argument will refer to
whichever form the function has been called from.

As you can see, we are evaluating the contents of the expression form field as follows:

eval(theForm.expression.value)

The result of this expression is assigned to a variable called result:

var result = eval(theForm.expression.value);

The final statement assigns the result to the answer field.

theForm.answer.value = result;

The Full HTML file

The complete HTML file, including both function definition and HTML form, is as
follows:

<HTML> <HEAD> <SCRIPT>
function calc(theForm)
{
// evaluate the text field expression;

Name (optional) calculate

Arguments (optional) theForm
body var result = eval(

theForm.expression.value);
theForm.answer.value = result;

Returns (optional)

JavaScript 3: Functions

13

var result = eval(theForm.expression.value);
// put result into form field 'answer'
theForm.answer.value = result;
}
// </SCRIPT> </HEAD>
<BODY>
<FORM>
Calculation: <INPUT TYPE=text NAME=expression SIZE=15>

Result: <INPUT TYPE=text NAME=answer SIZE=15>

<INPUT TYPE=button VALUE="Click for answer"
onClick="calc(this.form)">
<INPUT TYPE=reset VALUE="Clear">
</FORM>

Note on eval statements

The eval statement will evaluate any JavaScript statement, not just those that perform mathematical
calculations. For example, try entering alert("Hello") in the text box — when evaluated the browser will
display the alert box.

We recommend validating the input to ensure that the expression is only mathematical before passing the entered
text to eval.

14.5.2 A familiar calculator interface

The HTML for the form

Let us consider a simple version of the calculator that only provides the digits 1, 2 and 3 and the addition (+)
operator:

We arrange the form in a table of three rows.
The first row of the table contains a text field to display the calculation and result:

<TR>
<TD colSpan=4><INPUT NAME=display size=30>
</TD>
</TR>

This first row uses a colspan of 4 to stretch over all the columns, and we name text field "display". The

second row contains four buttons (1,2,3 and +):

<TR>

<TD><INPUT TYPE=button VALUE=" 1 " onclick="append(this.form, 1)"
>
</TD>
<TD><INPUT TYPE=button VALUE=" 2 " onclick="append(this.form,
2)">

JavaScript 3: Functions

14

</TD>
<TD><INPUT TYPE=button VALUE=" 3 " onclick="append(this.form, 3)"
>
</TD>
<TD><INPUT TYPE=button VALUE=" + " onclick="append(this.form,
'+')" >
</TD>
</TR>

Each button has an onClick event handler that invokes a function append(). append() is passed two
arguments: this.form refers to the form the calculated is defined in, and the second argument is the
digit (or '+' character) to be appended to the display text field.

The third row of the table is composed of the clear and = buttons:

<TR>
<TD colSpan=2><INPUT TYPE=reset VALUE=" clear ">
</TD>
<TD colSpan=2><INPUT TYPE=button VALUE=" = "
onclick="calc(this.form)">
</TD>
</TR>

The clear button is another example of a TYPE=reset button. This button has been made to stretch
over two columns.

The = button has an onClick event handler that invokes the calc() function. As per usual, we pass it the
this.form form reference as an argument.

The JavaScript Functions

Our calculator form uses two functions: the append() function appends a digit or symbol to the display
text field, and the calc() function evaluates the expression in the display text field, and replaces the text
in the field with the calculated answer.

The append() function looks like this:

g

The calc() function is specified as follows:

The definition of the two functions follows:

function calc(theForm)
{
// evaluate the text field expression;
var result = eval(theForm.display.value);

Name (optional) append
Arguments (optional) theForm, appString

body theForm.display.value + appStrin

Returns (optional)

Name (optional) calc

Arguments (optional) theForm
body var result = eval(

theForm.display.value);
theForm.display.value = result;

Returns (optional)

JavaScript 3: Functions

15

// put result into form field 'answer'
theForm.display.value = result;
}

function append(theForm, appString)
{
theForm.display.value += appString
}

14.5.3 Some Function activities

Activity 1: Function to double a number

Create the specified function:

result);

Invoke this function twice, first for the number 2, and a second time for the number 10.

Write a paragraph tag (<p>) to separate the displays in the browser window.

After invoking the function, the browser output should appear as follows:

You can find a discussion of this activity at the end of the unit.

Activity 2: Function to return four times a number

Create a function to return its argument multiplied by four. This function

should be invoked as follows:

document.write("<p> 4 * 2 = " + fourTimes(2));
document.write("<p> 4 * 10 = " + fourTimes(10));

Browser output should be the following when your function is invoked:

Name (optional) displayDouble
Arguments (optional) num

body var result = num * 2;
document.write(num + " * 2 = " +

Returns (optional)

JavaScript 3: Functions

16

You can find a discussion of this activity at the end of the unit.

Activity 3: Decimal places function

Define a function to return its argument rounded to two decimal places. You can find a discussion of this activity at

the end of the unit.

Activity 4: Square root calculator form

Create a form that calculates square roots. The browser should look as follows:

Hint: to calculate the square root of a number you can use Math.sqrt(). You can find a discussion of this activity at

the end of the unit.

Activity 5: Completing the calculator form

Extend the file smallCalculator.html so that it is a complete calculator.

You can find a discussion of this activity at the end of the unit.

JavaScript 3: Functions

17

14.6 Form Validation

14.6.1 Testing for empty fields

An empty form field contains an empty String (i.e., "") as its value. Apart from seeing if the field's value is
equal to the empty String, you can also test for an empty field by examining the length of the field's value.
Since an empty field will have the empty String as its value, the length of the field's value will be zero.

Consider a page presenting the following form:

Let us assume that this form must have the first name and family name fields completed to be valid. The HTML

for the form is defined in a table. The form is named "order", and has an action to post
the input values — replace your@email.address.here with your own email address if you wish to try out this form
yourself.

<FORM NAME=orderform METHOD="post" ACTION="mailto:your@email.address.here"

The form has been defined with an onSubmit event handler. This handler needs to return a Boolean (true/false)
value, which, if false, will prevent the form from being submitted. Therefore we need to define a function called
validateOrderForm that returns a Boolean value true if the form is correct, and false if it is invalid in some way.

14.6.2 The HTML defining the table
The first row of the table displays First Name and a text input field:

<tr>
<td align=right> First name: </td>
<td>
<INPUT TYPE="text" NAME="firstName" SIZE=20>
</td>
</tr>

The text First Name has been right aligned to improve layout and readability of the form. The input field has
been named firstName — NAME="firstName"

mailto:your@email.address.here
mailto:your@email.address.here

JavaScript 3: Functions

18

The second row of the table displays Family Name and a text input field named familyName:

<tr>
<td align=right> Family name: </td>
<td>
<INPUT TYPE="text" NAME="familyName" SIZE=20>
</td>
</tr>

The third row of the table displays Telephone number and a text input field named telephone:

<tr>
<td align=right> Telephone number: </td>
<td>
<INPUT TYPE="text" NAME="telephone" SIZE=20>
</td>
</tr>

The fourth row of the table displays the two buttons:

<tr>
<td>
<INPUT TYPE="submit" VALUE="Submit this form">
</td>
<td>
<INPUT TYPE="reset" VALUE="Clear form and start again">
</td>
</tr>

14.6.3 The JavaScript function to validate the form fields
We can test the above HTML using a dummy function that always returns false (so the form is never posted). Such a function could
be written as:

function validateOrderForm()
{
alert("would validate form at this point");
// return Boolean valid data status return
false;
}

When we click the submit button we now see the alert dialogue appear:

To test if the firstName field is empty we can either compare the value of this field with an empty String:

JavaScript 3: Functions

19

orderform.firstName.value == ""

or we can test if the length of the value of this field is zero:

orderform.firstName.value.length == 0;

So if we wish our validateOrderForm() function to return true if the first name field has some value, and false otherwise we could
write the function as follows:

function validate()
{
// at this point no invalid fields have been encountered var
fieldsValid = true;
// test field firstname
var firstNameValue = orderform.firstName.value; if
(firstNameValue.length == 0)
{
fieldsValid = false;
}
// return Boolean valid fields status return
fieldsValid;
}

As can be seen above, first the value of the firstName field is retrieved and assigned to a local variable called firstNameValue. Next,
the length of this value is tested to see if it is zero. If it is, the Boolean variable fieldsValid is set to false to prevent the form from
being submitted by making the function return false. Otherwise the value of this Boolean variable is left alone, and the function
returns true.

If the first name field has had a value entered into, you may be informed that the form is about to be posted by the browser with a
message such as the following:

14.6.4 Simplifying the code with a new function
The test we wrote for an empty text field is very useful for a page with many fields, so we can write a simple function called
isEmpty() to do the test:

function isEmpty(fieldString)
{
if fieldString.length == 0 return true;
else
return false;
}

We can now rewrite the validate() function as follows:

JavaScript 3: Functions

20

function validate()
{
// at this point no invalid fields have been encountered var
fieldsValid = true;
// test field firstname
if isEmpty(orderform.firstName.value)
{
fieldsValid = false;
}
// return Boolean valid fields status return
fieldsValid;
}

14.6.5 Improving user interaction
While this works, the form is currently not very helpful to the user: if they click on the submit button and the first name field
empty, nothing happens. At the very least the form should inform the user as to why it is not being submitted. This is easily solved
by adding an alert statement, as in the following revised function definition:

function validate()
{
// at this point no invalid fields have been encountered var
fieldsValid = true;
// test field firstName

if (isEmpty(orderform.firstName.value))
{
alert("First name must have a value - form not submitted"); fieldsValid =
false;
}
// return Boolean valid fields status return
fieldsValid;
}

Now if the submit button is pressed and the firstName field is empty, the form is not submitted, and the user is presented with the
following dialog:

14.6.6 Validation of multiple fields

We can now extend our validate function to test the family name field as well:

function validate()
{
// at this point no invalid fields have been encountered var
fieldsValid = true;
// test field firstName

JavaScript 3: Functions

21

if (isEmpty(orderform.firstName.value))
{
alert("First name must have a value - form not submitted"); fieldsValid =
false;
}
// test field familyName
if (isEmpty(orderform.familyName.value))
{
alert("Family name must have a value - form not submitted"); fieldsValid =
false;
}
// return Boolean valid fields status return
fieldsValid;
}

If the user attempts to submit the form with an empty family name:

they will be presented with the following alert dialog and the form will not be posted:

14.7 Testing for numeric fields
Let us assume that only digits are permitted for the telephone number field (with no spaces, or dashes or parentheses for now).
Some examples of valid telephone numbers are:

44181362500
002356487
56478303

Any entry that contains non-numeric values should be considered invalid; the user should be informed of this, and the form should
not be submitted.

We can create a useful function notNumeric() that returns true if an argument passed to it is not a number. To write the
function we can make use of the special value returned by JavaScript when the result of an attempt to perform a numeric

JavaScript 3: Functions

22

expression is not a number: JavaScript evaluates such expressions to the String "NaN". Our function can be written as follows:

function notNumeric(fieldString)
{
if (String(fieldString * 1) == "NaN") return true;
else
return false;
}

We can use this function to extend the validate() function to now only return true if the telephone number consists of digits:

function validate()
{
// at this point no invalid fields have been encountered var
fieldsValid = true;
// test field firstName
if (isEmpty(orderform.firstName.value))
{
alert("First name must have a value - form not submitted"); fieldsValid
= false;
}
// test field familyName
if (isEmpty(orderform.familyName.value))
{
alert("Family name must have a value - form not submitted");
fieldsValid = false;
}
// test field telephone
if (notNumeric(orderform.telephone.value))
{
alert("Telephone number must consist of nothing but digits - form not
submitted");
fieldsValid = false;
}
// return Boolean valid fields status return
fieldsValid;
}

So if a telephone number of "abc" is entered:

the browser will display the following alert window (and not post the form):

JavaScript 3: Functions

23

14.8 Testing for invalid field combination
Complex forms might require that only certain combinations of values/check boxes and so on be valid. The form
shown below has an invalid combination of choices, and this can be picked up by a validation function. The form's
submission can be cancelled and the user alerted to the problem.

On attempting to submit the form, the user is shown the following message:

The form defines three rows. The first row displays the Standard Model check box. The second row has two
columns: the first contains the Deluxe model checkbox, and the second contains two colour check boxes (in a
table of their own). The final row offers the submit and clear buttons as usual:

<FORM NAME=modelform METHOD="post"
ACTION="mailto:put.your@email.address.

<table border=2>
<tr>
<td>
<INPUT TYPE="checkbox" NAME="standard" value="Standard
model">Standard Model
</td>
</tr>
<tr>

mailto:put.your@email.address
mailto:put.your@email.address

JavaScript 3: Functions

24

<td>
<INPUT TYPE="checkbox" NAME="deluxe" value="Deluxe model">Deluxe model
</td>
<td>

<table border=0>

JavaScript 3: Functions

25

<tr>
<td>
<INPUT TYPE="checkbox" NAME="blue">Blue
</td>
<tr>
<td>
<INPUT TYPE="checkbox" NAME="green">Green
</td>
<tr>
</table>
<tr>
<tr>
<td>
<INPUT TYPE="submit" VALUE="Submit this form">
</td>
<td>
<INPUT TYPE="reset" VALUE="Clear form and start
again">
</td>
</tr>
</table>
</FORM>

The validate() function tests for a number of invalid conditions. The first test is made to see if both
the standard and deluxe models have been chosen:

if(modelform.standard.checked &&
modelform.deluxe.checked)
{
alert("Please choose either standard or deluxe (not
both) - form not submitted");
fieldsValid = false;
}

The next two tests examine if a colour has been chosen with the standard model (this is not permitted):

if(modelform.standard.checked &&
modelform.blue.checked)
{
alert("Sorry - colour choices are only possible with deluxe
cars - form fieldsValid = false;
}
if(modelform.standard.checked &&
modelform.green.checked)
{
alert("Sorry - colour choices are only possible with deluxe
cars - form fieldsValid = false;
}

The final test ensures that only a single colour has been selected:

if(modelform.blue.checked &&
modelform.green.checked)
{
alert("Please either blue or green (not both) - form not
submitted"); fieldsValid = false;

JavaScript 3: Functions

26

}

JavaScript 3: Functions

27

14.9 The remaining activities

14.9.1 Activity 6: Completing the colour model form
Extend the file form5.html so that it does not permit the form to be submitted when neither a standard nor a deluxe
model have been selected.

You can find a discussion of this activity at the end of the unit.

14.9.2 Activity 7: Avoiding Multiple Messages
It can be very annoying to users to receive many different error messages from the same form (i.e. three or four
alerts all appearing one after the other).

For example, in the previous colour model form, if the screen were as follows:

the user would have to respond to the following sequence of alerts:

JavaScript 3: Functions

28

Amend the code so that an alert is only displayed for the first error encountered.

You can find a discussion of this activity at the end of the unit.

14.10 Review Questions

14.10.1 Review Question 1
What are the names of functions in the code below:

function displayMessage(message)
{
document.write("<p> Message was: " + message);
}
displayMessage("Hello");
displayMessage(Math.sqrt(25));

You can find the answer to this question at the end of the unit.

14.10.2 Review Question 2
Write a specification for a function triangleArea to calculate and return the area of a triangle, for a provided
height and width.

You can find the answer to this question at the end of the unit.

14.10.3 Review Question 3
What code would you need to create the following user-defined function:

JavaScript 3: Functions

29

Name (optional) multiply
Arguments (optional) n1, n2

body var result = n1 * n2;
return result;

Returns (optional) Returns the result of multiplying the two given
numbers

You can find the answer to this question at the end of the unit.

14.10.4 Review Question 4
What value is displayed when the following minus() function is invoked?

function minus()
{
document.write(5 - 6 - 7)
}
minus();

You can find the answer to this question at the end of the unit.

14.11 Discussion Topic
Generally, the definition of functions using the Function constructor and function literals is unnecessary since all
functions can be defined using simple function statements such as the following:

function myFunction(arg1, arg2)
{
// body of function
// optional function RETURN statement
}

You can find some thoughts on this discussion topic at the end of the unit.

14.12 Extension: More complex
functions

A good example of a function that uses more complex JavaScript features, such as arrays and objects (see later
unit), is a function to perform the standard task of displaying the date which a Web page was last updated. For
example a 'banner' can be displayed at the end of each document as follows:

JavaScript 3: Functions

30

The code to create such output is as follows:

JavaScript 3: Functions

31

<HTML> <SCRIPT> <!--
//function called update()
function update()
{
//declare a variable called
// (Modified to equal date of last save)
var modified = document.lastModified;
var months = new
Array("Jan","Feb","Mar","Apr","May","June","July","Aug",
"Sept","Oct","Nov","Dec");
//declare a variable called ModDate to equal last modified
date
var modDate = new Date(modified);
//write string of html formatting
document.write('<center><hr width=200>');
document.write('This page was last updated: ');
//write day
document.write(modDate.getDate() + '/');
//write month
document.write(months[modDate.getMonth()] + '/');
//write year
document.write(modDate.getYear());
//write string of html formatting
document.write('
<hr width=200></center>');
}
//invoke function
update()
// --> </SCRIPT> </HTML>

You may wish to examine this function now, and perhaps revisit it after working through the arrays and objects
unit later in this module.

14.13 Discussions and Answers

14.13.1 Discussion of Exercise 1
The browser output now has the details of whatever day and time you opened the document in the status bar.

14.13.2 Discussion of Activity 1
We can define this function easiest using a function statement:

function displayDouble(num)
{
var result = num * 2;
document.write(num + " * 2 = " + result);
}

The function can be invoked with statements such as:

displayDouble(2);

JavaScript 3: Functions

32

document.write("<p>");
displayDouble(10);

14.13.3 Discussion of Activity 2
We can define this function easiest using a function statement:

function fourTimes (num)
{
var result = num * 4;
return result;
}

14.13.4 Discussion of Activity 3
The simplest solution to this is to multiple the number by 100, round this value, then divide by 100 again.

The function is as follows:

function twoDP(num)
{
var rouded = Math.round(num * 100);
return rounded / 100;
}

An example of the function being invoked is as follows:

document.write(" 3.1415627 to 2 decimal places is " + twoDP(
3.1415627));

The browser output should appear as follows:

14.13.5 Discussion of Activity 4

The code for the form should look similar to the following:

<form name="form2">
The square root of

JavaScript 3: Functions

33

<INPUT TYPE="text" NAME="number" VALUE="" SIZE=10>
= <INPUT TYPE="text" NAME="square" VALUE="" SIZE=10>

<input type="button" value="Click here for answer"
onClick="display()">
</form>

The code for the function should look similar to the following:

function display(square)
{
var num = document.form2.number.value;
document.form2.square.value = Math.sqrt(num);
}

14.13.6 Discussion of Activity 5
This is straightforward — all that needs to be done is to add another three rows of buttons to the form (with appropriate
onClick event handlers). The existing functions can be left unchanged.

The extra HTML lines are:

<TR>
<TD><INPUT TYPE=button VALUE=" 4 " onclick="put(this.form,
4)"></TD>
<TD><INPUT TYPE=button VALUE=" 5 " onclick="put(this.form,
5)"></TD>
<TD><INPUT TYPE=button VALUE=" 6 " onclick="put(this.form,
6)"></TD>
<TD><INPUT TYPE=button VALUE=" - " onclick="put(this.form, '-
')"></TD>
</TR>
<TR>
<TD><INPUT TYPE=button VALUE=" 7 " onclick="put(this.form,
7)"></TD>
<TD><INPUT TYPE=button VALUE=" 8 " onclick="put(this.form,
8)"></TD>
<TD><INPUT TYPE=button VALUE=" 9 " onclick="put(this.form,
9)"></TD>
<TD><INPUT TYPE=button VALUE=" / " onclick="put(this.form,
'/')"></TD>
</TR>

14.13.7 Discussion of Activity 6
We need to add a new section to the validate() function, testing to see if neither are selected:

if(!modelform.standard.checked && !modelform.deluxe.checked)
{
alert("You must choose either standard or deluxe - form not
submitted"); fieldsValid = false;
}

Note the use of the exclamation mark ! — this is a logical not in JavaScript.

14.13.8 Discussion of Activity 7
One solution is to only display an alert for an invalid field if all previous fields have been valid. For example, we

JavaScript 3: Functions

34

could amend the testing of the multiple colour fields to the following:

JavaScript 3: Functions

35

if(modelform.blue.checked && modelform.green.checked)
{
if (fieldsValid)
alert("Please either blue or green (not both) - form not submitted");
fieldsValid = false;
}

The same approach needs to be taken for all but the first invalid field.

14.13.9 Discussion of Review Question 1
There are three functions referred to in this code:

1. The user-defined function displayMessage()

2. The built-in write() function (part of object document — see later unit)

3. The built-in sqrt() function (part of class Math — see later unit)

Generally, wherever you see parentheses, either function arguments are being defined, or a function is being
invoked.

The browser output for the above code is:

14.13.10 Discussion of Review Question 2
This function should be named triangleArea.

triangleArea takes two arguments, which we shall call height and width.

The function needs to calculate the are of a triangle (1/2 * (width * height)). We can write a statement that
assigns the result of this calculation into a variable called area:

var area = 0.5 * (height * width); The
function is to return the area: return
area;

The specification looks as follows:

JavaScript 3: Functions

36

;

function triangleArea
{
var area = 0.5 (heigth * width) return area;
}

14.13.11 Discussion of Review Question 3
This function is most easily created using a function statement as follows:

function multiply(n1, n2)
{
var result = n1 * n2; return result;
}

14.13.12 Discussion of Review Question 4

The function is invoked, the expression inside write() is evaluated to -8, and then the document.write() function is
executed adding -8 to to the browser window.

14.13.13 Thoughts on Discussion Topic
While in most cases it is convenient to define functions using function statements, there are situations when function
literals and the Function constructor offer advantages.

For example, it is possible to have collections of functions that do not require names (see later unit on arrays and
objects), in which case it is frequently convenient never to have to name them.

The Function constructor offers far more power in defining functions, since it defines the arguments and body of a
function using Strings, and Strings are very easy to manipulate in JavaScript. This makes it possible to have the script
itself create new functions as they are needed. Consider the browser output below:

Name (optional) triangleArea
Arguments (optional) height, width

body var area = 0.5 * (height * width)
return area;

Returns (optional) Returns triangle area (0.5 * (height * width))

JavaScript 3: Functions

37

This output is possible using a String entry from the user to define a function that can then be invoked through a
button press. The code for the above is as follows:

<HTML> <HEAD> <SCRIPT> <!--
function userFunction()
{
alert("no function yet defined")
}

function buildFunction(theForm)
{

// DEFINE new function and replace existing 'userFunction'
userFunction = new Function(theForm.functionbody.value);
}

// --> </SCRIPT> </HEAD>
<BODY>
<FORM>

Function body: <INPUT TYPE=text NAME=functionbody SIZE=30>

<INPUT TYPE=button VALUE="define new function"

onClick="buildFunction(this.form)">
<INPUT TYPE=button VALUE="Click to invoke function"
onClick="userFunction()">
</FORM>
</BODY>
</HTML>

Although this particular page could have been more simply implemented using eval, it illustrates the flexibility of
the Function constructor approach to function definition — a script can be written to define functions using
statements not known when the script was written.

	Objectives
	14.1 Introduction
	14.1.1 Introduction to JavaScript Functions
	14.1.2 Uses of Functions

	14.2 Using Functions
	14.2.1 Using built-in functions
	14.2.2 Using user-defined functions
	14.2.3 Defining and invoking a function in the same file
	14.2.4 Invoking a file defined in a different file
	14.2.5 Executing code using 'eval'

	14.3 Creating user-defined functions
	14.3.1 A simple function to display the String “hello”
	14.3.2 Creating a function using function statements
	14.3.3 Creating a function using the 'Function()' constructor
	14.3.4 Creating a function using function literals

	14.4 Some simple functions
	14.4.1 Mathematical functions
	14.4.2 Functions that RETURN a value
	14.4.3 Defining a function that returns a value
	14.4.4 A date Function
	14.4.5 The today function described

	14.5 Mathematical Functions
	14.5.1 A form for calculations
	14.5.2 A familiar calculator interface
	14.5.3 Some Function activities

	14.6 Form Validation
	14.6.1 Testing for empty fields
	14.6.2 The HTML defining the table
	14.6.3 The JavaScript function to validate the form fields
	14.6.4 Simplifying the code with a new function
	14.6.5 Improving user interaction
	14.6.6 Validation of multiple fields

	14.7 Testing for numeric fields
	14.8 Testing for invalid field combination
	14.9 The remaining activities
	14.9.1 Activity 6: Completing the colour model form
	14.9.2 Activity 7: Avoiding Multiple Messages

	14.10 Review Questions
	14.10.1 Review Question 1
	14.10.2 Review Question 2
	14.10.3 Review Question 3
	14.10.4 Review Question 4

	14.11 Discussion Topic
	14.12 Extension: More complex functions
	14.13 Discussions and Answers
	14.13.1 Discussion of Exercise 1
	14.13.2 Discussion of Activity 1
	14.13.3 Discussion of Activity 2
	14.13.4 Discussion of Activity 3
	14.13.5 Discussion of Activity 4
	14.13.6 Discussion of Activity 5
	14.13.7 Discussion of Activity 6
	14.13.8 Discussion of Activity 7
	14.13.9 Discussion of Review Question 1
	14.13.10 Discussion of Review Question 2
	14.13.11 Discussion of Review Question 3
	14.13.12 Discussion of Review Question 4
	14.13.13 Thoughts on Discussion Topic

